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ABSTRACT

Adapting pretrained image-based diffusion models to generate temporally con-
sistent videos has become an impactful generative modeling research direction.
Training-free noise-space manipulation has proven to be an effective technique,
where the challenge is to preserve the Gaussian white noise distribution while
adding in temporal consistency. Recently, Chang et al. (2024) formulated this
problem using an integral noise representation with distribution-preserving guar-
antees, and proposed an upsampling-based algorithm to compute it. However,
while their mathematical formulation is advantageous, the algorithm incurs a high
computational cost. Through analyzing the limiting-case behavior of their algo-
rithm as the upsampling resolution goes to infinity, we develop an alternative algo-
rithm that, by gathering increments of multiple Brownian bridges, achieves their
infinite-resolution accuracy while simultaneously reducing the computational cost
by orders of magnitude. We prove and experimentally validate our theoretical
claims, and demonstrate our method’s effectiveness in real-world applications.
We further show that our method can readily extend to the 3-dimensional space.

1 INTRODUCTION

The success of diffusion models for image generation and manipulation (Rombach et al., 2022;
Nichol et al., 2021; Ho et al., 2020; Zhang et al., 2023a) has spurred significant interest in lifting
these capacities to the video domain (Singer et al., 2022; Durrett, 2019; Gupta et al., 2023; Blattmann
et al., 2023; Ho et al., 2022; Guo et al., 2024). While building video models trained directly on spa-
tiotemporal data is a natural idea, practical concerns such as limited availability of large-scale video
data and high computational cost have motivated investigations into training-free alternatives. One
such training-free approach is to use image models to directly generate video frames, utilizing vari-
ous techniques such as cross-frame attention, feature injection and hierarchical sampling to promote
cross-frame temporal consistency (Zhang et al., 2023b; Khachatryan et al., 2023; Cong et al., 2023).

One particularly effective consistency-promoting technique is the temporally consistent initializa-
tion of noise across frames. However, most existing approaches either result in a loss of Gaussianity
in the noise image (and subsequently introduces a domain gap at inference time), or restrict them-
selves to simple manipulations of the noise image (e.g. filtering and blending). Recently, Chang
et al. (2024) proposed a method that preserves both Gaussian white noise distribution and cross-
frame temporal correlations via integral noise warping: each warped noise pixel is obtained by inte-
grating a continuous noise field, where the integration is implemented by summing over a polygonal
deformed pixel region in the upsampled prior noise image. However, the time and memory costs of
this algorithm grows quadratically with the upsampling resolution, prohibiting the adoption of the
method in certain applications (Kwak et al., 2024) due to this computational expense.

Regarding this challenge, our key insight is that when adopting an Eulerian perspective as opposed to
the original Lagrangian perspective, the limiting-case algorithm of Chang et al. (2024) for computing
a warped noise pixel reduces to summing over increments from multiple Brownian bridges (Durrett,
2019, Section 8.4). In place of the costly upsampling procedure, sampling the increments of a
Brownian bridge can be done efficiently in an autoregressive manner (2). We thus propose infinite-
resolution integral noise warping (Algorithm 1), which can directly and efficiently resolve noise
transport in the continuous space, when supplied with an oracle that returns the overlapping area
between a pixel square and a deformed pixel region (Section 2.3).
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Figure 1: When the image grid deforms, the Lagrangian view tracks a deformed pixel region, while
the Eulerian view tracks the undeformed pixel square as it gets partitioned into multiple regions.
On the right, we leverage the exchangeability of upsampled subpixels to convert the Lagrangian
gathering procedure into scattering noise subpixels to overlapped deformed pixel regions.

We propose two concrete methods for computing this oracle, leading to a grid-based and a particle-
based variant. Following Chang et al. (2024), the grid-based variant (Algorithm 2) computes the
area by explicitly constructing per-pixel deformed polygons, and is exactly equivalent to the exist-
ing approach (Chang et al., 2024) with an infinite upsampling resolution, while running 8.0× to
19.7× faster and using 9.22× less memory. Inspired by hybrid Eulerian-Lagrangian fluid simu-
lation (Brackbill et al., 1988), our novel particle-based variant (Algorithm 3) computes area in a
fuzzy manner, which not only offers a further 5.21× speed-up over our grid-based variant, but is
also agnostic to non-injective maps. In real-world scenarios, the particle-based variant shows no
compromise in generation quality compared to the grid-based one (see video results), while offering
superior robustness, efficiency, simplicity, and extensibility to higher dimensions.

In summary, we propose a novel method for computing temporally correlated noise to facilitate
consistent video generation with image-based diffusion models. Our algorithm computes the integral
noise from Chang et al. (2024) at infinite resolution, warping a 1024×1024 noise image in∼ 0.045s
(grid variant) and∼ 0.0086s (particle variant), achieving orders of magnitude speed-up compared to
Chang et al. (2024) while retaining the distribution-preserving and temporally-coherent properties.

2 METHODOLOGY

In this section, we introduce our method as follows:

• We present an equivalent Eulerian interpretation (Figure 1) for the method by Chang et al.
(2024), which was developed from a Lagrangian viewpoint.

• We show that the limiting algorithm of the Eulerian formulation as upsampling level goes
to infinity is equivalent to sampling increments of Brownian bridges.

