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ABSTRACT

LiDAR-based 3D object detection is crucial for various applications but often
experiences performance degradation in real-world deployments due to domain
shifts. While most studies focus on cross-dataset shifts, such as changes in en-
vironments and object geometries, practical corruptions from sensor variations
and weather conditions remain underexplored. In this work, we propose a novel
online test-time adaptation framework for 3D detectors that effectively tackles
these shifts, including a challenging cross-corruption scenario where cross-dataset
shifts and corruptions co-occur. By leveraging long-term knowledge from previous
test batches, our approach mitigates catastrophic forgetting and adapts effectively
to diverse shifts. Specifically, we propose a Model Synergy (MOS) strategy that
dynamically selects historical checkpoints with diverse knowledge and assembles
them to best accommodate the current test batch. This assembly is directed by
our proposed Synergy Weights (SW), which perform a weighted averaging of the
selected checkpoints, minimizing redundancy in the composite model. The SWs
are computed by evaluating the similarity of predicted bounding boxes on the test
data and the independence of features between checkpoint pairs in the model bank.
To maintain an efficient and informative model bank, we discard checkpoints with
the lowest average SW scores, replacing them with newly updated models. Our
method was rigorously tested against existing test-time adaptation strategies across
three datasets and eight types of corruptions, demonstrating superior adaptability
to dynamic scenes and conditions. Notably, it achieved a 67.3% improvement in a
challenging cross-corruption scenario, offering a more comprehensive benchmark
for adaptation. Source code: https://github.com/zhuoxiao-chen/MOS.

1 INTRODUCTION

Recently, LiDAR-based 3D object detectors have exhibited remarkable performance alongside a
diverse array of applications such as robotic systems (Ahmed et al., 2018; Montes et al., 2020; Zhou
et al., 2022; Ye & Qian, 2018) and self-driving cars (Deng et al., 2021; Wang et al., 2020a; Luo
et al., 2023b; Qian et al., 2022; Wang et al., 2019; Chen et al., 2023b; Arnold et al., 2019; You et al.,
2020; Meyer et al., 2019; Li et al., 2019; McCrae & Zakhor, 2020; Luo et al., 2023a; Zhang et al.,
2024). However, when deployed in the real world, the detection system could fail on unseen test
data due to unexpectable varying conditions, which is commonly referred to as the domain shift.
To study this shift, researchers consider cross-dataset scenarios (e.g., from nuScenes (Caesar et al.,
2020) to KITTI (Geiger et al., 2012)) where object sizes and beam numbers are varying in the test
domain (Ganin et al., 2016; Luo et al., 2021; Wei et al., 2022), or adding perturbations to clean
datasets (e.g., from KITTI to KITTI-C (Kong et al., 2023)) to mimic realistic corruptions caused
by severe weather condition and sensor malfunctions (Hahner et al., 2022; Kong et al., 2023; Dong
et al., 2023). However, in real-world scenarios, shifts generally do not arise from a unitary source, for
example, considering a detection system deployed in an unfamiliar northern city, it is likely to suffer
severe weather conditions, such as heavy snow. This leads us to consider a new hybrid shift termed
cross-corruption (illustrated in Fig. 1), where cross-dataset gaps and corruption noises coexist across
3D scenes (e.g., Waymo (Sun et al., 2020) to KITTI-C).
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Figure 1: We investigate three distinct types of domain shifts that 3D detectors face during test
time. Unlike previous work that focuses solely on cross-dataset shifts, our study comprehensively
explores shifts arising from varying weather conditions, sensor corruptions, and the most challenging
cross-corruption shifts, which encompass both object- and environment-related variations.

These simulated shifts prompt a critical research question: how can the 3D detector naturally
adapt to a shifted target scene? Previous studies have identified unsupervised domain adapta-
tion (UDA) as a promising solution, by multi-round self-training on the target data with the aid
of pseudo-labeling techniques (Chen et al., 2023a; Yang et al., 2021; 2022; Peng et al., 2023; Li
et al., 2023a), or forcing feature-level alignment between the source and target data for learning
domain-invariant representations (Luo et al., 2021; Chen et al., 2021; Zhang et al., 2021; Luo
et al., 2023c; Zeng et al., 2021). While effective, these UDA-based approaches require an of-
fline training process over multiple epochs with pre-collected target samples. Considering a de-
tection system being deployed on a resource-constrained device in the wild, performing such a
time-consuming adaptation during testing is impractical. To this end, there is an urgent need
for a strategy that allows models to adapt to live data streams and provide instant predictions.
Test-time Adaptation (TTA) emerges as a viable solution and has been explored in the general
classification task, through (1) choosing a small set of network parameters to update (e.g., matching
BN statistics (Wang et al., 2021; Niu et al., 2023)) or (2) employing the mean-teacher model to
provide consistent supervision (Wang et al., 2022a; 2023b; Yuan et al., 2023; Tomar et al., 2023a).
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Figure 2: The results (AP3D) of applying
existing TTA methods to adapt SECOND
(Yan et al., 2018) from nuScenes to KITTI.
Mean-teacher models are in green.

A recent work of MemCLR (VS et al., 2023), extends
the idea of TTA to image-based 2D object detection
by extracting and refining the region of interest (RoI)
features for each detected object through a transformer-
based memory module.

Despite TTA’s advances in image classification and 2D
detection, adapting 3D detection models at test time
remains unexplored. This motivates us first to conduct
a pilot study and investigate the effectiveness of these
TTA techniques when applied to 3D detection tasks. As
plotted in Fig. 2, methods that employ the mean-teacher
model (e.g., MemCLR, and CoTTA) outperform the rest
of the methods. This superiority stems from the teacher model’s ability to accumulate long-term
knowledge, offering stable supervision signals and reducing catastrophic forgetting across batches
(Kirkpatrick et al., 2017; Hayes et al., 2020; Hu et al., 2019; Lee et al., 2017; Kemker et al., 2018).
However, by treating all previous checkpoints equally through moving average (EMA) for each test
sample, the teacher model may fail to recap and leverage the most critical knowledge held in different
checkpoints. For example, Fig. 3 shows very different characteristics of test point clouds xt+1 and
xt+2, while the teacher model still relies on a uniform set of knowledge (i.e., generated by EMA),
without leveraging relevant insights from prior checkpoints tailored to each specific scene. Hence, no
teacher model perfectly fits all target samples. We argue that an optimal “super” model should be
dynamically assembled to accommodate each test batch.
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In this paper, we present a Model Synergy (MOS) strategy that adeptly selects and assembles the
most suitable prior checkpoints into a unified super model, leveraging long-term information to guide
the supervision for the current batch of test data. To this end, we introduce the concept of synergy
weights (SW) to facilitate the model assembly through a weighted averaging of previously trained
checkpoints. A model synergy bank is established to retain K previously adapted checkpoints. As
illustrated in Fig. 3, to assemble a super model tailored to test batch xt+1, checkpoints 1 and 3 are
assigned lower SW due to redundant box predictions. To leverage the knowledge uniquely held by
checkpoint 4 (e.g., concepts about cyclists and pedestrians), MOS assigns it with a higher SW.

To determine the optimal SW for the ensemble, we reformulate this as solving a linear equation,
intending to create a super model that is both diverse and exhibits an equitable level of similarity to
all checkpoints, without showing bias towards any. The closed-form solution of this linear equation
leads to calculating the inverse Gram matrix, which quantifies the similarity between checkpoint
pairs. To this end, we devise two similarity functions tailored for 3D detection models from 1)
output-level, measuring prediction discrepancies through Hungarian matching cost of 3D boxes,
and 2) feature-level, assessing feature independence via calculating the matrix rank of concatenated
feature maps. By computing these similarities for each new test batch, we determine the SW for the
construction of the super model. This super model then generates pseudo labels, which are employed
to train the model at the current timestamp for a single iteration.

However, with more saved checkpoints during test-time adaptation, the memory cost significantly
increases. To address this, we introduce a dynamic model update strategy that adds new checkpoints,
while simultaneously removing the least important ones. Empirical results evidence that our approach,
which maintains only 3 checkpoints in the model bank, outperforms the assembly of the 20 latest
checkpoints and reduces memory consumption by 85%. The contributions of this paper are:

1. This is an early attempt to explore the test-time adaptation for LiDAR-based 3D object detection
(TTA-3OD). In addressing the challenges inherent to TTA-3OD, we propose a novel Model
Synergy (MOS) approach to dynamically leverage and integrate collective knowledge from
historical checkpoints.

