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This appendix is structured as follows: we introduce multi-task model and SMCD ablations results,
a detailed description of baseline models, and additional prediction and mask interpretability results
for the two-link arm task in Appendix A. We describe data labelling, multi-task model ablations and
additional results on mask interpretability and look-ahead prediction for the drone-landing task in
Appendix B. In Appendix C, we show how multi-task model training and SMCD adaptation can be
used in a model-based Reinforcement Learning setting. Finally, we describe additional properties
of the proposed SMCD method in Appendix D.

A Two Link-Arm - Forward Kinematics Task

A.1 Multi-Task Model Ablations

We completed a hyper-parameter sweep of latent dimension, dropout probability, learning rate, batch
size, and the number of epochs to find the best multi-task pre-training model for evaluation in pre-
diction and control. Fig. 1 shows the training loss (mean square prediction error) for all hyper-
parameters. Results indicate that the best training loss is achieved by models of medium-to-large
size (latent dimensions 512 and 1024), with a dropout probability of p = 0.5, and learning rate of
1e−4. Furthermore, we observe the batch size has little to no effect, and models converge quickly
after approximately 100 epochs.
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Figure 1: Training loss for all possible hyper-parameters. Each plot shows how the training loss
changes when one parameter is fixed (e.g., latent dimension) and the remaining ones take on all
possible values.

The same space of parameters was used to find the best Reptile model. Two additional hyper-
parameters, the inner learning rate (set to 0.02) and the inner number of epochs (set to 1), were kept
constant during the search.

A.2 SMCD Prediction Ablations

A hyper-parameter sweep (bit flip transition probability, measurement noise σr, dropout probability,
number of particles, and latent dimension) showed that prediction error when using SMCD adapta-
tion is primarily affected by the dropout probability used at training (p=0.5 appeared most effective),
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(a) Prediction error sorted by latent dimension.
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(b) Prediction error sorted by bit transition probability.
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(c) Prediction error sorted by number of particles N .
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(d) Prediction error sorted by measurement noise σr .

Figure 2: SMCD look-ahead mean squared prediction error for various mask dimensions sorted
all parameters considered during hyper-parameter sweep (BS: Burn in adaptation steps, LS: Look-
ahead prediction steps.)

followed by the dimensionality of the network layers, indicating that model capacity is important
to capture the prediction uncertainty arising from the link length variability. Fig. 2 shows the mean
square prediction error for a range of look ahead horizons after a certain number of burn-in adap-
tation steps sorted by hyper-parameter. It is clear that latent dimension (model capacity) plays the
biggest role in adaptation efficacy, and that the filter is relatively robust to changes in transition
probability, likelihood noise and mask particle numbers.

A.3 Adaptation Baselines

For the 2-Link forward kinematics prediction task we compared against a Reptile model. The base
network (3-layer NN, with ReLU activations) is identical to the model trained using multi-task
training and trained on the same dataset. However, instead of sampling data at random, training
is sampled by task. We conducted a similar hyper-parameter sweep as in Fig. 1 and selected the
best performing model for comparison. We briefly discuss the baselines and draw attention to some
noteworthy aspects of their performance below.
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• R+S: By training the model using Reptile and dropout regularisation, we can apply SMCD
for online adaptation. Results show this is relatively effective, and that SMCD can be used
alongside meta-learning approaches. We also observe that adapting a model trained using
multi-task training appears to be more effective.

• R+N: As a meta-learning approach, Reptile seeks to find a representation that can rapidly
be adapted to produce low prediction error in new settings with relatively few gradient
steps. This means the initial representation may not result in low prediction error. In
contrast, the multi-task training approach performs empirical risk minimisation, that is, it
seeks to find a model with low prediction error across all settings or task variations. As a
result when no adaptation is applied, we find that multi-task training (M+N) is generally
more effective.

• R+G: Our results show that Reptile performs poorly in a look-ahead prediction setting
compared to our proposed approach. A similar trend was observed in an online setting (i.e.,
adaptation control experiment). Typically, meta-learning strategies like Reptile are adapted
to new tasks by collecting and storing large buffers of task specific observations, and then
performing a global model update using a number of stochastic gradient descent iterations.
In a rapidly changing online setting, this is infeasible, and produces additional challenges.
Specifically, we can choose to update with a higher learning rate and risk destroying the
underlying representation by over-fitting to a local context (this is what appears to happen
in R+G), or update very slowly so as to not stray too far from the initial representation
(something closer to R+N) resulting in extremely slow convergence. A core benefit of
SMCD is that it provides an explicit online update rule, which alleviates these problems.

