
A Additional Background391

A.1 Total Variation Distance Properties392

Recall the definition of total variation distance:393

Definition 2.1. The total variation distance between random variables (or distributions) P1 and P2394

is395

TV(P1, P2) = sup
A

|Pr(P1 2 A)� Pr(P2 2 A)|, (2)

where A is any measurable set.396

Lemma A.1 (Kelbert (2023)). Properties of total variation distance:397

1. For probability densities p1 and p2,398

TV(p1, p2) =
1

2

Z
|p1(x)� p2(x)| dx. (18)

2. Total variation distance is a metric.399

3. Pinsker’s inequality: for distributions P1 and P2,400

TV(P1, P2) 
r

1

2
KL(P1 ||P2) (19)

4. Invariance to bijections: if f is a bijection and P1 and P2 are random variables,401

TV(f(P1), f(P2)) = TV(P1, P2) (20)

We also occasionally write TV(p1, p2) for probability densities p1 and p2 as402

TV(p1, p2) = sup
h

����
Z

h(x)p1(x) dx�
Z

h(x)p2(x) dx

���� (21)

where h is an indicator function of some measurable set A.403

A.2 Bernstein–von Mises Theorem Regularity Conditions404

The version of the Bernstein–von Mises theorem we use is from van der Vaart (1998). To state the405

regularity conditions, we need two definitions:406

Definition A.2. A parametric probability density pQ is differentiable in quadratic mean at Q0 if407

there exists a measurable vector-valued function ˙̀
Q0 such that, as Q ! Q0,408

Z ✓q
pQ(x)�

q
pQ0(x)�

1

2
(Q�Q0)

T ˙̀
Q0(x)

q
pQ0(x)

◆2

dx = o(||Q�Q0||22). (22)

Definition A.3. A randomised test is a function � : X ! [0, 1].409

The interepretation of �(X) is the probability of rejecting some null hypothesis after observing data410

X .411

Now we can state the regularity conditions of Theorem 2.2:412

Condition A.4 (van der Vaart (1998)). For true parameter value Q0 and observed data Xn:413

1. The datapoints of Xn are i.i.d.414

2. The likelihood p(x|Q) for a single datapoint x is differentiable in quadratic mean at Q0.415

3. The Fisher information matrix of p(x|Q) is nonsingular at Q0.416

4. For every � > 0, there exists a sequence of randomised tests �n such that417

p(Xn|Q0)�n(Xn) ! 0, sup
||Q�Q0||2��

p(Xn|Q)(1� �n(Xn)) ! 0. (23)

5. The prior p(Q) is absolutely continuous (as a measure) in a neighbourhood of Q0 with a418

continuous positive density at Q0.419
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A.3 Differential Privacy and Noise-Aware Synthetic Data420

Differential privacy (DP) (Dwork et al. 2006b) quantifies the privacy loss from releasing the results421

of analysing data. The quantification is done by looking at the output distributions of the analysis422

algorithm for two datasets that differ in a single data subject (Dwork and Roth 2014):423

Definition A.5. An algorithm M is (✏, �)-DP if424

Pr(M(X) 2 S)  e
✏ Pr(M(X 0) 2 S) + � (24)

for all measurable sets S and all datasets X,X
0 that differ in one data subject.425

The choice of ✏ and � is a matter of policy (Dwork 2008). One should set � ⌧ 1
n for n datapoints, as426

� ⇡ 1
n permits mechanisms that clearly violate privacy (Dwork and Roth 2014).427

A common primitive for making an algorithm DP is the Gaussian mechanism (Dwork et al. 2006a),428

which simply adds Gaussian noise to the output of a function:429

Definition A.6. The Gaussian mechanism with noise variance �
2
DP and function f outputs f(X) +430