2. Unlike mean-teacher based methods that aggregate all previous checkpoints, we identify and
assemble the most suitable ones according to each test batch. To this end, we utilize the inverse of
the generalized Gram matrix to determine the weights. We introduce similarity measurements for
3D detection models at both feature and output levels to calculate the generalized Gram matrix.

3. We conduct comprehensive experiments to address real-world shifts from (1) cross-dataset, (2)
corrupted datasets, and (3) hybrid cross-corruption scenarios including eight types of simulated
corruptions. Extensive experiments show that the proposed MOS even outperforms the UDA
method, which requires multi-round training, when adapting from Waymo to KITTI. In a more
challenging scenario of cross-corruption, MOS surpasses the baseline and direct inference by
67.3% and 161.5%, respectively.

2 RELATED WORK

Domain Adaption for 3D Object Detection aims to transfer knowledge of 3D detectors, from
labeled source point clouds to an unlabeled target domain, by mitigating the domain shift across
different 3D scenes. The shift in 3D detection is attributed to variations in many factors such as object
statistics (Wang et al., 2020b; Tsai et al., 2023b), weather conditions (Xu et al., 2021; Hahner et al.,
2022), sensor differences (Rist et al., 2019; Gu et al., 2021; Wei et al., 2022), sensor failures (Kong
et al., 2023), and the synthesis-to-real gap (Saleh et al., 2019; DeBortoli et al., 2021; Lehner et al.,
2022). To bridge these gaps, approaches including adversarial matching of features (Zhang et al.,
2021), the generation of enhanced 3D pseudo labels (Yang et al., 2021; 2022; Chen et al., 2023a;
Saltori et al., 2020; Wang et al., 2022b; You et al., 2022; Li et al., 2023b; Wang et al., 2023c; Peng
et al., 2023; Huang et al., 2024; Tsai et al., 2023a), the mean-teacher model (Luo et al., 2021; Hegde
et al., 2023) for stable adaptation, and contrastive learning (Zeng et al., 2021; Lim et al., 2024) for
tighter embeddings have been extensively investigated. However, implementing these cross-domain
methods necessitates multiple epochs of retraining, rendering them impractical for scenarios where
test data arrives in a streaming manner.

Test-Time Adaptation (TTA) seeks to adapt the model to unseen data at inference time, by addressing
domain shifts between training and test data (Wang et al., 2024b; Chen et al., 2024). A very first
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Figure 3: Illustration of the model synergy (MOS) that selects key checkpoints and assembles them
into a super model f∗

t+1 that tailors for each of test data xt+1. “cyc.” denotes the cyclist and “ped.”
denotes the pedestrian. MOS prioritizes checkpoints with unique insights that are absent in other
checkpoints with higher weights while reducing the weights of those with redundant knowledge.

work, Tent (Wang et al., 2021) leverages entropy minimization to adjust batch norm parameters.
Subsequently, many works have adopted similar approaches of updating a small set of parameters,
each with different strategies and focus (Niu et al., 2022; Mirza et al., 2022; Gong et al., 2022; Yuan
et al., 2023; Zhao et al., 2023; Niloy et al., 2024; Gong et al., 2024; Wang et al., 2024a; Niu et al.,
2023; Hong et al., 2023; Song et al., 2023; Nguyen et al., 2023; Niloy et al., 2024). For instance,
EATA (Niu et al., 2022) identifies reliable, non-redundant samples to optimize while DUA (Mirza
et al., 2022) introduces adaptive momentum in a new normalization layer. NOTE (Gong et al., 2022)
updates batch norms at the instance level, whereas RoTTA (Yuan et al., 2023) and DELTA (Zhao et al.,
2023) leverage global statistics for batch norm updates. Additionally, SoTTA (Gong et al., 2024)
and SAR (Niu et al., 2023) enhance batch norm optimization through sharpness-aware minimization.
Alternatively, some approaches optimize the entire network through the mean-teacher framework for
stable supervision (Wang et al., 2022a; Tomar et al., 2023b), generating reliable pseudo labels for
self-training (Goyal et al., 2022; Zeng et al., 2024), employing feature clustering (Chen et al., 2022;
Jung et al., 2023; Wang et al., 2023b), and utilizing augmentations to enhance model robustness
(Zhang et al., 2022). Despite these TTA methods being developed for general image classification,
MemCLR (VS et al., 2023) is the pioneering work applying TTA for image-based 2D object detection,
utilizing a mean-teacher approach for aligning instance-level features. Nevertheless, the applicability
of these image-based TTA methods to object detection from 3D point clouds remains unexplored.

3 PROPOSED APPROACH

Overall Framework. First, we establish the definition and notations for the Test-Time Adaptation
for 3D Object Detection (TTA-3OD). When deploying a 3D detection model pretrained on a source
dataset, the test point clouds {xt}Tt=1 are shifted or/and corrupted due to varying real-world conditions,
where xt is the t-th test point cloud in the stream of test data. The ultimate goal of TTA-3OD is to
adapt the 3D detection model to a sequence of target scenes in a single pass during the inference time.
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Figure 4: The overall workflow of our approach.

The core idea of our methodology is
to identify the most suitable histori-
cal models with distinct knowledge
for each test batch xt, and assemble
them into a super model f∗

t facilitat-
ing the model adaptation during the
test time. To this end, we establish
a model bank F = {f1, . . . , fK} of
size K to preserve and synergize the
previously trained models. The over-
all workflow of our method unfolds in
three phases, as shown in Fig. 4 and
Algorithm 1 (in Appendix).
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Phase 1: Warm-up Initially, when the model bank F is not yet populated, we train the model with
the first K arriving target batches by pseudo labeling-based self-training. We save the model as a
checkpoint at each timestamp, {f1, · · · , fK}, into the F until reaching its capacity of K.

Phase 2: Model Synergy Once F is full, for every subsequent test batch xt, checkpoints within
F are assembled into a super model f∗

t to provide pseudo labels B̂t for supervision. For instance,
as illustrated in Phase 2 of Fig. 4, when inferring xK+1, we assemble the super model via F into
f∗
K+1 = w(K+1,1)f1 + · · · + w(K+1,K)fK . Then, pseudo labels B̂K+1 are generated by f∗

K+1 to
train the current model fK+1 for a single iteration. When L batches are tested, we update the model
bank.

Phase 3: Model Bank Update To maintain a compact model bank F, meanwhile, each model holds
distinct knowledge, we dynamically update the bank F to fix its size at K. For every L batches tested,
we replace the checkpoint with the most redundant knowledge in F, with the newly trained ft. Phases
2 and 3 alternate until all target samples {xt}Tt=1 have been tested.

3.1 MODEL SYNERGY (PHASE 2)

As Phase 1 is straightforward, where the model bank is filled up with the first K checkpoints, we
elaborate on the details of Phase 2 in this subsection. An intuitive example is presented in Fig. 3:
when inferring a target point cloud, different historical models yield inconsistent predictions because
these models learned characteristics from different batches at earlier timestamps. However, if these
characteristics no longer appear in subsequent arriving test data, the model may suffer catastrophic
forgetting, losing previously learned information. Our strategy to overcome this is to leverage and
combine the long-term knowledge from prior checkpoints. But, not all checkpoints are equally
important, as shown in Fig. 3, checkpoints 1 and 2 produce highly similar box predictions, whereas
checkpoint 4 can detect objects that are missed by others. Treating these checkpoints equally leads
to the accumulation of redundant information. Therefore, we propose synergy weights (SW) to
emphasize unique insights and minimize knowledge redundancy, via weighted averaging of the
historical checkpoints. Ideally, similar checkpoints (e.g., CKPT 1 and 2 in Fig. 3) should be assigned
with lower SW, whereas the checkpoint exhibits unique insights (e.g., CKPT 4 in Fig. 3) should
be rewarded with higher SW. Through weighting each checkpoint, we linearly assemble them into
a super model f∗

t that best fits the current test batch xt. In the following section, we discuss our
approach to determine these optimal SW for the super model ensemble.