• LV+N: The proposed SMCD method captures task variability and contextual information
through a combination of all the weights of the multi-task learned neural model and the
inferred dropout masks. Other approaches in the literature do so by explicitly learning
a low-dimensional latent embedding (e.g., [1]). To test whether the proposed approach
leads to better performance at the cost of a higher-dimensional embedding, we compared
against a recurrent variational auto-encoder with a hidden embedding of dimensionality 8.
The VRNN model was trained on the same data set as the multi-task model for a total of
200 epochs. Our results indicate that this latent model performs poorly compared to the
proposed SMCD model. This can be partially due to the length of the sequences chosen to
train the model. Since the multi-task model has no recurrent layer, we limited the sequences
fed to the VRNN during training to a length of two time-steps in order to make both models
comparable. It is possible that the VRNN model achieves better performance if trained over
longer sequences.

The relative performance difference between simple multi-task learning and Reptile observed in our
experiments agrees with a recently released work directly comparing multi-task training and fine
tuning with meta-learning in RL settings, which corroborates our findings [2]. This large scale study
across a broad benchmark of meta-RL tasks concludes that multi-task training performs equally as
well or better than meta-RL on similar levels of data.

A.4 Online Adaptation during Control

Figure 3: A 2-link arm with
sinusoidally varying length l2
following a moving target.

We also evaluated the performance of SMCD in control (see Fig.
3) using the the two-link arm task. Here, we control the two-link
manipulator to follow a moving target xg around a circle of radius
r ∼ U(0.3, 1.5), with starting angle φ ∼ U(−π, π), measured rel-
ative to the base of a randomly initialised manipulator. We use the
PD control law u = −K1J

†(x− xg)−K2q̇ to follow the moving
target (K1 = 20,K2 = 5). Here, J† is the Moore-Penrose pseudo-
inverse of the Jacobian of the network fθ(q). In order to test online
forward kinematics adaptation, we consider a telescoping second
link, with sinusoidally varying length l2 = 1 + 0.25 sin(πk/20),
with timestep k ∈ (0, 100). This experiment evaluates convergence
speed in response to an initial disturbance, alongside continual on-
line adaptation ability. We benchmark against an oracle model, no
adaptation and a model trained using Reptile [3], a first order meta-
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learning approach, and investigate adaptation using both gradient
descent and SMCD.
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Figure 4: Closed-loop PD control of a 2-link arm follow-
ing a moving target with a sinusoidally telescoping link (1-
sigma shaded traces).

Fig. 4 shows the average control er-
ror for the online control task with si-
nusoidally varying links, across 1000
repetitions. Results are shown for
the best performing reptile and multi-
task trained models for no adaptation
(None), online gradient descent adap-
tation (GD) and online sampling-
based adaptation (SMCD). As in the
look-ahead prediction case, multi-
task training with SMCD adaptation
is most effective, producing rapid
convergence to the moving goal when
used for control. Interestingly, parti-
cle filtering with a known model (Or-
acle+PF) struggles to deal with the
rapidly changing forward kinemat-
ics, but adaptation in mask space or
by gradient descent converges much
faster.

A.5 Mask Interpretability
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Figure 5: Evaluating link length information captured by
inferred masks.

To investigate whether the inferred
masks capture information about link
lengths, we evaluated top k classifica-
tion accuracy using the masks, where
accuracy is determined by calculating
the frequency with which the near-
est neighbour in link space (euclidean
distance between link lengths) lies
within the top k nearest neighbours
in mask space (euclidean distance be-
tween masks). Fig. 5 shows that the
masks do contain information about
link lengths, and that the capacity to
do so increases with model latent di-
mensionality ld. Inspection of the
distances between masks show that
there can be many masks correspond-
ing to a good prediction in a particu-
lar angle or link-length configuration.
This allows for rapid adaptation, as the mask inference mask space does not need to converge to only
one of the 2d possible masks.

B Drone Landing Task

B.1 Human Data Labelling

A total of four high-level characteristics were tested when evaluating mask interpretability for the
drone landing example. These characteristics are landing strategy, operator’s skill level, flight phase,
and the likelihood of success.

The landing strategy of each trajectory in the dataset was manually assigned after visually inspecting
each trajectory. For the flight phase, it was assumed that a tele-operation trajectory is composed of
two phases: approach (the drone moves forward toward the target platform) and descent (the drone
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comes down to the target platform). An example is shown in Fig. 7. The start and end of each phase
were manually defined after visually inspecting each trajectory.