N (0,�2
DP I) for input X .431

For a given (✏, �)-bound and function f , the required value for �2
DP can be computed tightly using432

the analytical Gaussian mechanism (Balle and Wang 2018).433

Noise-Aware Private Synthetic Data To solve the uncertainty estimation problem for frequentist434

analyses from DP synthetic data, Räisä et al. (2023) developed a noise-aware algorithm for generating435

synthetic data called NAPSU-MQ. NAPSU-MQ takes discrete data, summarises it with marginal436

queries, releases the query values under DP with the Gaussian mechanism, and finally generates437

multiple synthetic datasets. The downstream analysis is done on each synthetic dataset, and the438

results are combined using Rubin’s rules for synthetic data (Raghunathan et al. 2003; Rubin 1993),439

which use the multiple analysis results to account for the extra uncertainty coming from the synthetic440

data generation.441

The synthetic data is generated by sampling the posterior predictive distribution442

p(X⇤|s̃) =
Z

p(X⇤|✓)p(✓|s̃) d✓. (25)

The conditioning on s̃ and including the Gaussian mechanism in the model is what makes NAPSU-443

MQ noise-aware, and allows Rubin’s rules to accurately account for the synthetic data generation and444

DP noise in the downstream analysis.445

A.4 Bayesian Inference with Gaussian Models446

In this section, we collect well-known results on Bayesian inference of a Gaussian mean. See Gelman447

et al. (2014) for proofs.448

Scaled inverse-chi-square distribution This parameterisation of the inverse gamma distribution is449

convenient in this setting.450

Inv-�2(⌫, s2) = Inv-Gamma
⇣
↵ =

⌫

2
,� =

⌫

2
s
2
⌘
. (26)

If ✓ ⇠ Inv-�2(⌫, s2), ✓ > 0,451

p(✓) =
( ⌫2 )

⌫
2

�( ⌫2 )
s
⌫
✓
�( ⌫

2+1)
e
� ⌫s2

2✓ (27)

E(✓) = ⌫

⌫ � 2
s
2
, ⌫ > 2 (28)

Var(✓) =
2⌫2

(⌫ � 2)2(⌫ � 4)
s
4
, ⌫ > 4. (29)
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Gaussian Model with Known Variance When the variance of the data is known to be �2
k, and only452

the mean is unknown, the conjugate prior is another Gaussian, and we get the following inference453

problem:454

µ ⇠ N (µ0,�
2
0) (30)

xi|µ ⇠ N (µ,�2
k). (31)

The posterior with n datapoints with sample mean X̄ is:455

µ|X ⇠ N (µn,�
2
n) (32)

µn =

1
�2
0
µ0 +

n
�2
k
X̄

1
�2
0
+ n

�2
k

(33)

1

�2
n

=
1

�2
0

+
n

�2
k

. (34)

Gaussian Model with Unknown Variance When the variance of the data is also unknown, the456

conjugate prior is a inverse-chi-squared for the variance, and Gaussian for the mean, which gives the457

following inference problem:458

�
2 ⇠ Inv-�2(⌫0,�

2
0) (35)

µ|�2 ⇠ N
✓
µ0,

�
2

0

◆
(36)

xi|µ,�2 ⇠ N (µ,�2). (37)

The joint posterior of µ and �
2 for n datapoints is:459

�
2|X ⇠ Inv-�2(⌫n,�

2
n) (38)

µ|�2
, X ⇠ N

✓
µn,

�
2

n

◆
(39)

(40)

with460

X̄ =
1

n

nX

i=1

xi (41)

s
2 =

1

n� 1

nX

i=1

(xi � X̄)2 (42)

µn =
0

0 + n
µ0 +

n

0 + n
X̄ (43)

n = 0 + n (44)
⌫n = ⌫0 + n (45)

⌫n�
2
n = ⌫0�

2
0 + (n� 1)s2 +

0n

0 + n
(X̄ � µ0)

2
. (46)

The marginal posterior of µ is461

µ|X ⇠ t⌫n

✓
µn,

�
2
n

n

◆
. (47)