3.1.1 SUPER MODEL ENSEMBLE BY OPTIMAL SYNERGY WEIGHTS

For each batch xt, we assume there exist optimal synergy weights w ∈ RK for linearly assembling
the historical checkpoints within the model bank F into a super model f∗

t as below:
Fw = f∗

t . (1)
For simplicity, we use the same notation ft to indicate the model parameters. The optimal synergy
weights w can be deduced by solving the linear equation:

w = (FTF)−1FT f∗
t , (2)

which can be decomposed into two parts, (1) (FTF)−1: inverse of the Gram matrix, and (2) FT f∗
t :

pairwise similarities between each model in F and the super model f∗
t . Ideally, these similarities are

expected to be uniformly distributed, ensuring f∗
t remains unbiased towards any single model in F

for a natural fusion of diverse, long-term knowledge. Thus, we can simplify the Eq. (2) as:
w = (FTF)−1

1
K . (3)

Now, to compute the optimal synergy weights w, we delve into the first part of Eq. (3) to compute
the Gram matrix G = FTF which captures the model parameter similarity for any arbitrary pair of
models (fi, fj) in the bank F, as:

G = FTF =

(
⟨fi, fj⟩

)K

i,j=1

∈ RK×K , fi, fj ∈ F, (4)

where ⟨fi, fj⟩ denotes the inner product of the model parameters of fi and fj . Based on the
similarities captured in G, its inverse, G−1, essentially prioritizes directions of higher variance
(diverse information) and penalizes directions of lower variance (duplicated information). Thus,
the synergy weights calculated by w = G−1

1
K , are theoretically low for those checkpoints with

knowledge duplicates. Previous studies (Dinu et al., 2023; Yuen, 2024; Nejjar et al., 2023) have also
demonstrated the effectiveness of using the G−1 to determine importance weights.
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3.1.2 INVERSE OF GENERALIZED GRAM MATRIX FOR 3D DETECTION MODEL

While the inverse of the Gram matrix is effective, evaluating similarity through the inner product of
model parameters fi and fj is suboptimal, as models with distinct parameters may produce similar
predictions on the same input test batch xt. Hence, tailored to each input batch xt, we compare
intermediate features and final box predictions output by a pair of the models (fi, fj). To this end,
we propose a feature-level similarity function Sfeat(·; ·) and an output-level box set similarity function
Sbox(·; ·) to effectively quantify the discrepancy between any two 3D detection models (will be
discussed in next section). By substituting the inner product with the proposed similarity functions,
the original Gram matrix G evolves into a generalized version G̃, specially designed for 3D detectors.
By combing Eq. (3) and Eq. (4), we can calculate the G̃ and the optimal synergy weights w̃ as:

w̃ = (FTF)−1
1
K = G̃−1

1
K , G̃ =

(
Sbox⟨fi, fj⟩ × Sfeat⟨fi, fj⟩

)K

i,j=1

, (5)

where each element represents the feature and prediction similarity between each pair of historical
3D detection models (fi, fj) in F. Next, the super model f∗

t is linearly aggregated by all historical
checkpoints F ∈ RK weighted by w̃ ∈ RK as follows:

f∗
t =

K∑
i=1

wifi, wi ∈ w̃, fi ∈ F, (6)

where the synergized super model f∗
t is used to guide supervision of the current model ft. As

illustrated in Fig. 4, for the test sample at time t, assembled f∗
t generates the stable pseudo labels B̂t

to train ft−1 → ft with a single iteration, as below:

B̂t ← f∗
t (xt), ft

train←−− aug(xt, B̂
t), (7)

where aug(·, ·) indicates data augmentation applied to the pseudo-labeled target point clouds. Recall
Eq. (5), the key to finding the optimal synergy weights is to accurately measure the similarities of
the features and outputs between a pair of 3D detection models. For each test batch xt, we utilize
the intermediate feature map zt and the final box prediction set Bt output by modern 3D detectors
(Yin et al., 2021; Lang et al., 2019; Qian et al., 2022; Mao et al., 2023) for similarity measurement.
We introduce a feature-level similarity function Sfeat(·; ·) to assess feature independence between
intermediate feature maps (zi, zj), and an output-level similarity function Sout(·; ·) to gauge the
discrepancy in box predictions (Bi,Bj), where (zi, zj) and (Bi,Bj) are generated by any pair of
models (fi, fj) within the model bank F.

3.1.3 FEATURE-LEVEL SIMILARITY SFEAT

To assess the similarity between feature maps (zi, zj), we utilize the rank of the feature matrix
to determine linear independencies among the feature vectors in zi relative to those in zj . Each
single feature vector in the feature map, encodes the information of a small receptive field within
the 3D scene. When inferring the input batch xt, if a feature vector in zi is linearly independent
from the other in zj , it means zi and zj are either capturing information from distinct receptive
fields, or focusing the same region but interpreting differently. To calculate such independencies, we
concatenate zi ⊕ zj and calculate its rank(·), which identifies the maximum number of linearly
independent feature vectors. A higher rank of zi ⊕ zj signifies a greater diversity of features,
because fewer feature vectors can be linearly combined by others. To accelerate the computation,
we approximate the rank(·) by computing the nuclear norm of the feature matrix (Recht et al.,
2010; Kang et al., 2015). With the input batch xt, the feature-level similarity Sfeat between a pair of
detection models (fi, fj), can be determined as follows:

Sfeat⟨fi, fj⟩ = 1− rank(zi ⊕ zj)

D
, zi, zj ∈ R2HW×D, (8)

where zi, zj are generated by fi and fj , respectively. H , W , D denote the height, width, dimension
of the feature map, and D is the maximum possible value of rank(·). Sfeat falls within the range from
0 to 1, and a higher value of Sfeat indicates less feature independence between zi and zj , resulting in
more similar feature maps yielded by models fi and fj . Appendix A.1.1 provides empirical evidence
and an in-depth analysis of the rank-based similarity metric.
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3.1.4 OUTPUT-LEVEL BOX SIMILARITY SBOX

To assess the similarity between box predictions (Bi,Bj), we treat it as a set matching problem,
since Bi and Bj represent sets of predicted bounding boxes that can vary in size. To solve it, we
apply the Hungarian matching algorithm (Carion et al., 2020; Stewart et al., 2016), a robust method
for bipartite matching that ensures the best possible one-to-one correspondence between two sets
of box predictions. We extend the smaller box set with ∅ to equalize the sizes of both sets to N . To
determine an optimal bipartite matching between these two equal-sized sets, the Hungarian algorithm
is used to find a permutation of N elements: p ∈ P, which yields the lowest cost:

p̃ = argmin
p∈P

∑
n

Lbox(B
i
n;B

j
p(n)), (9)

where Bi
n is n-th box in the set Bi predicted by the model fi. The box loss Lbox(·; ·) is calculated by

the intersection-over-union (IoU) plus the L1 distance covering the central coordinates, dimensions,
and orientation angles between a pair of boxes: Bi

n and its corresponding box indexed by p(n). The
indicator function 1{cin ̸=∅} means the cost is calculated only when the category of n-th object is not
the padded ∅. The next step is to compute the total Hungarian loss (Carion et al., 2020) for all pairs
of matched boxes:

Sbox(fi, fj) = (

N∑
n=1

1{cin ̸=∅}Lbox(B
i
n;B

j
p̃(n)))

−1, (10)

where p̃ is the optimal assignment computed in the Eq. (9). We normalize the result to the same range
as Sfeat using a sigmoid function. A higher value of Sbox indicates that models fi and fj predict more
overlapping boxes.

3.2 MODEL BANK UPDATE (PHASE 3)

In TTA-3OD, with the increasing number of test batches, simply inserting checkpoints at all times-
tamps to the model bank F results in substantial memory cost and knowledge redundancy. As
observed from our empirical results (Fig. 6), assembling the latest 20 checkpoints yields similar
performance to assembling only the latest 5 checkpoints. Hence, our goal is to make the F retain
only a minimal yet highly diverse set of checkpoints. To this end, we regularly update the model
bank, by adding new models and removing redundant ones every time L online batches are inferred.
As illustrated in Fig. 4, upon adapting every L samples {xl, xl+1, · · · , xL}, a single checkpoint
fi ∈ F engages in the assembly L times, thereby L synergy weights are calculated and stored
into a list {w(l,i), w(l+1,i), · · · , w(L,i)}. Given K checkpoints in F, a synergy matrix is defined as
W = (w(l,k))

L,K
l=1,k=1, ∈ RL×K . After inferring L batches, we average across the L dimension to

calculate the mean synergy weight for each checkpoint, denoted as:

w̄ = {w̄1, · · · , w̄K} ∈ RK . (11)

Finally, we remove the model with the lowest mean synergy weight in w̄ and add the current model
ft to the bank as follows:

F← F \ {fi}, i = index(w̄;min(w̄)), F← F ∪ {ft}, (12)

where i denotes the index of the minimum mean synergy weight in w̄. By updating the model bank
this way, we maintain a fixed number of K checkpoints in F, each carrying unique insights.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and TTA-3OD Tasks. We perform extensive experiments across three widely used LiDAR-
based 3D object detection datasets: KITTI (Geiger et al., 2012), Waymo (Sun et al., 2020), and
nuScenes (Caesar et al., 2020), along with a recently introduced dataset simulating real-world
corruptions, KITTI-C (Kong et al., 2023) for TTA-3OD challenges. We firstly follow (Yang et al.,
2021; 2022; Chen et al., 2023a) to tackle cross-dataset test-time adaptation tasks (e.g. Waymo→
KITTI and nuScenes → KITTI-C), which include adaptation (i) across object shifts (e.g., scale
and point density), and (ii) across environmental shifts (e.g., deployment locations and LiDAR
beams). We also conduct experiments to tackle a wide array of real-world corruptions (e.g., KITTI→
KITTI-C) covering: Fog, Wet Conditions (Wet.), Snow, Motion blur (Moti.), Missing beams (Beam.),
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Table 1: Results of test-time adaptation for 3D object detection across different datasets. We report
APBEV / AP3D in moderate difficulty. Oracle means fully supervised training on the target dataset.
We indicate the best adaptation result by bold.