• We present our main algorithm (Algorithm 1) which, given a partition record that returns
the overlapping area between a pixel square and a deformed pixel region, samples incre-
ments of Brownian bridges and scatters the increments to form the warped noise image.

• We propose two practical algorithms for computing the overlap areas. The grid-based
Algorithm 2 extends Chang et al. (2024) to infinite resolution without the overhead of
upsampling. The particle-based Algorithm 3 departs from grid-based discretization and
uses particles instead, resulting in a simpler algorithm that is robust to degenerate maps.

2.1 NOISE WARPING: AN ALTERNATIVE EULERIAN PERSPECTIVE

Given a D ×D prior noise image IW ∈ RD×D1 and a deformation map ψ : [0, 1]2 → [0, 1]2, the
noise-warping algorithm (Chang et al., 2024) computes the warped noise image ĨW ∈ RD×D with
upsampling level N ∈ Z≥1 as follows:

1In practice, the noise image has multiple channels. Since channels are always treated independent of one
another, to simplify the notation, we will assume the image has a single channel.
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Figure 2: Connection between Eulerian noise-warping and increments of a Brownian bridge for a
fixed prior noise pixel [IW ]i,j . The overlapping area of each colored warped region becomes the
time increment for the Brownian bridge. Hence, sampling the Brownian bridge at these times and
taking consecutive differences yields integral noise that is scattered to form each warped noise pixel.

1. For i, j = 1, . . . , D, upsample noise pixel [IW ]i,j to anN×N subimage [ÎW ]i,j ∈ RN×N :

[ÎW ]i,j =
[IW ]i,j
N2

+
1

N

(
Z− S

N2

)
, with Z ∼ N (0, I) and S =

∑N2

k=1
Zk. (1)

The subimage for each pixel assembles into an ND ×ND upsampled noise image ÎW .

2. For i, j = 1, . . . , D, the pixel square Ai,j := [ i−1
D , i

D ]× [ j−1
D , j

D ] is warped to a deformed
pixel region Ãi,j := ψ(Ai,j), and the warped noise pixel [ĨW ]i,j is set to be the sum of

all subpixels in ÎW covered by Ãi,j divided by
√
|Ãi,j |, where |A| denotes the Lebesgue

measure of a Borel set A ⊂ R2.

We describe an alternative but equivalent procedure by making the following two observations,
which are illustrated in Figure 1.

Gathering Noise→ Scattering Noise. While the original procedure computes the warped noise im-
age by gathering the upsampled noise subpixels in each deformed pixel region Ãi,j in a Lagrangian
fashion, we can instead use an alternative procedure by scattering the upsampled noise subpixels in
each pixel square Ai,j to overlapping deformed pixel regions. This new Eulerian procedure does
not change the output, but it yields new insights in conjunction with our second observation.

Scattering Noise → Counting Overlapping Subpixels. Observe that the N × N subpixels in
[ÎW ]i,j , for every i, j, are correlated only through their sum S when conditioning on [IW ]i,j (1), so
they are exchangeable. Hence, when scattering these upsampled noise subpixels to deformed pixel
regions, the order of scattering does not matter, and we only need to count the number of subpixels
covered by each deformed pixel region.

Alternative Eulerian Procedure. Putting both observations together, we now describe an alterna-
tive procedure to Chang et al. (2024) with unaltered output:

1. For each noise image pixel [IW ]i,j , draw an upsampled subimage, now represented as a 1D
vector X ∈ RN2

using (1). Then, compute a prefix sum Hi,j via [Hi,j ]k :=
∑k

q=1Xq for
k = 1, . . . , N2.

2. Warp each pixel square and compute deformed pixel regions Ãi,j as before.
3. For each Ai,j , let M denote the number of deformed pixel regions that overlap with Ai,j .

With index k = 1, . . . ,M , we use lk,mk to denote the coordinates of the kth overlap, whose
pixel region is Ãℓk,mk

and pixel value [ĨW ]ℓk,mk
. Form L ∈ ZM

≥0 where Lk represents the
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number of upsampled subpixels covered by Ãℓk,mk
. Then, compute a prefix sum [Ci,j ]k :=∑k

q=1 Lq . For k = 1, . . . ,M , accrue [Hi,j ][Ci,j ]k − [Hi,j ][Ci,j ]k−1
to [ĨW ]ℓk,mk

.

4. Divide each warped noise pixel [ĨW ]i,j by
√
|Ãi,j |.

Discussion. Compared to the original procedure by Chang et al. (2024), this alternative but equiva-
lent algorithm highlights how the upsampled subpixels of [IW ]i,j are scattered to form the warped
noise pixels. In particular, each warped noise pixel receives the sum of a continuous segment in
Hi,j . SinceHi,j is a summation of weakly correlated and exchangeable subpixels, once conditioned
on [IW ]i,j , can we avoid explicitly instantiating every single subpixel, but instead model the sum of
these weakly correlated subpixels?

The key insight of this paper is that when the upsampling resolution N → ∞, the scaling limit of
the prefix sumHi,j (with proper interpolation and time scaling to a continuous function) is precisely
the Brownian bridge (Durrett, 2019, Section 8.4) conditioned on [IW ]i,j . Once this connection is
established, it is easy to progressively sample increments of the Brownian bridge, resulting in a clean
and efficient noise-warping algorithm that bypasses the need for upsampling in Chang et al. (2024).