B Missing Proofs462

B.1 Consistency Proof463

For ease of reference, we repeat Theorem 2.2 and Condition 3.2:464
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Theorem 2.2 (Bernstein–von Mises (van der Vaart 1998)). Let n denote the size of the dataset Xn.465

Under regularity conditions stated in Condition A.4 in Supplemental Section A.2, for true parameter466

value Q0, the posterior Q̄(Xn) ⇠ p(Q|Xn) satisfies467

TV
�p

n(Q̄(Xn)�Q0),N (µ(Xn),⌃)
� P�! 0 (3)

as n ! 1 for some µ(Xn) and ⌃, that do not depend on the prior, where the convergence in468

probability is over sampling Xn ⇠ p(Xn|Q0).469

Recall that Q̄+
n ⇠ p(Q|Z,X⇤

n), and Q̄n ⇠ p(Q|X⇤
n).470

Condition 3.2. For all Q there exist distributions Dn such that471

TV
�
Q̄

+
n , Dn

� P�! 0 and TV
�
Q̄n, Dn

� P�! 0 (10)

as n ! 1, where the convergence in probability is over sampling X
⇤
n ⇠ p(X⇤

n|Z,Q).472

Lemma 3.3. If the assumptions of Theorem 2.2 (Condition A.4) and the following assumptions:473

(1) Z and X
⇤ are conditionally independent given Q; and474

(2) p(Z|Q) > 0 for all Q,475

hold for the downstream analysis for all Q0, then Condition 3.2 holds.476

Proof. Under Assumption (1)477

p(Q|Z,X⇤
n) / p(X⇤

n|Q)p(Z|Q)p(Q) (48)

so we can view both p(Q|Z,X⇤
n) and p(Q|X⇤

n) as the posteriors for the same Bayesian inference478

problem with observed data X
⇤
n, and priors p(Q|Z) / p(Z|Q)p(Q) and p(Q), respectively. Due479

to Condition A.4 (5) and Assumption (2), p(Q|Z) has an everywhere positive density. Recall that480

Q̄
+
n ⇠ p(Q|Z,X⇤

n) and Q̄n ⇠ p(Q|X⇤
n). Now, Theorem 2.2 gives481

TV
�p

n(Q̄+
n �Q0),N (µn,⌃)

� P�! 0 (49)

and482

TV
�p

n(Q̄n �Q0),N (µn,⌃)
� P�! 0 (50)

as n ! 1, where µn,⌃ are equal in the two cases because they do not depend on the prior. The483

probability is over X⇤
n ⇠ p(X⇤

n|Q0). Because of Assumption (1), p(X⇤
n|Q0) = p(X⇤

n|Z,Q0), so the484

convergence also holds with probability over X⇤
n ⇠ p(X⇤

n|Z,Q0). These hold for any Q0. Because485

the function fn(q) =
p
n(q �Q0) is a bijection and total variation distance is invariant to bijections,486

Condition 3.2 holds with Dn being the pushforward distribution Dn = f
�1
n �N (µn,⌃), with the Q487

of Condition 3.2 being Q0. Note that Dn is allowed to depend on Q in Condition 3.2 due to the order488

of quantifiers.489

Lemma B.1. Under Condition 3.2,490

TV(Q̄+
n , Q̄n)

P�! 0 (51)

as n ! 1, with the probability over X⇤
n ⇠ p(X⇤

n|Z).491

Proof. Total variation distance is a metric, so492

TV
�
Q̄

+
n , Q̄n

�
 TV

�
Q̄

+
n , Dn

�
+TV

�
Q̄n, Dn

�
(52)

so by Condition 3.2493

TV
�
Q̄

+
n , Q̄n

� P�! 0 (53)
as n ! 1, with the probability over X⇤

n ⇠ p(X⇤
n|Z,Q).494

It remains to show (53) with the probability over X⇤
n ⇠ p(X⇤

n|Z) instead of X⇤
n ⇠ p(X⇤

n|Z,Q).495

With X
⇤
n ⇠ p(X⇤

n|Z), for any ✏ > 0,496

Pr
X⇤

n|Z
(TV(Q̄+

n , Q̄n) > ✏) =

Z
Pr

X⇤
n|Z,Q

(TV(Q̄+
n , Q̄n) > ✏)p(Q|Z) dQ (54)
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(53) holds for any Q, so497

lim
n!1

Pr
X⇤

n|Z,Q
(TV(Q̄+

n , Q̄n) > ✏) = 0 (55)