Method Venue TTA Waymo →KITTI nuScenes →KITTI
APBEV / AP3D Closed Gap APBEV / AP3D Closed Gap

No Adapt. - - 67.64 / 27.48 - 51.84 / 17.92 -
SN CVPR’20 × 78.96 / 59.20 +72.33% / +69.00% 40.03 / 21.23 +37.55% / +5.96%

ST3D CVPR’21 × 82.19 / 61.83 +92.97% / +74.72% 75.94 / 54.13 +76.63% / +65.21%
Oracle - - 83.29 / 73.45 - 83.29 / 73.45 -
Tent ICLR’21 ✓ 65.09 / 30.12 −16.29% / +5.74% 46.90 / 18.83 −15.71% / +1.64%

CoTTA CVPR’22 ✓ 67.46 / 35.34 −1.15% / +17.10% 68.81 / 47.61 +53.96% / +53.47%
SAR ICLR’23 ✓ 65.81 / 30.39 −11.69% / +6.33% 61.34 / 35.74 +30.21% / +32.09%

MemCLR WACV’23 ✓ 65.61 / 29.83 −12.97% / +5.11% 61.47 / 35.76 +30.62% / +32.13%
MOS - ✓ 81.90 / 64.16 +91.12% / +79.79% 71.13 / 51.11 +61.33% / +59.78%

Table 2: Results of test-time adaptation for 3D object detection across different corruptions (KITTI
→ KITTI-C) at heavy level. AP3D at easy/moderate/hard difficulty of KITTI metric are reported.

No Adaptation Tent CoTTA SAR MemCLR MOS

Fog 84.66/72.85/68.23 85.11/73.02/68.73 85.10/72.94/68.49 84.64/ 72.52/68.14 84.71/72.70/68.23 85.22/74.02/69.11
Wet. 88.23/78.82/76.25 88.13/78.79/76.36 88.27/79.02/76.43 88.11/78.60/76.23 88.04/78.68/76.25 89.32/81.91/77.79
Snow 71.11/63.92/59.07 71.71/64.48/59.50 71.83/64.59/59.45 72.29/64.08/58.78 72.33/63.84/58.74 75.07/67.87/62.72
Moti. 43.35/39.23/38.21 43.02/39.15/38.15 44.48/39.68/38.62 42.89/39.13/38.12 42.86/38.44/37.57 44.70/41.63/40.59
Beam. 75.42/57.49/53.93 76.62/58.01/53.85 76.39/57.50/53.98 75.98/57.67/53.75 75.70/57.48/53.49 78.74/60.48/55.91
CrossT. 87.98/78.46/75.49 87.62/77.92/74.67 86.78/76.05/72.22 87.74/77.59/74.51 86.20/77.11/74.25 89.22/79.10/75.47
Inc. 46.98/30.33/25.68 47.82/30.87/26.44 49.92/32.77/27.85 47.27/30.46/26.42 49.99/32.08/27.47 59.13/40.29/34.53
CrossS. 68.44/47.37/41.08 68.89/46.75/41.17 69.15/47.11/40.80 68.17/46.45/40.63 69.17/47.28/40.90 71.87/49.28/43.68

Mean 70.77/58.56/54.74 71.11/58.62/54.86 71.49/58.71/54.73 70.89/58.31/54.57 71.13/58.45/54.61 74.16/61.82/57.48

Crosstalk (Cross.T), Incomplete echoes (Inc.), and Cross-sensor (Cross.S). Finally, we address the
hybrid shift cross-corruptions (e.g., Waymo→ KITTI-C), where cross-dataset inconsistency and
corruptions coexist in test scenes. The implementation details are included in Appendix A.4.

Baseline Methods. We compare the proposed method using voxel-based backbone (e.g., SECOND)
with a diverse range of baseline methods: (i) No Adapt. refers to the model pretrained from the
source domain, directly infer the target data; (ii) SN (Wang et al., 2020b) is a weakly supervised
domain adaptation method for 3D detection by rescaling source object sizes with target statistics
for training; (iii) ST3D (Yang et al., 2021) is the pioneering unsupervised domain adaption method
for 3D detection with multi-epoch pseudo labeling-based self-training; (iv) Tent (Wang et al., 2021)
is an online TTA method which optimizes the model by minimizing entropy of its prediction; (v)
CoTTA (Wang et al., 2022a) is an online TTA approach which employs mean-teacher to provide
supervision with augmentations and restores neurons to preserve knowledge; (vi) SAR (Niu et al.,
2023) improves Tent by sharpness-aware and reliable entropy minimization for online TTA; (viii)
MemCLR (VS et al., 2023) is the first work for online adaptation on image-based object detection,
by utilizing mean-teacher to align the instance-level features with a memory module; (ix) Oracle
means a fully supervised model trained on the target domain.

4.2 MAIN RESULTS AND ANALYSIS

We present and analyze the main results of car detection using SECOND (Yan et al., 2018) as the
backbone 3D detector, when comparing the proposed MOS against baseline methods across three
types of domain shifts. The results of multiple object classes are detailed in the Appendix A.5, and
the examination of alternative backbone detectors (e.g., PVRCNN (Shi et al., 2020) and DSVT (Wang
et al., 2023a)), is presented in the Appendix A.7. Comparisons with linear and non-linear ensemble
methods are included in Appendix A.1.4.
Cross-dataset Shifts. We conducted comprehensive experiments on two cross-dataset 3D adaptation
tasks, as reported in Tab. 1, when compared to the best TTA baseline CoTTA (Wang et al., 2022a), the
proposed MOS consistently improves the performance in Waymo→ KITTI and nuScenes→ KITTI
tasks by a large margin of 81.5 % and 7.4% in AP3D, respectively. This improvement significantly
closes the performance gap (91.12% and 79.79%) between No Adapt. and Oracle. Remarkably,
the proposed MOS outperforms the UDA method ST3D (Yang et al., 2021), which requires multi-
epoch training: MOS’s 64.16% vs. ST3D’s 61.83% in AP3D, and even demonstrates comparable
performance to the upper bound performance (Oracle): MOS’s 81.90% vs. Oracle’s 83.29% in APBEV
when adapting from Waymo to KITTI. The results and analysis of additional cross-dataset transfer
tasks (Waymo→ nuScenes) are provided in Appendix A.2.
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Figure 5: Heatmap intuitively presenting the results of TTA-3OD across hybrid cross-corruption shifts
(Waymo→ KITTI-C) in heavy difficulty. Darker/lighter shades indicate lower/higher performance.
Corruption Shifts. We carry out comprehensive experiments (KITTI → KITTI-C) across eight
different types of real-world corruptions to validate the effectiveness of the proposed MOS to mitigate
these corruption shifts. As reported in Tab. 2, MOS surpasses all TTA baselines across every
type of corruption, achieving AP3D gains of 3.73%, 5.56%, and 4.78% at easy, moderate, and hard
levels, respectively. Notably, MOS greatly addresses the most severe shift caused by incomplete
echoes, improving 23.98% at the hard difficulty level. These promising results highlight MOS’s
robustness to adapt 3D models to various corrupted scenarios, particularly those challenging ones.

Table 3: Ablative study of the proposed MOS on
Waymo→ KITTI. The best result is highlighted in bold.

