FCI
Algorithm Introduction
Causal Discovery with Fast Causal Inference (FCI 2).
Usage
from causal-learn.search.ConstraintBased.FCI import fci
G = fci(data, indep_test, alpha, verbose=True)
Parameters
data: Input data matrix
alpha: Significance level of individual partial correlation tests.
- indep_test: Independence test method function.
“fisherz”: Fisher’s Z conditional independence test.
“chisq”: Chi-squared conditional independence test.
“gsq”: G-squared conditional independence test.
“kci”: kernel-based conditional independence test. (As a kernel method, its complexity is cubic in the sample size, so it might be slow if the same size is not small.)
“mv_fisherz”: Missing-value Fisher’s Z conditional independence test.
verbose: 0 - no output, 1 - detailed output.
Returns
cg : a CausalGraph object.
- 2
Spirtes, P., Meek, C., & Richardson, T. (1995, August). Causal inference in the presence of latent variables and selection bias. In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence (pp. 499-506).