2.2 INFINITE-RESOLUTION NOISE SCATTERING

In this section, we first derive a scaling limit result to Brownian bridges. We then illustrate that the
limiting version of the Eulerian procedure from the previous section matches precisely this scaling
limit result. Lastly, we demonstrate an autoregressive way to sample increments of a Brownian
bridge that is linear in runtime in terms of the number of increments.
Theorem 1 (Scaling limit to Brownian bridge). Let {Zn} be a sequence of i.i.d. random variables
with finite variance that are normalized such that E[Zn] = 0 and Var(Zn) = 1. For c ∈ R, define

Sn :=

n∑
i=1

Zi, Xi,n :=
c

n
+

1√
n

(
Zi −

Sn

n

)
.

Consider the sequence of random continuous functions {Hn(t)} ⊂ C[0, 1] defined as

Hn(t) :=

⌊nt⌋∑
i=1

Xi,n + (nt− ⌊nt⌋)X⌊nt⌋+1,n.

Then the sequence {Hn} converges in distribution under the sup-norm metric on C[0, 1] toBc(t) :=
W (t) − tW (1) + tc, the Brownian bridge ending at c, where W (t) is standard Brownian motion.
Moreover, in distribution, we have Bc(t)

d
= (W (t) | W (1) = c), where (W (t) | W (1) = c) is the

disintegrated measure (Pachl, 1978) of W (t) on W (1) = c.

We prove Theorem 1 in Appendix A. To connect the Eulerian procedure with the setup in Theorem 1,
let us fix a pixel [IW ]i,j , and let B := B[IW ]i,j , H := Hi,j , C := Ci,j to simplify the notation. By
setting n = N2 and c = [IW ]i,j , the sequence {Xk,n} from the theorem has exactly the same
law as the upsampled subpixels in [ÎW ]i,j . Moreover, Hnt = Hn(t) when nt ∈ Z≥1. By taking
N →∞, implying n→∞, for any t1, . . . , tM ∈ [0, 1], we have the convergence in distribution of(
H⌊nt1⌋, . . . ,H⌊ntM⌋

) d→ (B(t1), . . . , B(tM )). Recall in the Eulerian procedure, we only need to
access the prefix sum H at indices {Ck}Mk=1, where Ck counts the number of upsampled subpixels
covered by the first k overlaps. This suggests that if we choose

tk = lim
N→∞

Ck

N2
=

k∑
k′=1

∣∣∣Ai,j ∩ Ãℓk′ ,mk′

∣∣∣ ,
and use B(tk) in place of Hk, then we just need to sample from B at times t1, . . . , tM — precisely
the limiting algorithm of the Eulerian procedure. We illustrate this connection in Figure 2.

Autoregressive Sampling of Brownian Bridges. Since a Brownian bridge is a Markov process
(Oksendal, 2013, Exercise 5.11), we can sample the vector (Bc(t1), . . . , Bc(tM )) in an autoregres-
sive fashion, each time sampling Bc(tk+1) conditioned on Bc(tk):

(Bc(tk+1) | Bc(tk) = q)
d
= N

(
1− tk+1

1− tk
q +

tk+1 − tk
1− tk

c,
(tk+1 − tk)(1− tk+1)

1− tk

)
. (2)
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Figure 3: In the grid-based variant, we compute the overlapping area by explicitly constructing
the polygonal region of the deformed pixel region. In the particle-based variant, we approximate
the overlapping area with a linear kernel-based interpolation. On the right, we show how the two
variants differ when the map is non-injective: the grid-based variant yields intersecting regions,
causing stability issues, whereas the particle-based variant remains stable.

Once the Brownian bridge at times tk is sampled, we just need to accrue the increments Bc(tk) −
Bc(tk−1) to [ĨW ]ℓk,mk

, the kth overlapped warped noise pixel. This allows us to present Algo-
rithm 1. Compared to the discrete procedures described earlier, we no longer need upsampling.
In addition, we exploited the autoregressive nature of Brownian bridges to bring down the time
complexity to linear in the number of overlapping warped pixel regions.

Algorithm 1 Infinite-Resolution Integral Noise Warp
Input: prior noise image IW ∈ RD×D, deformation map ψ : [0, 1]→ [0, 1]

Output: warped noise image ĨW ∈ RD×D

Build a partition record P from ψ (Section 2.3)
Initialize Ai,j ← 0 for all i, j = 1, . . . , D ▷ Ai,j will eventually be the area of Ãi,j

parallel for each u, v = 1, . . . , D do
t, q,M ← 0, 0, |Pu,v|
for k = 1, . . . ,M do

(a, i, j)← [Pu,v]k ▷ a is the overlapping area between Ai,j and Ãu,v

Sample q′ ∼ (Bc(t+ a)|Bc(t) = q) by (2) with c = [IW ]u,v
[ĨW ]i,j ← [ĨW ]i,j + (q′ − q)
Ai,j ← Ai,j + a
q, t← q′, t+ a