AP3D APBEV

Ablation Easy Moderate Hard Easy Moderate Hard

w/o Ensemble 45.17 43.14 41.48 71.36 68.17 68.96
Mean Ensemble 48.56 45.89 44.37 72.72 70.34 70.15

MOS w/o Sfeat 67.02 59.98 58.76 91.85 81.90 79.77
MOS w/o Sbox 72.99 61.40 60.09 88.52 80.15 79.06
MOS 74.09 64.16 62.33 91.85 81.90 81.78

Cross-corruption Shifts. To address the
hybrid shifts where cross-dataset discrepan-
cies and corruptions simultaneously occur,
we conduct experiments to adapt 3D detec-
tors from Waymo to KITTI-C. We visualize
the results utilizing the heatmap (in Fig. 5).
It is observed that the shades in the last col-
umn (MOS), are significantly lighter than
those in all other columns (TTA baselines),
indicating the superior performance of MOS over all other methods. It is worth noting that, the
results without any adaptation (column 1) remarkably degrade, due to the challenging hybrid shifts,
for example, only 3.51% for incomplete echoes and 7.40% for cross-sensor at a hard level. Our
approach greatly enhances adaptation performance for these two challenging corruptions by 97.99%
and 76.38%, respectively, compared to the best baselines. Thus, prior TTA baselines fail to mitigate
the significant domain shifts across 3D scenes, whereas the proposed MOS successfully handles
various cross-corruption shifts, surpassing the highest baseline and direct inference by 67.3% and
161.5%, respectively, across all corruptions.

4.3 ABLATION AND SENSITIVITY STUDY

Ablation Study. To validate the effectiveness of each component in the proposed MOS, we conduct
ablation experiments on Waymo→ KITTI and report the AP3D across three difficulty levels. First,
we remove the pivotal component in our method, model assembly, opting instead to simply use the
model at the current timestamp for pseudo-label generation. Tab. 3 shows that without assembly
(row 1), the adaptation yields suboptimal results, achieving only 43.14% in moderate AP3D. Then we
assemble the recent five checkpoints by averaging their parameters (row 2), and observe a marginal
improvement in moderate AP3D to 45.89%. While our proposed assembly strategy (row 5), identifying
and assembling the most useful 5 checkpoints through weighted averaging, significantly outperforms
average aggregation by 39.8%. Next, we remove each of the proposed similarity functions used to
calculate the synergy weights for the model ensemble. As shown in Tab. 3, removing either Sfeat(·; ·)
or Sbox(·; ·) leads to a notable decrease in moderate AP3D by 6.9% and 4.5%, respectively, proving
that both functions accurately gauge similarity between any pair of 3D detection models. Additional
ablation studies can be found in Appendix A.1.

Sensitivity to Hyperparameters. In this section, we examine how the adaptation performance of
the proposed MOS is affected by the hyperparameters L and K, which determines the period of the
model bank update(i.e., every L batches of test data) and the bank capacity. To study L, we conduct
experiments with values ranging from 64 to 128. As illustrated in the Fig. 6 (left), the APBEV (blue
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curve) remains stable, while the AP3D (green curve) increases as L grows from 64 to 96. This occurs
because a larger L reduces the model update frequency, enabling the model bank to retain older
checkpoints that hold distinct long-term knowledge. Upon reaching 96, AP3D becomes stable with a
slight fluctuation of 1.67%.

To assess the informativeness and significance of the K checkpoints selected by the proposed MOS,
we developed a comparative analysis between the standard MOS and a simplified variant: latest-first

64 80 96 112 12864 80 96 112 128
L

50

60

70

80
SW-first

latest-first

Figure 6: Left: Sensitivity to the period of model bank update
L. Right: Comparison between two MOS-based ensemble
strategies (SW-first vs. latest-first) with increasing model
bank size K. Both APBEV and AP3D are plotted when adapt-
ing the 3D detector (Yan et al., 2018) from Waymo to KITTI.

MOS. This variant (crosses in Fig.
6 right) utilizes the most recent K
checkpoints and employs the same en-
semble strategy as MOS (i.e., Eq. (5)
and Eq. (6)). The standard MOS, that
maintains K checkpoints with high
synergy weights (SW) (Sec. 3.2), is
referred to as SW-first MOS (stars in
Fig. 6 right). As shown in Fig. 6,
latest-first MOS presents an obvious
improvement in AP3D from 43.14% to
54.18% and in APBEV from 68.17% to
76.29% when assembling more latest
checkpoints (K increases from 1 to 5). However, expanding the ensemble to 20 models yields a
marginal increase to 56.16% in AP3D and 77.54% in APBEV, with a substantial memory cost. The
SW-first MOS, which dynamically utilizes only 3 historical checkpoints based on averaged SW, out-
performs latest-first MOS with 20 checkpoints by 18.42% in AP3D and 5.84% in APBEV, meanwhile,
reducing memory usage by 85%. This efficiency highlights our method’s ability to selectively keep
the most pivotal historical models in the model bank, optimizing both detection performance and
memory expenditure.
4.4 COMPLEXITY ANALYSIS

This section analyzes the complexity of the proposed MOS. Recall that K models in the bank F
infer every test batch xt from the datasets {xt}Tt=1, the theoretical time complexity is asymptotically
equivalent to O(T ), as K is a constant. Concerning the space complexity, we assume that a 3D
detection network requires Nparam parameters for memory storage, and the space complexity is
bounded by O(Nparam). Theoretically, the proposed MOS exhibits a manageable linear complexity
growth with respect to model size and dataset size.
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Figure 7: Time and memory usage of method im-
plementations when adapting the 3D detector (Yan
et al., 2018) from Waymo to KITTI dataset.

Time and Memory Usage We report the adap-
tation speed (seconds per frame) and GPU mem-
ory usage (MiB) of implemented methods in
Fig. 7. It is observed that the proposed MOS
significantly outperforms the top baseline, im-
proving AP3D by 21.4% while only requiring an
additional 0.255 seconds per frame compared
to the baseline average. In terms of memory
usage, mean-teacher frameworks such as Mem-
CLR (19,087 MiB) and CoTTA (15,099 MiB)
consume more resources as they simultaneously
load dual networks in the GPU. The substantial consumption of MemCLR mainly stems from its extra
transformer-based memory module. Compared to MemCLR, our MOS maintains a lower memory
footprint at 17,411 MiB. Overall, MOS offers substantially superior adaptation performance with a
manageable increase in memory and time consumption.

5 CONCLUSION
This paper is an early attempt to explore the test-time adaptation for LiDAR-based 3D object
detection and introduces an effective model synergy approach that leverages long-term knowledge
from historical checkpoints to tackle this task. Comprehensive experiments confirm that MOS
efficiently adapts both voxel- and point-based 3D detectors to various scenes in a single pass,
addressing real-world domain shifts sourced from cross-dataset, corruptions, and cross-corruptions.
The main limitation is its high computational demand and future efforts will focus on improving the
time and space efficiency of the algorithm, through storing, and assembly of only a small portion of
model parameters (e.g., selected layers or modules) to facilitate faster adaptation at test time.
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A APPENDIX

This Appendix provides additional details, experiments, and analysis of the proposed MOS, summa-
rized as follows:

• Algorithm. 1: Detailed algorithm of the proposed MOS framework.

• Sec. A.1: Additional ablation and component study on a more challenge transfer tasks:
Waymo→ KITTI-C.

– Study on similarity measurement methods (A.1.1)
– Study on feature selection for similarity comparison (A.1.2)
– Study on MOS’s ability to retain long-term knowledge (A.1.3)
– Study on direct use of trivial ensemble method (A.1.4)

• Sec. A.2: Experimental results and analysis on additional transfer task: Waymo→ nuScenes.

• Sec. A.3: Discussion about related model ensemble methods.

• Sec. A.4: Implementation details on computing devices, hyperparameter selection, data
augmentations, pseudo-labeling, baseline losses and ensemble techniques in MOS.

• Sec. A.5: Experimental results and analysis across multiple classes to address both cross-
dataset and cross-corruption shifts.

• Sec. A.6: Visualizaion of 3D box predictions by checkpoints with different synergy weights.

• Sec. A.7: Experimental results with different backbone 3D detectors.

• Sec. A.8: Qualitative study with visualized 3D box predictions from different methods.

A.1 ADDITIONAL ABLATION/COMPONENT STUDY

Table 4: Ablative study of the proposed MOS on
Waymo→ KITTI-C, under the corruption “incomplete
echo”. MOS cosine Sfeat refers to the use of cosine sim-
ilarity instead of rank-based similarity. MOS RoI Sfeat
denotes that RoI features from the second stage, rather
than BEV maps, are used by MOS. The best result is
highlighted in bold.