DescentApproach

User trajectory
Other platforms
Target platform

Figure 6: Segmentation of a tele-operation trajectory into two stages: approach (the drone moves
forward toward the target platform) and descent (the drone comes down to the target platform).

A trajectory was labelled as successful if and only if the drone’s height at the end of the trajectory
was inferior to the height of the target platform height and the drone’s final position in the XY plane
laid within the boundaries platform’s top face. To determine an operator’s skill level, we computed
the number of successful landings for each operator and analysed the operators’ performance dis-
tribution. We found that performance was normally distributed (see Fig. 7) and proceeded to split
users into one of three groups: novices (10% low performers), experts (10% top performers), and
intermediate (average performers).
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Figure 7: Distribution of operator’s performance. Operators in the top and bottom 10% were labelled
experts and novices, respectively.

B.2 Multi-Task Model Ablations

A hyper-parameter sweep (latent dimension, dropout probability, learning rate, batch size, and the
number of epochs) was done to find the best multi-task pre-training model for the drone landing task.
Only a subset of the training dataset was used in the search (192 trajectories). We limited the number
of epochs to 100 based on the fast convergence observed for the forward kinematics example. Fig. 8
shows the training loss (mean square prediction error) for all hyper-parameters. Results seem to
indicate that models of medium-to-large size (latent dimensions 512 and 1024), with a dropout
probability of p = 0.5, learning rates of 1e−4, and batch size of 64 samples performed the best
during traning.

The Reptile model used in the evaluation look-ahead prediction error was set to have the same hyper-
parameters as the best multi-task pre-training model found during the search. The two additional
hyper-parameters required by the reptile model (the inner learning rate and the inner number of
epochs) were fixed to the same values used for the forward kinematics tasks.
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Figure 8: Training loss for all possible hyper-parameters. Each plot shows how the training loss
changes when one parameter is fixed (e.g., latent dimension) and the remaining ones take on all
possible values.
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Figure 9: Average confidence score for the correct assignment a trajectory’ stage and likelihood
of success for all testing trajectories (1-sigma shaded traces). Results are presented for the set of
5-nearest masks.

B.3 Mask Interpretability - Additional Results

Fig. 9 shows the average confidence scores obtained for the current stage of a given trajectory (ap-
proach or descent) and whether this trajectory will end in a successful or failed landing. Results are
shown for all trajectories in our testing sets.

Overall, although we can identify with high confidence (approx. 1.0) the approach stage of a trajec-
tory (left plot), the masks inferred later on fail to encode enough information to allow for the correct
identification of the descent stage. Similarly, the confidence scores for the prediction of success or
failure are slightly above the chance level (∼ 0.55) for the trajectories of both known and unknown
operators. These results indicate that although the inferred masks capture some contextual informa-
tion about trajectories and operators, not all of the high-level characteristics we have identified as
important can be predicted through a simple mask comparison process.

B.4 Look-Ahead Prediction Error

We further assessed the performance of the proposed approach in look-ahead prediction using the
drone landing task. Specifically, we evaluated prediction error on trajectories obtained from known
(some trajectories were seen during training) and unknown (all trajectories excluded during training)
operators.

Fig. 10 shows the RMSE for held-out tele-operation trajectories. We consider two test sets: known
(left) and unknown (right) operators for varied burn in and prediction horizon ratios. We use ratios
instead of steps since trajectories are of varying lengths. As with the two-link example, we compare
the best performing models trained using multi-task pre-training and Reptile meta-learning, with and
without adaptation. Note that multi-task pre-training without adaptation corresponds to a behaviour
cloning approach to action prediction.

As expected, the look-ahead prediction error obtained for trajectories executed by known operators
is lower than the error rates obtained for the unknown operator trajectories. However, as initially
observed in the two-link arm example, this difference in performance grows smaller as the duration
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Figure 10: Look-ahead prediction errors for human data, ordered by performance. (M: multi-task,
R: Reptile, G: Gradient descent, S: SMCD, N: No adaptation).

of the adaptation and look-ahead prediction horizons increases. This suggests that rather than glob-
ally adapting to a particular task instance or operator’s tele-operation style, the proposed approach is
better at providing accurate models in specific regions of the state space. In terms of overall model
performance, we observe that multi-task training with SMCD is most effective, followed by multi-
task training with Gradient Descent adaption. Once again, the model trained using Reptile performs
poorly even when trained for substantially longer (1000 epochs) than the other models (400 epochs).