Normalize [ĨW ]i,j ← Ai,j
− 1

2 [ĨW ]i,j for all i, j = 1, . . . , D

return ĨW

Preservation of Gaussian White Noise. A central desideratum of noise warping is that the resulting
warped noise image ĨW needs to have pixels that are i.i.d. standard Gaussians when the prior noise
image IW is Gaussian white noise. This ensures that the warped noise is in-distribution for a pre-
trained diffusion model. Our algorithm automatically guarantees this preservation of Gaussianity, as
long as the warping function ψ is injective. To see this, the injectivity of ψ implies that the warped
pixel regions are non-overlapping in the square [0, 1]2. For each Ai,j , since [IW ]i,j

d
= N (0, 1)

d
=

W (1), by the conditional interpretation of Brownian bridges (1), when marginalizing out [IW ]i,j ,
the Brownian bridge B[IW ]i,j reduces to standard Brownian motion. Since the increments of the
Brownian motion are independent Gaussians, the contribution to a deformed pixel region is simply
a zero-mean Gaussian with variance equal to the overlapping area. Therefore, each deformed pixel
region will receive the sum of a number of independent Gaussians whose variances sum to the area
of the region. The scaling by the inverse square root of the area in Algorithm 1 thus makes each
warped noise pixel an i.i.d. standard Gaussian.

2.3 BUILDING PARTITION RECORDS

In this section we present two algorithms, one grid-based and one particle-based, for building par-
tition records that return the area between each pixel square and its overlapping deformed pixel
regions. Both versions are outlined in Algorithm 2 and Algorithm 3, where we use i, j to index pixel
regions in the deformed space, and u, v for those in the undeformed space.
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Algorithm 2 Grid-based Partition
Input: Deformation map ψ
Output: Partition record P
1: parallel for each i, j do
2: A∗ ← DiscretizeSquare(Ai,j)
3: S ← ψ(A∗)
4: u−, u+, v−, v+ ← AABB(S)
5: for u ∈ [u−, u+] do
6: for v ∈ [v−, v+] do
7: a← PolygonArea(Clip(S, u, v))
8: Pu,v ← Pu,v + [(a, i, j)]

9: return P

Algorithm 3 Particle-based Partition
Input: Deformation map ψ
Output: Partition record P
1: parallel for each i, j do
2: (x, y)← ψ( i+0.5

D
, j+0.5

D
)

3: α0,0, α0,1, α1,0, α1,1 ← BilinearWeights(X)
4: for s, t ∈ [0, 1] do
5: u, v ← ⌊x⌋+ s, ⌊y⌋+ t
6: Pu,v ← Pu,v + [(αs,t, i, j)]
7: parallel for each u, v do
8: Normalize total area of Pu,v to D−2

9: return P

As illustrated in Figure 3, our grid-based method (left) follows the same approach as Chang et al.
(2024), treating each deformed pixel as an octagon and each undeformed pixel as a grid cell; our
particle-based method (middle) borrows from the grid-to-particle (G2P) technique in fluid particle-
in-cell method methods (Brackbill et al., 1988), where we treat each deformed pixel as a particle
and each undeformed pixel as grid cell. Each particle requests area from nearby grid cells based on
distance; upon receiving requests, each grid cell normalizes the requests to ensure partition-of-unity,
and distributes its area to contacting particles.

Discussion. Conceptually, our grid-based and particle-based methods correspond to two different
interpretations of ψ when it is available only as discrete samples (e.g. optical flow image). The grid-
based method implicitly reconstructs the continuous ψ field by linear interpolation, whereas the
particle-based method makes no such interpolation and assumes ψ is only known point-wise. This
implies that when ψ is smooth, linear interpolation works well and the grid-based method will yield
a higher-quality warp as seen in Figure B.4. But when ψ is non-smooth, which is usually the case
in real-world data, linear interpolation becomes problematic and can lead to degenerate polygons
as illustrated on the right of Figure 3. These degenerate polygons can violate the assumption that
deformed pixel regions do not overlap, which is required for independence in the warped noise. We
note that, in practice, both Chang et al. (2024) and our grid-based method are equipped with fail-
safes that ensures this independence by “patching up” degenerate regions with new Gaussian noise,
but these mechanisms do not handle the overlaps in a principled manner, while the particle-based
variant fundamentally circumvents such overlaps with its topology-free nature.

In addition, we also highlight the simplicity of the particle-based approach, as it boils down the par-
tition record computation to evaluating bilinear kernels, which is highly efficient and parallelizable.
Such simplicity offers a unique opportunity to extend the noise warping to higher dimensions, as it
effectively only requires the change from the bilinear kernel to its higher-dimensional counterpart.
We showcase this possibility using a 3-dimensioal noise warp example as shown in Figure B.5.

3 RESULTS

We verify our theoretical claims by showing that both variants of our method preserve Gaussian
white noise distribution, and that Chang et al. (2024) (HIWYN) converges to our grid-based variant
asN increases. We analyze the behaviors of our grid-based and particle-based variants under diffeo-
morphic and non-diffeomorphic deformations. We then apply our method in video generation and
benchmark against existing methods (Ge et al., 2023; Chen et al., 2023; Chang et al., 2024). Finally,
we extend our method to warping volumetric noise and demonstrate a use case in 3D graphics.

Gaussian White Noise Preservation. In Figure 4, we iteratively warp a noise image by the same
deformation map for 50 timesteps. We gauge the output noise’s resemblance to Gaussian white noise
by measuring normality using one-sample Kolmogorov-Smirnov (K-S) test and detecting spatial cor-
relation using Moran’s I . Our results show that both HIWYN and our method generate warped noise
images indistinguishable from Gaussian white noise which significantly improve upon baselines.