AP3D APBEV

Ablation Easy Moderate Hard Easy Moderate Hard

MOS w/o Sfeat 18.79 13.68 11.93 42.62 29.34 26.30
MOS w/o Sbox 20.13 14.39 12.38 44.34 30.77 27.77
MOS cosine Sfeat 17.74 12.51 11.04 42.20 29.01 26.18
MOS RoI Sfeat 19.13 13.73 11.84 44.14 30.72 27.71
MOS 22.43 16.14 14.96 44.18 32.05 29.58

To further validate the effectiveness of each
component in the proposed MOS, we con-
ducted an ablation study on a more chal-
lenging transfer task: Waymo → KITTI-
C under the corruption “incomplete echo”.
As reported in Tab. 4, we observed a signif-
icant performance drop when either feature
similarity or box similarity was removed:
25.4% and 17.2% reductions in AP3D at
hard difficulty, respectively. Compared to
the 5.7% and 3.6% drop in the Waymo→
KITTI task, MOS proves to be especially
effective in more difficult cross-corruption
transfer tasks.

A.1.1 RANK-BASED SIMILARITY VS. COSINE SIMILARITY

In this section, we discuss the advantages of the rank-based similarity method and its superiority
over the conventional cosine similarity. The key advantage is its ability to capture feature similarity
not only between a pair of point clouds but also within each single point cloud. In our method, we
concatenate zi and zj and compute the rank of the concatenated matrix. High similarity (low rank
value) occurs in two cases: (1) most features in zi are linearly dependent on features in zj , indicating
that zi and zj are similar, or (2) even if zi and zj are very different, the features within zi (or within
zj) are linearly dependent on each other, for example, a point cloud contains cars only with very
similar shapes and sizes. In this case, the concatenated feature will still produce a low rank value due
to the absence of many diverse features although concatenated, indicating redundancy. In contrast,
cosine similarity is based purely on the comparison between a pair of frames and ignores feature
similarity within each point cloud. To support our claim, we provide experiments in Tab. 4. It was
observed that utilizing cosine similarity (row 3) results in a significant performance drop of 29%
in AP3D Moderate compared to rank-based similarity measurements (row 5). Furthermore, when
comparing it to MOS without feature similarity (row 1), there is no performance gain. These findings
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underscore the importance of feature diversity within point clouds, which cosine similarity fails to
capture.

A.1.2 SELECTION OF INTERMEDIATE FEATURES

In our method, we empirically utilize the BEV feature map of size 128 * 128 * 256 from the last
layer of the encoder in both SECOND and PV-RCNN, as it is directly used to generate bounding
boxes thus containing global fine-grained information about the point clouds. We also conduct
experiments on extracted region of interest (RoI) features (i.e., 100 RoI features of dimension 128).
As shown in Tab. 4, using RoI features (row 4) yields lower performance (3.1% in AP3D Hard) than
the BEV map (row 5). This occurs as RoI features focus only on foreground objects, resulting in
information loss in environments.

A.1.3 STUDY ON LONG-TERM KNOWLADGE

We further investigate the capability of MOS in selecting and preserving checkpoints that contain
long-term knowledge. Specifically, we perform experiments where the final stored checkpoints, after
completing the test-time adaptation, are ensembled into the super model to infer the early data (i.e.,
the first 32 point clouds). The results in Tab. 5 confirm that even after running for a long time and
reaching the end of the target datasets, the final checkpoints maintain strong performance on the initial
32 point clouds, significantly outperforming the 32nd checkpoint by 239% in AP3D. Furthermore,
the high recall rate of 69.34 demonstrates that nearly all objects in the early batches are detected,
highlighting the capacity of the saved checkpoints to retain diverse and long-term knowledge.

Table 5: Performance of the 32th checkpoint and final stored checkpoints of MOS on the Early
Set (i.e., the first 32 point clouds), when adapting from Waymo to KITTI-C, under the corruption
“incomplete echo”. Recall@0.5 denotes the recall metric calculated at an IoU of 0.5.

MOS APBEV AP3D Recall@0.5

MOS (32th Checkpoint) on Early Set 15.03 4.14 64.04
MOS (Final Checkpoints) on Early Set 33.38 14.04 69.34

A.1.4 COMPARARION WITH TRIVIAL ENSEMBLE METHODS

Table 6: Performance comparison between trivial
ensemble methods and the proposed MOS in TTA-
3OD, when adapting from Waymo to KITTI-C,
under the corruption “incomplete echo”. AP at a
moderate difficulty level is reported.

APBEV AP3D

No Adapt 15.15 3.77
Least Squares (Last Layer) 18.28 4.93
Bagging (3 models) 27.59 14.30
MOS 32.05 16.14

Least Squares. To investigate whether trivial en-
semble methods can effectively solve for the op-
timal synthetic model in the TTA-3OD task, we
employed the simplest approach: least squares,
to ensemble only a single layer of 3D detection
model. Specifically, we treat the frozen encoder
as producing a fixed feature map z, and we ap-
ply least squares (LS) to the final layer, which
consists of only 256 parameters. As the results
clearly demonstrate in Tab. 6, applying LS to a
single layer with very few parameters (i.e., 256)
of a 3D detection model failed to address the TTA
scenarios, yielding a notably lower-bound accuracy of 4.93 in AP3D.

Bagging. We also explore a traditional non-linear ensemble method, bagging (Breiman, 1996). This
method involves training multiple models on randomly sampled subsets of the training set, which
makes it inapplicable for the TTA-3OD task. In our implementation, for each test batch, we randomly
select one model from three to update the weights, followed by non-maximum suppression (NMS)
with a threshold of 0.7 to obtain the final predictions from the box outputs of all three models. Our
empirical results show that bagging consumes 34,952 MiB of GPU memory due to the simultaneous
loading of three 3D detectors, which is significantly higher than the proposed MOS method (17,411
MiB). Despite the heavy GPU usage, bagging is outperformed by the proposed MOS method, with a
11.4% lower AP3D, indicating that non-linear ensemble methods are computationally expensive and
less effective, making them unsuitable for the TTA-3OD task.
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Table 8: [Complete Results] Cross-dataset results in moderate difficulty across multiple classes. We
report average precision (AP) for bird’s-eye view (APBEV) / 3D (AP3D) of car, pedestrian, and
cyclist with IoU threshold set to 0.7, 0.5, and 0.5 respectively.We indicate the best adaptation result
by bold, and the highlighted row represents the proposed method.

Task Method Car Pedestrian Cyclist

Waymo → KITTI

No Adapt. 67.64 / 27.48 46.29 / 43.13 48.61 / 43.84
SN (Wang et al., 2020b) 78.96 / 59.20 53.72 / 50.44 44.61 / 41.43
ST3D (Yang et al., 2021) 82.19 / 61.83 52.92 / 48.33 53.73 / 46.09

Oracle 83.29 / 73.45 46.64 / 41.33 62.92 / 60.32
Tent (Wang et al., 2021) 65.09 / 30.12 46.21 / 43.24 46.59 / 41.72

CoTTA (Wang et al., 2022a) 67.46 / 35.34 49.02 / 45.03 55.31 / 50.07
SAR (Niu et al., 2023) 65.81 / 30.39 47.99 / 44.72 47.14 / 41.17

MemCLR (VS et al., 2023) 65.61 / 29.83 48.25 / 44.84 47.49 / 41.67
MOS 81.90 / 64.16 50.25 / 46.51 54.12 / 51.36

nuScenes → KITTI

No Adapt. 51.84 / 17.92 39.95 / 34.57 17.61 / 11.17
SN (Wang et al., 2020b) 40.03 / 21.23 38.91 / 34.36 11.11 / 5.67
ST3D (Yang et al., 2021) 75.94 / 54.13 44.00 / 42.60 29.58 / 21.21

Oracle 83.29 / 73.45 46.64 / 41.33 62.92 / 60.32
Tent (Wang et al., 2021) 46.90 / 18.83 39.69 / 35.53 19.64 / 10.49

CoTTA (Wang et al., 2022a) 68.81 / 47.61 40.90 / 36.64 20.68 / 13.81
SAR (Niu et al., 2023) 65.81 / 30.39 39.78 / 35.63 19.56 / 10.26

MemCLR (VS et al., 2023) 65.61 / 29.83 40.31 / 35.14 19.21 / 9.66
MOS 71.13 / 51.11 42.94 / 38.45 21.65 / 18.16

A.2 ADDITIONAL TRANSFER TASK

Table 7: Results (AP3D at moderate level difficulty)
of TTA-3OD on adapting Waymo→ nuScenes using
SECOND.