C SMCD Application to Reinforcement Learning Settings

C.1 Quadrupedal Robot (Ant)

We also consider a continuous control task from the OpenAI Gym suite. In this task, the goal is
to make a four-legged robot to move forward as quickly as possible. We employ the task imple-
mentation first introduced in [4] in which the robot’s observed state ot1 and action ut spaces are
high-dimensional, i.e., ot ∈ R41 and ut ∈ R8. We use multi-task training with dropout to approx-
imate the robot dynamics and compare different combinations of model-based controllers (Cross
Entropy Method - CEM [5], Model Predictive Path Integral - MPPI [6], and Random Shooting - RS
[7]) and adaptation strategies (No adaptation, SMCD, and gradient descent) during an online control
task. During evaluation, we randomly sample a leg to cripple on this quadrupedal robot. This task
measures the ability of the proposed approach to work in high-dimensional spaces and adapt to an
unexpected and drastic change to the underlying dynamics. We note that the approximate dynamic
model is trained using samples in which all legs are functional.

C.2 Online Control Results

Fig. 11 shows the average reward obtained for a range of model-based RL control strategies, along
with gradient and SMCD model adaptation. We used a 3-layer, 1024 dimensional fully connected
network with ReLU activations to learn the approximate dynamics model of the quadrupedal robot.
The model was trained with 1000000 randomly sampled state-action pairs obtained in an environ-
ment where all legs could be actuated. The average rewards reported in Fig. 11 were obtained after
completing 110 episode rollouts of 1000 steps each for both the normal and randomly crippled-leg
environment. The same setup was applied for each controller and adaptation strategy combination.

Both adaptation strategies perform similarly here, in and out of distribution. Importantly model
adaptation does improve control performance, particularly when drastic changes in the underly-
ing dynamics are introduced (right-plot). These results suggest that the proposed approach is also

1This observation representation includes the torso position and orientation, joint angles, the torso linear
and angular velocity, joint velocities, and the Cartesian orientation and centre of mass.
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suitable for high-dimensional task spaces. However, it should be noted that there is significant
confounding arising from the controller performance (no model-specific parameter tuning was per-
formed for each controller) and the sampling strategy used to gather training data (all samples were
obtained using randomly chosen actions), which may not adequately reflect the performance of the
underlying adaptation strategies across all regions of the state space to the extent that the Panda
control experiments test. It is likely that improved RL control and exploration strategies are needed
to fully reap the benefits of SMCD.
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Figure 11: Average reward obtained for the quadrupedal robot online control task. Results are shown
for rollouts sampled from both inside (i.e., all legs are functional (left plot)) and outside (i.e., one
leg is randomly crippled (right plot)) of the training distribution.

D Additional Properties of SMCD

D.1 Minimum Mean Square Estimator

For control oriented tasks we use a minimum mean square estimator (MMSE) to find a single mask
for prediction. This is a good choice of estimator if the distribution over masks is uni-modal. Our pri-
mary motivation for choosing this estimator was speed - a MAP estimator would require some level
of density estimation and maximisation. Our control experiments did not show problems with esti-
mates arising from multi-modality, and the update rule considers the full distribution. This suggests
that the MMSE is not vulnerable to issues arising from this. We suspect that severe multi-modality
will result in an average mask with values close to 0.5, which in turn results in a prediction close to
the empirical risk minimising mean we’d receive after multi-task training with dropout.

D.2 Computational Complexity

SMCD relies onN forward passes through the network, whereN is the number of masks. Although
these can be easily batched, this does have an increased memory footprint when compared to gra-
dient based approaches, which require approximately twice the number of model parameters. This
greater memory footprint allows for a faster update scheme and more rapid adaptation.

Importantly, SMCD relies on a standard bootstrap particle filter, which breaks the curse of dimen-
sionality – convergence is independent of the state dimension (mask size) and the rate of convergence
is in 1

N [8]. There is extensive theory on choosing N for filters of this form [9], and the formulation
allows for variable batch sizes if desired, to allow even more efficient adaptation.

As a result,we believe the proposed approach is highly scalable, particularly given the typical VRAM
associated with modern GPUs, where batch sizes of 100 (see ablations above for particles) are
entirely feasible for models of the size typically used in robot control2.

2Our largest model with 5000 particles used 3GB of GPU VRAM
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