Convergence of Chang et al. (2024). We validate that our method is the limiting case of HIWYN.
Starting with an 8×8 prior noise image and a flow map (Figure 5, top left), we run our method along
with HIWYN forN ∈ {2, 4, 8, . . . , 256} for 100,000 independent runs to estimate the distribution of
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Distribution Preservation Metrics
Method Ours, grid-based Ours, particle-based HIWYN, N=8 Bilinear Bicubic Nearest Neighbor

Moran’s I 5.103e-4 / 0.849 -1.995e-3 / 0.475 3.215e-3 / 0.243 0.612 / 0 0.983 / 0 2.974e-2 / 6.103e-27
K-S Test 3.410e-3 / 0.430 3.023e-3 / 0.586 3.274e-3 / 0.482 0.366 / 0 0.422 / 0 9.806e-3 / 6.681e-06

Figure 4: Preservation of Gaussian white noise achieved by different warping methods. We report
scores and p-values for both Moran’s I (spatial correlation) and K-S test (normality). We show
that results from our method (both variants) and HIWYN are indistinguishable from white Gaussian
noise, while generic warping methods lead to corrupted noise.

WN for Varying Values of N
N mean WN max WN N mean WN max WN

2 2.072e-1 7.253e-1 32 4.320e-3 1.391e-2
4 5.394e-2 2.962e-1 64 3.236e-3 8.325e-3
8 1.881e-2 8.310e-2 128 3.616e-3 8.134e-3
16 6.792e-3 2.361e-2 256 3.387e-3 8.228e-3

Figure 5: Convergence of HIWYN to our method as N increases. Top left: experimental setup with
prior noise and deformation map. Top middle: 2-Wasserstein distance WN between the output of
HIWYN and ours. Top right: statistics table. Bottom: WN difference image between the output of
HIWYN and ours as N increases. Notice WN becomes statistically insignificant for N ≥ 64.

the warped noise image. For each upsampling resolution N , we compute the 2-Wasserstein distance
WN between the output of HIWYN and that of our method. The results in Figure 5 demonstrate
the convergence of HIWYN to our method as N increase, and reveal that N =8 (recommended by
Chang et al. (2024)) is not yet in the converged phase to yield a negligible WN .

Performance Comparison. For our methods and HIWYN with upsampling levels N ∈ {2, 4, 8},
we perform 100 independent runs on a 1024 × 1024 image. We report the kernel time with CPU
and GPU backends (Figure 7) as well as the memory usage. The runtime and memory usage of our
methods are largely comparable with those of HIWYN with N = 2. Compared to HIWYN with
N = 8, both our methods offer order-of-magnitude improvements in runtime and memory usage.
Specifically, our grid-based method achieves infinite upsampling resolution while being 19.7× faster
on CPU and 8.0× faster on GPU, using 9.22× less memory, and our particle-based method, albeit
not strictly equivalent to HIWYN at N =∞, achieves a 41.7× speedup on GPU. In the following
sections, we show that the particle-based version consistently achieves comparable quality to the
grid-based version in real-world scenarios.

Comparison between Grid-Based and Particle-Based Variants. In Figure B.4, we compare both
variants when the deformation map is diffeomorphic under different levels of distortion. Visually,
the difference between the two variants is negligible at frame 25 and becomes noticeable in frame
100. We measure this difference by comparing the deformed regions for each pixel in terms of
IoU and weighted Chamfer distance. We additionally compare the particle-based result with that
of an identity-map baseline (right column in Figure B.4), which shows that the gap between the
two variants remains small even under large distortion. In Figure 8, we stress test both variants
under non-diffeomorphic maps obtained using optical flow (Teed & Deng, 2020) on a real-world
video (Brox & Malik, 2011). In images 3 and 4, we see that the real-world flow map induces
inverted meshes for the grid-based variant and clustered particles for the particle-based variant.

7
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Comparison of Time and Memory Costs
Method Time (CPU) Time (GPU) Memory

N = 2 (HIWYN) 19.30s 2.597s 293.7MB
N = 4 (HIWYN) 75.33s 9.247s 746.6MB
N = 8 (HIWYN) 398.3s 35.91s 2147MB
N =∞ (ours, grid) 20.16s 4.491s 232.9MB

N =∞ (ours, particle) 15.68s 0.862s 320.9MB

Figure 7: Runtime and memory usage of our method vs. HIWYN with N = 2, 4, 8. We compare
total allocated memory and kernel time on a CPU/GPU. The computation is done on a laptop with
Intel i7-12700H and GeForce RTX 3070 Ti.

While clustered particles are always assigned disjoint regions due to the continuous nature of our
algorithm, mesh inversions cause area contention issue due to overlaps. In images 5 and 6, we mark
the grid cells with area contention in orange, which occurs in the grid-based version but not in the
particle-based version.