No Adapt. ST3D Tent CoTTA SAR MemCLR Ours
17.24 20.19 17.31 17.35 17.74 18.22 18.75

To further assess the effectiveness of the
proposed MOS, we perform an additional
challenging transfer task: from Waymo to
NuScenes, with the AP3D results presented
in Tab. 7. Notably, ST3D (Yang et al.,
2021), a multi-round UDA method, shows limited performance (i.e., 20.19), likely due to the
significant domain gap (e.g., differences in beam numbers). Despite this challenge, the proposed
MOS surpasses all TTA baselines, achieving state-of-the-art performance.

A.3 DISCUSSION ABOUT RELEVANT MODEL ENSEMBLE METHODS

Gao et al. (2022) utilizes gradient information and parameter space advancements during checkpoint
averaging. However, this method is infeasible for TTA-3OD due to noisy gradients from the lack
of ground truth labels. Additionally, computation on gradient is expensive, hindering efficient
adaptation. Also, this work (Gao et al., 2022) requires optimization on development data (val set),
which is unavailable during test-time adaptation. In contrast, our MOS measures output differences
between checkpoint pairs, ensuring diverse knowledge without relying on gradients or development
data.

Kaddour (2022) examines EMA, varying the latest checkpoints (ckpt) and saving frequencies. We
investigated the same ensemble strategy using the latest ckpt, as shown in Fig. 6 of the main paper.
The "latest-first" strategy aggregates the most recent K ckpt. Our MOS strategy selecting the 3
most important ckpt, outperforms the ensemble of the latest twenty ckpt. This improvement arises
because recent ckpt converge, leading to similar parameters and loss of long-term unique knowledge,
ultimately failing to generalize to the target domain. Our MOS effectively mitigates this issue.

Matena & Raffel (2022) presents a merging procedure using the Laplace approximation, approx-
imating each model’s posterior as a Gaussian distribution with the precision matrix as its Fisher
information. This approach is infeasible for the TTA-3OD task, as it necessitates per-example data to
estimate the Fisher matrix, which is unavailable in online TTA since the test set is not provided in
advance.
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Table 9: TTA-3OD results (easy/moderate/hard AP3D) of pedestrian class under the cross-corruption
scenario (Waymo→ KITTI-C) at heavy corruption level.

No Adaptation Tent (Wang et al., 2021) CoTTA (Wang et al., 2022a) SAR (Niu et al., 2023) MemCLR (VS et al., 2023) MOS

Fog 30.48/26.15/23.61 31.22/26.68/23.99 31.29/26.69/24.05 30.68/25.94/23.70 30.51/26.02/23.77 32.38/27.51/24.85
Wet. 49.10/44.44/41.74 49.13/44.58/41.85 49.14/45.01/42.23 49.18/44.59/41.97 49.09/44.55/41.81 51.34/46.88/43.16
Snow 47.22/42.26/39.19 47.55/42.79/39.44 46.30/41.62/38.11 47.42/42.85/39.54 47.68/42.78/39.45 49.42/44.82/40.79
Moti. 27.18/25.02/23.29 27.47/25.25/23.43 27.28/25.43/23.41 27.34/25.15/23.31 27.44/25.19/23.36 27.54/25.93/23.86
Beam. 32.47/27.89/25.27 34.50/30.55/28.18 32.22/27.41/25.13 34.83/30.74/28.54 34.53/30.30/28.16 34.02/29.73/27.35
CrossT. 47.42/43.08/40.37 47.66/43.37/40.51 47.76/43.29/40.39 48.13/43.65/40.71 47.87/43.58/40.48 50.78/45.42/41.73
Inc. 49.28/44.79/42.21 49.18/44.80/42.11 49.36/45.39/42.77 49.22/44.70/42.24 49.01/44.76/42.11 51.06/46.83/43.31
CrossS. 22.46/18.40/16.08 27.70/22.82/20.30 22.11/17.88/15.98 27.99/23.20/21.36 27.23/23.70/21.63 26.74/22.94/20.89

Mean 38.20/34.00/31.47 39.30/35.11/32.48 38.18/34.09/31.52 39.35/35.10/32.67 39.17/35.11/32.60 40.41/36.26/33.24

Wortsman et al. (2022) supports our findings that averaging weights of models with different hyperpa-
rameters can improve accuracy and robustness. However, it doesn’t consider model weighting based
on checkpoint importance and uniqueness, unlike our proposed MOS. Additionally, the "learned
soup" and "greedy soup" methods in paper (Wortsman et al., 2022) require a held-out validation set
to compute mixing coefficients, making them unsuitable for test-time scenarios.

In summary, all the aforementioned papers focus on multi-epoch offline training, potentially
requiring labels and validation sets, and neglect the estimation and selection of important ckpt for
ensemble. In contrast, our ensemble method is uniquely designed for online Test-Time Adaptation
(TTA) in 3D object detection.

A.4 IMPLEMENTATION DETAILS

Our code is developed on the OpenPCDet (Team, 2020) point cloud detection framework, and
operates on a single NVIDIA RTX A6000 GPU with 48 GB of memory. We choose a batch size of
8, and set hyperparameters L = 112 across all experiments. We set the model bank size of K = 5
to balance performance and memory usage. For evaluation, we use the KITTI benchmark’s official
metrics, reporting average precision for car class in both 3D (i.e., AP3D) and bird’s eye view (i.e.,
APBEV), over 40 recall positions, with a 0.7 IoU threshold. We set Sfeat to a small positive value
ϵ = 0.01 once rank(·) reaches D, to ensure G̃ is invertible. The detection model is pretrained using
the training set of the source dataset, and subsequently adapted and tested on the validation set of
KITTI.

Augmentations. We adopt data augmentation strategies from prior studies (Yang et al., 2022; 2021;
Luo et al., 2021; Chen et al., 2023a) for methods requiring augmentations, such as MemCLR (VS
et al., 2023), CoTTA (Wang et al., 2022a), and MOS. While CoTTA suggests employing multiple
augmentations, our empirical results indicate that for TTA-3OD, utilizing only a single random
world scaling enhances performance, whereas additional augmentations diminish it. Consequently,
following the approach (Luo et al., 2021), we implement random world scaling for the mean-teacher
baselines, applying strong augmentation (scaling between 0.9 and 1.1) and weak augmentation
(scaling between 0.95 and 1.05) for all test-time domain adaptation tasks.

Pseudo-labeling. We directly apply the pseudo-labeling strategies from (Yang et al., 2021; 2022) to
CoTTA and MOS for self-training, using the default configurations.

Baseline Losses. For Tent (Wang et al., 2021) and SAR (Niu et al., 2023), which calculate the entropy
minimization loss, we sum the losses based on classification logits for all proposals from the first
detection stage. For MemCLR (VS et al., 2023), we integrate its implementation into 3D detectors by
reading/writing pooled region of interest (RoI) features extracted from the second detection stage,
and compute the memory contrastive loss. For all baseline methods, we use default hyperparameters
from their implementation code.

Ensemble Details and Memory Optimization in MOS. In the proposed MOS, we optimize memory
usage by sequentially loading each checkpoint from the hard disk onto the GPU, extracting the output
intermediate feature maps and box predictions needed for calculating the gram matrix and synergy
weights. After saving the outputs for the currently loaded checkpoint, we remove it from the GPU
before loading the next one. Once the synergy weights are calculated, in the model assembly process,
we again sequentially load checkpoints, multiplying each model’s parameters by the corresponding
synergy weight and aggregate them into the supermodel. We report the optimized memory usage in
Fig. 7.
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Table 10: TTA-3OD results (easy/moderate/hard AP3D) of cyclist class under the cross-corruption
scenario (Waymo→ KITTI-C) at heavy corruption level.

No Adaptation Tent (Wang et al., 2021) CoTTA (Wang et al., 2022a) SAR (Niu et al., 2023) MemCLR (VS et al., 2023) MOS

Fog 21.15/17.91/16.66 23.62/19.21/18.33 22.60/18.74/17.57 23.49/19.02/18.10 23.43/19.01/17.86 25.62/21.34/20.10
Wet. 60.36/49.61/47.20 59.72/48.57/45.96 61.36/49.27/47.04 57.43/46.48/43.96 57.76/46.34/44.79 64.73/52.11/49.60
Snow 48.87/40.37/37.96 52.81/42.25/40.11 52.91/41.55/39.09 52.09/41.89/39.26 52.24/41.71/39.28 57.12/45.53/43.39
Moti. 34.62/29.25/27.33 36.79/29.04/27.31 40.37/31.18/29.34 37.53/29.78/28.12 38.19/29.75/28.19 43.90/34.63/32.87
Beam. 32.48/22.42/21.26 36.08/25.03/23.85 30.89/21.37/20.42 37.16/26.21/24.74 36.34/25.35/24.32 43.06/30.19/28.43
CrossT. 59.56/48.75/46.20 58.72/49.26/46.51 62.14/49.13/46.21 58.66/49.16/46.61 58.68/48.87/46.40 65.10/51.67/49.30
Inc. 59.62/49.03/46.82 59.14/47.87/45.11 59.89/47.62/45.44 58.86/47.93/45.51 58.91/48.28/45.68 60.55/49.57/47.23
CrossS. 18.38/11.40/10.93 24.84/15.04/14.66 20.98/12.77/12.28 26.19/15.29/14.95 25.46/15.06/14.49 30.34/18.66/17.73

Mean 41.88/33.59/31.79 43.96/34.53/32.73 43.89/33.95/32.17 43.93/34.47/32.66 43.88/34.30/32.63 48.80/37.96/36.08

Algorithm 1 The Proposed Model Synergy for TTA-3OD
Input: f0: source pretrained model, {xt}Tt=1: point clouds to test, F: model bank.
Output: ft: model adapted to the target point clouds.

Phase 1: Warm-up.
Start self-training with f0, and add each of trained ft into F until reaching capacity.
Phase 2: Model Synergy.
for each remaining batch xt do

Calculate the inverse of generalized Gram matrix G̃−1, via Eq. (5), Eq. (8), Eq. (9), Eq. (10)
Calculate synergy weights w̃ with G̃−1, for each of model in F, via Eq. (5)
Assemble models within F weighted by w̃, into a super model f∗

t , via Eq. (6)
Generate prediction for xt as pseudo label B̂t by f∗

t , to train the current model ft, via Eq. (7)
Phase 3: Model Bank Update.
for each time of training/inferring L online batches do

Calculate the mean synergy weights w̄, via Eq. (11)
Remove the most redundant model in F and add ft into F, via Eq. (12)

end for
end for

A.5 EXPERIMENTAL RESULTS ACROSS MULTIPLE CLASSES

Cross-Dataset Shifts. We conduct experiments to evaluate the proposed test-time adaptation method
across various datasets for multiple object classes. As shown in Tab. 8, our proposed MOS consistently
surpasses all test-time adaptation (TTA) baselines in APBEV for every class. Specifically, in the Waymo
→ KITTI task, MOS exceeds the leading baseline (CoTTA) by 3.3% for pedestrians and 2.6% for
cyclists in AP3D. For the more challenging nuScenes→ KITTI adaptation, which faces a significant
environmental shift (beam numbers: 32 vs. 64), MOS significantly outperforms CoTTA by 4.9%
for pedestrians and 31.5% for cyclists, highlighting CoTTA’s limitations with more severe domain
shifts. Notably, MOS also surpasses the unsupervised domain adaptive (UDA) 3D object detection
method (ST3D) by 11.4% in the cyclist class for the task of Waymo→ KITTI, demonstrating its
effectiveness across all object classes and competitive performance against the UDA approach.

Cross-Corruption Shifts. Our experiments further explore adapting to 3D scenes under the chal-
lenging cross-corruption shifts for pedestrian and cyclist classes. As shown in Tab. 9, our MOS
method surpasses all baselines across most corruptions, achieving the highest mean AP3D: 40.41,
36.26 and 33.24 in easy, moderate and hard difficulty, respectively. However, for motion blur, beam
missing, and cross sensor, the effectiveness of pseudo-labelling methods such as CoTTA and MOS is
reduced. This is due to the small size and rareness of pedestrian objects, which lead to less accurate
pseudo labels. For cyclists, which are slightly larger objects than pedestrians, CoTTA improves
AP3D in motion blur scenarios (CoTTA’s 31.18 vs. MemCLR’s 29.75) but still struggles with harder
corruptions including cross sensor and beam missing, as indicated in Tab. 10. Conversely, MOS
effectively addresses both cross sensor and beam missing challenges for cyclists, demonstrating supe-
rior results: 14.9% and 18.6% higher than the best-performing baseline, respectively. Despite pseudo
labelling’s limitations with rare and small-sized objects under severe corruptions, MOS presents a
comparable test-time adaptation ability for pedestrian objects and shows the leading performance for
cyclists, demonstrating the effectiveness of leveraging diverse category knowledge from historical
checkpoints.
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Table 11: Results of TTA-3OD on adapting Waymo→ KITTI using PV-RCNN (Shi et al., 2020) and
DSVT (Wang et al., 2023a). APBEV/AP3D are reported. Note that, MemCLR requires 2nd stage RoI
features, thus inapplicable to the one-stage DSVT.

Model No Adapt Tent CoTTA SAR MemCLR MOS

PV-RCNN 63.60/22.01 55.96/27.49 67.85/38.52 59.77/21.33 55.92/15.77 72.60/52.45
DSVT 65.06/27.14 63.94/31.07 66.63/34.51 66.12/37.45 –/– 77.38/57.41

A.6 VISUALIZATION OF SYNERGY WEIGHTS

In Fig. 9, we visualize the predicted point clouds from different checkpoints in a bank F of size
K = 3, each annotated with its synergy weight (SW) by Eq. 5. We note that CKPT 2 detects more
pedestrians (row 2, column 2) that are overlooked by others. To capture this knowledge, the proposed
MOS assigns CKPT 2 with a higher SW when inferring the right point cloud (column 2). However,
for inferring the left point cloud (column 1), CKPT 2 fails to localize the car detected by CKPT 3,
resulting in CKPT 3 receiving a higher SW than CKPT 2. Regarding CKPT 1, since other checkpoints
cover all its box predictions, it is assigned the lowest SW to minimize redundancy. Therefore, for
each input point cloud, the proposed MOS employs a separate strategy (i.e., weighted averaging by
SW) to combine checkpoints, ensuring the acquisition of non-redundant, long-term knowledge from
historical checkpoints.

CKPT 3: 0.591

CKPT 2: 0.351

CKPT 1: 0.058 CKPT 1: 0.026

CKPT 2: 0.725

CKPT 3: 0.249

Figure 8: Visualization of box predictions from different checkpoints in the model bank of size
K = 3, with corresponding synergy weight. These checkpoints are selected and stored in the model
bank with the proposed MOS when adapting the 3D detector (Yan et al., 2018) pretrained on Waymo
(Sun et al., 2020), to the KITTI (Geiger et al., 2012) dataset at test-time. Objects uniquely detected
by only one checkpoint are marked in red, while those detected by two checkpoints are marked in
yellow.
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Figure 9: Visualization of box predictions from baseline methods and the proposed MOS, when
adapting from Waymo (Sun et al., 2020) to KITTI (Geiger et al., 2012) at test time. Predicted boxes
are shown in red, while ground truth boxes are shown in blue.

A.7 SENSITIVITY TO 3D BACKBONE DETECTOR

We evaluate the sensitivity of the proposed MOS when integrated with a different two-stage, point-
and voxel-based backbone detector: PVRCNN (Shi et al., 2020), and a recently proposed, one-stage,
voxel transformer-based 3D detector DSVT (Wang et al., 2023a). We report the results of TTA
baselines and the MOS for test-time adapting the PVRCNN and DSVT from Waymo to KITTI in
Tab. 11. It is observed that MOS consistently outperforms the leading baseline, achieving substantial
improvements of 36.16% and 53.48% in AP3D for PVRCNN and DSVT, respectively. This highlights
that our model synergy framework is model-agnostic, maintaining its effectiveness across different
3D detectors.

A.8 QUALITATIVE STUDY

In this section, we present visualizations of the box predictions generated by three different test-time
adaptation (TTA) methods: 1) the optimization-based method SAR, 2) the mean-teacher-based
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method CoTTA, and 3) the proposed MOS. The image at the botton is included for reference only. It
is evident that both SAR and CoTTA exhibit false negatives, misclassifying background regions as
objects. Additionally, even the correctly predicted boxes from SAR and CoTTA are poorly aligned
with the ground truth. In contrast, the proposed MOS method produces no false negatives, and its
predicted boxes show a high degree of overlap with the ground truth, resulting in a higher Intersection
over Union (IoU) score.
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