Video Super-resolution with I2SB. We integrate our method with I2SB (Liu et al., 2023) and adapt
its pre-trained image 4× super-resolution model (bicubic) to perform video super-resolution. We
show our results in Figures 9 and B.2, and we refer to our supplementary video for best visualization
of these results. Since I2SB is an image-to-image bridge model, it well preserves the low-frequency
structures of the input images regardless of noise scheme. But as seen in our video, without noise
warping, the results either show strong flickering in the high-frequency details (random noise) or
sticking artifacts (fixed noise). Noise warping allows high-frequency details to transport with the
optical flow, making the result significantly more consistent. We also validate that both our variants
yield visual quality on par with HIWYN across all tested scenarios while being much more efficient.

Conditional Video Generation with SDEdit. We apply our method to conditional video generation
by adapting SDEdit (Meng et al., 2021), a conditional image generation method, to producing con-
sistent video frames. We apply Perturbed-Attention Guidance (Ahn et al., 2024) to the unconditional
models with scale 3.0. Our two inputs are a conditioning video (generated by applying a median
filter to real-world videos similar to Chen et al. (2023)) and an optical flow field (Teed & Deng,
2020). Without noise manipulation, if we run SDEdit frame-by-frame (Figure B.7, bottom row), the
details (e.g. in the tower and trees) would result in strong flickering. By warping the noise using
the optical flow, the temporal consistency is much improved. As shown in Figure B.7, our methods
(both variants) and HIWYN yield comparable visual qualities. Full experiments that shows compar-
ison with Control-A-Video (Chen et al., 2023) and PYoCo (Ge et al., 2023) and additional baselines
are provided in Figures B.8 and B.9 with generation quality metrics reported in Figure B.1. Further
results that additionally integrate cross-frame attention (Ceylan et al., 2023) (anchor every 3 frames)
are shown in Figure 10 and B.3. We refer to our supplementary video for better visualization.

Figure 6: 3D noise
warped by our par-
ticle variant.

3D Noise Warp. We extend our particle-based algorithm to 3D by replacing
the bilinear kernel with the bicubic kernel in Algorithm 3 and apply it to
GaussianCube (Zhang et al., 2024), which denoises a dense 3D noise grid
to reconstruct 3D Gaussians. We adapt it to perform conditional generation
a la SDEdit. Starting with a 3D pickup truck generated unconditionally, we
condition the model to generate vehicles with smaller and larger cabins by
deforming the truck with a horizontal shear velocity field. We compare the
results from using random noise to those using noise warped with our particle-
based method. Using the warped noise improves the consistency, reducing
the flickering of the cars’ geometries and textures. We show the results in
Figure B.5 and refer to our supplementary video for better visualization.

4 RELATED WORKS

Noise in Diffusion Models. Diffusion models generate images from input noise, and noise can thus
be considered the counterpart to the latent codes utilized in GAN models. As such, the outputs
of diffusion models have dependencies and correlations to the initial input noise, making noise a
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Figure 8: Comparison of grid-based vs. particle-based variants under non-diffeomorphic optical
flow. Pixels with detected overlaps are colored in orange. Further results are given in Figure B.6.

Figure 9: Video 4× super-resolution by integrating our method (particle) with I2SB. Top row shows
the low resolution input video; bottom row shows the output video. Additional results are shown in
Figure B.2. We refer to our supplementary video for better visualization of these results.

useful handle to control temporal consistency (Khachatryan et al., 2023). In addition to Chang
et al. (2024) which this work was inspired by and improves upon, there are various other temporal
noise manipulation techniques that do not preserve Gaussian noise distribution– some methods (Ma
et al. (2024); Ren et al. (2024)) blend high frequency Gaussian noise with low frequency motion,
while others (Mokady et al. (2022); Wallace et al. (2022)) rely on approximating the inversion of
noise from temporally coherent image sequences. Pandey et al. (2024) goes one step further and
manipulates inverted noise in 3D space. These approaches are flexible but degrade the output of the
diffusion model due to the domain gap between inference time noise and training time noise, and
as such, have occasionally been accompanied by mitigation strategies such as anisotropic diffusion
(Yu et al. (2024)). Noise manipulation is also not limited to the generation and stylization of videos,
but has various applications in image editing (Hou et al. (2024); Pandey et al. (2024)) and 3D mesh
texturing (Richardson et al. (2023)) as well.

Noise in Computer Graphics. While our noise warping work draws main inspiration from simula-
tion techniques, spatial noise manipulation has been extensively studied in the graphics community
through applications in animation and rendering. Works like (Kass & Pesare, 2011; Burley et al.,
2024) present 2D noise manipulation techniques that add a stylized organic hand-drawn look to
computer-generated animation via dynamic noise textures (Perlin, 1985). In order to make sure the
stylization is temporally consistent and visually pleasing, noise textures are deformed in a way that
makes them consistent with the underlying animation, but little emphasis is given to the preserva-
tion/rigor of the noise distribution. On the other hand, properties of 2D spatial noise have been
extensively and rigorously studied in rasterization and raytracing literature (Cook, 1986; Lagae &
Dutré, 2008), originating from the idea of using dithering to reduce banding and quantization arte-
facts in image signal processing (Roberts, 1962). In particular, the lack of low frequency details and
clumping in blue noise as opposed to white Gaussian noise has made it the choice of foundational
antialiasing methods such as Poisson disc sampling (McCool & Fiume, 1992), and recent progress
made in this line of antialiasing research has close ties with our methodology. For example, Wolfe
et al. (2022) look at accelerating rendering tasks by extending spatial blue noise to the temporal
domain, while Huang et al. (2024) show promising results in supplementing white noise with blue
noise during diffusion model training.

9
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Figure 10: Conditional video generation results by integrating our method (particle) with SDEdit
and cross-frame attention (Ceylan et al., 2023). Top row shows the input video prompt in a stroke
painted style which is converted into a video of photorealistic style (bottom). Additional results are
shown in Figure B.3. We refer to our supplementary video for better visualization of these results.

5 DISCUSSION AND CONCLUSION

We present infinite-resolution integral noise warping (Algorithm 1), a novel and efficient algorithm
for warping a prior noise image into a sequence of noise frames while preserving the Gaussianity
and temporal consistency. This is achieved by a theoretically motivated analysis of the infinite-
resolution case of the integral noise warping algorithm by Chang et al. (2024), which enables an
orders-of-magnitude improvement in efficiency with no trade-offs in accuracy.

Usability of Noise Warping We highlight that the noise warping problem that we address is a
recurring subtask in generative modeling, and our method is hence a general-purpose tool that can
be integrated in a variety of ways that extend well beyond the ones we showcase in the paper.
First, noise warping, which excels at controlling high-frequency details, is orthogonal and thus com-
binable with feature-level, structure-preserving techniques (e.g. Ceylan et al. (2023); Cong et al.
(2023)) to achieve consistency across the frequency spectrum. Our drastic cost-saving makes noise
warping an affordable and harm-free add-on to all such existing and future techniques. In addition,
the concurrent work by Daras et al. (2024) shows that noise warping can be combined with equiv-
ariance guidance to gain further consistency and integrate with latent diffusion models like SDXL
(Podell et al., 2023). Beyond video generation, Kwak et al. (2024) showcases the usefulness of noise
warping in 3D generation by combining with score distillation sampling (SDS). The advanced noise
warping algorithm that we propose presents itself as a desirable candidate across these diverse tasks.

Significance of Our Speed-up We argue that the drastic speed-up our method offers has profound
practical significance. While the standard denoising diffusion setting requires only a single noise
warp operation per image, there exist many use cases that require noise warping to be computed
more intensively, which renders our speed-up critical. For example, the combination with bridge
models (e.g. I2SB) requires one noise warp per iteration. With its reported> 0.6s time cost per warp,
preparing the noise using HIWYN would cost ∼ 4× the time to actually run the image generation
model, increasing the total inference time from ∼ 24 minutes to ∼ 2 hours. In comparison, our
method (particle) prepares the noise in 40.6s (wall time), effectively making the overhead negligible.
Similarly, combining noise warping with SDS also requires one noise warp per iteration, which
makes HIWYN computationally intractable (Kwak et al., 2024) and our improvements called for.
Our speed-up hence makes integral noise warping deployable in a much broader class of problems.

We note some directions for future work. Since our particle-based variant does not leverage the
deformation gradient of ψ, it does not account for area contraction and expansion. Voronoi re-
partitioning may address this problem at the cost of extra computation. More broadly, since our
method relies on the consistency of the deformation map and its alignment with the conditional
video, it can be limited by the availability and accuracy of flow extraction techniques. Finally, the
effectiveness of warped volumetric noise in 3D generation and editing tasks remains to be studied.
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A PROOF OF THEOREM 1

Proof. By unrolling the definitions, for t ∈ [0, 1], we have

Hn(t) = S∗
n(t)− tS∗

n(1) + tc, S∗
n(t) :=

1√
n

⌊nt⌋∑
i=1

Zi + (nt− ⌊nt⌋)Z⌊nt⌋+1

 .

By Mörters & Peres (2010, Theorem 5.22), {S∗
n}n∈Z≥1

converges in distribution to W (t) under the
sup-norm metric of C[0, 1]. To lift this convergence to the sequence {Hn}n∈Z≥1

, observe that the
function g : C[0, 1]→ C[0, 1] defined by

g(x(t)) := x(t)− tx(1) + tc
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is continuous under the sup-norm metric. To verify this, suppose limn→∞ fn = f for
{fn}n∈Z≥1

, f ∈ C[0, 1]. Then

∥g(fn)− g(f)∥∞ = sup
t∈[0,1]

|(fn(t)− tfn(1) + tc)− (f(t)− tf(1) + tc)|

≤ ∥fn − f∥∞ + ∥fn(1)− f(1)∥ ≤ 2∥fn − f∥∞ → 0.

Hence, by the continuous mapping theorem,

g(S∗
n) = Hn

d−→ B(t)− tB(1) + tc.

To show

W (t)− tW (1) + tc = (W (t) |W (1) = c),

first of all, the conditioning (W (t) |W (1) = c) is interpreted as the limit of (W (t) | |W (1)− c| <
ϵ) as ϵ → 0. Denote Y (t) := W (t) − tW (1), so that W (t) = Y (t) + tW (1). Since
Cov(Y (t), tW (1)) = Cov(W (t)−tW (1), tW (1)) = tCov(W (t),W (1))−t2Var(W (1),W (1)) =
0 and that Y (t), tW (1) are jointly Gaussian, they are independent. Therefore,

lim
ϵ→0

(W (t) | |W (1)− c| < ϵ) = lim
ϵ→0

(Y (t) + tW (1) | |W (1)− c| < ϵ)

= Y (t) + lim
ϵ→0

(tW (1) | |W (1)− c| < ϵ)

=W (t)− tW (1) + tc.

B ADDITIONAL RESULTS

In this section we include additional visual and numerical results. In Figure B.8 and Figure B.9, we
showcase full comparisons with the addition of Control-A-Video (Chen et al., 2023) and PYoCo (Ge
et al., 2023), along with baselines with fixed noise and interpolated noise using bilinear and nearest
interpolating scehemes. The corresponding quantitative metrics for both church and cat scenes are
reported in Figure B.1. In Figure B.6, we use additional examples to showcase the area contention
issue caused by degenerate meshes that applies similarly to our grid-based variant and Chang et al.
(2024), and highlight the robustness of our particle-based variant. In Figure B.5, we show additional
results when combining our particle-based 3D noise warp with GaussianCube (Zhang et al., 2024).

Video Generation Quality (Church)
Metric Ours (G) Ours (P) HIWYN PYoCo CaV Random Fixed Bilinear Nearest

Consistency ↓ 9.868e-2 1.065e-1 1.060e-1 1.175e-1 1.359e-1 1.538e-1 1.120e-1 8.114e-2 1.305e-1
Realism ↓ 4.643e-2 5.180e-2 4.959e-2 4.119e-2 4.069e-2 3.731e-2 3.911e-2 2.301e-1 7.012e-2

Faithfulness ↓ 3.872e-2 4.309e-2 4.377e-2 3.764e-2 4.169e-2 3.976e-2 3.264e-2 5.623e-2 9.321e-2
Video Generation Quality (Cat)

Metric Ours (G) Ours (P) HIWYN PYoCo CaV Random Fixed Bilinear Nearest
Consistency ↓ 6.001e-2 5.898e-2 5.807e-2 6.383e-2 4.280e-2 1.219e-1 3.950e-2 3.503e-2 1.058e-1

Realism ↓ 1.559e-1 1.496e-1 1.528e-1 1.506e-1 1.486e-1 1.221e-1 1.588e-1 3.687e-1 3.343e-1
Faithfulness ↓ 2.039e-2 2.064e-2 2.022e-2 2.023e-2 1.817e-2 2.077e-2 1.972e-2 3.809e-2 2.201e-1

Figure B.1: We show the quality metrics for conditional video generating using SDEdit. The con-
sistency is measured using Warp MSE, and the realism and faithfulness are measured as in Meng
et al. (2021).
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Figure B.2: Additional results generated by performing 4x video super-resolution with I2SB. For
each scenario, the upper row represents the low resolution input video, and the lower row represents
the high resolution output video. We refer to our supplementary video for better visualization of
these results.

Figure B.3: Additional conditional video generation results by integrating our method (particle) with
SDEdit and cross-frame attention (Ceylan et al., 2023). The top row shows the input video prompt
in a stroke painted style which is converted into a video of photorealistic style (bottom). We refer to
our supplementary video for better visualization of these results.
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Figure B.4: Comparison between the grid-based and particle-based variants for building partition
records when the deformation map is diffeomorphic. The first column shows the deformation map at
different frames. The second and third columns visualize warped pixel regions for the two methods.
The right two columns show IoU (larger is better) and Chamfer distance (smaller is better) between
the outputs from both variants. We plot the distance between particle and grid variants alongside
a baseline, which is the distance between identity map and the grid variant, which show that the
particle-based version remains close to the grid-based version even under large distortion.

Figure B.5: Extension of our particle-based method to warping 3D noise. We show the volume
render on the top left, the slice view on the top middle, and represent it as 3D Gaussian as used in
GaussianCube representation on the top right. We then show that warping the noise in 3D space no-
ticeably facilitates temporal consistency over random baseline when we perform 3D editing, which
can be observed from the flickering of the color of the window in the bottom row. For best viewing
of this experiment, please refer to our supplementary video.
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Figure B.6: Comparison of grid-based and particle-based variants under non-diffeomorphic defor-
mation maps seen in real-world scenarios. The orange pixels are the invalid pixels where area
overlap occurs. Flow maps are downsampled 10× for better visualization. Image sequence comes
from Brox & Malik (2011) while optical flow is computed via Teed & Deng (2020).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure B.7: We compare the consistency-preserving efficacy with different noise warp schemes. We
use SDEdit using the conditional signal on the top image. We show here our method (both variants)
and HIWYN, while further results are given in Figure B.8. We highlight the details of the tower,
which is preserved to similar extents by the integral noise-based methods.
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Figure B.8: The full results generated by all the compared methods on the church scene. The inter-
polation baselines yield noticeably corrupted results, but other yield similar quality on the images
level. The difference lies in how the details are preserved across frames. Apart from the details
of the main tower, the tree on the bottom left also exposes the interesting difference between noise
initialization schemes. We refer to our supplementary video for better visualization of these results.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure B.9: The full results generated by all the compared methods on the cat scene. We observe
that HIWYN and our methods (both variants) yield highly similar results. While both our variants
are much faster and memory-efficient than HIWYN, this observation makes a particularly strong
case for our particle-based variant considering its significantly improved simplicity and efficiency.
We refer to our supplementary video for better visualization of these results.
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