The dominated convergence theorem then implies that498

lim
n!1

Pr
X⇤

n|Z
(TV(Q̄+

n , Q̄n) > ✏) = 0 (56)

so499

TV(Q̄+
n , Q̄n)

P�! 0 (57)
as n ! 1, with the probability over X⇤

n ⇠ p(X⇤
n|Z).500

Lemma B.2. Let yn ⇠ Un be an arbitrary sequence of continuous random variables and let S(yn),501

T (yn) be continuous random variables that depend on yn. Let the density functions of S(yn), T (yn)502

and Un be fS(yn), fT (yn) and fUn , respectively. If503

TV(S(yn), T (yn))
P�! 0 (58)

as n ! 1, where the probability is over yn ⇠ Un, then504

TV

✓Z
fS(yn)(x)fUn(yn) dyn,

Z
fT (yn)(x)fUn(yn) dyn

◆
! 0 (59)

as n ! 1.505

Proof. Let h be an indicator function of x over any measurable set and let ✏ > 0. Then506

����
Z

h(x)

Z
fS(yn)(x)fUn(yn) dyn dx�

Z
h(x)

Z
fT (yn)(x)fUn(yn) dyn dx

���� (60)

=

����
Z

h(x)

Z
fUn(yn)

�
fS(yn)(x)� fT (yn)(x)

�
dyn dx

���� (61)

=

����
Z

fUn(yn)

Z
h(x)

�
fS(yn)(x)� fT (yn)(x)

�
dx dyn

���� (62)


Z

fUn(yn)

����
Z

h(x)
�
fS(yn)(x)� fT (yn)(x)

�
dx

���� dyn (63)

=

Z
fUn(yn)

����
Z

h(x)fS(yn)(x) dx�
Z

h(x)fT (yn)(x) dx

���� dyn (64)

Because TV(S(yn), T (yn))
P�! 0, for large enough n, there is a set Yn with TV(S(yn), T (yn)) <

✏
2507

for all yn 2 Yn, and Pr(yn 2 Y
C
n ) < ✏

2 . As508

TV(S(yn), T (yn)) = sup
h

����
Z

h(x)fS(yn)(x) dx�
Z

h(x)fT (yn)(x) dx

����  1 (65)

now509
Z

fUn(yn)

����
Z

h(x)fS(yn)(x) dx�
Z

h(x)fT (yn)(x) dx

���� dyn (66)

=

Z

Yn

fUn(yn)

����
Z

h(x)fS(yn)(x) dx�
Z

h(x)fT (yn)(x) dx

���� dyn

+

Z

Y C
n

fUn(yn)

����
Z

h(x)fS(yn)(x) dx�
Z

h(x)fT (yn)(x) dx

���� dyn
(67)

<

Z

Yn

fUn(yn)
✏

2
dyn +

Z

Y C
n

fUn(yn) dyn (68)

<
✏

2
+

✏

2
(69)

= ✏ (70)
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for large enough n. Now510

TV

✓Z
fS(yn)(x)fUn(yn) dy,

Z
fT (yn)(x)fUn(yn) dyn

◆
(71)

= sup
h

����
Z

h(x)

Z
fS(yn)(x)fUn(yn) dyn dx�

Z
h(x)

Z
fT (yn)(x)fUn(yn) dyn dx

���� (72)

< ✏ (73)

for any ✏ > 0 with large enough n.511

Theorem 3.4. Under congeniality and Condition 3.2, TV (p(Q|Z), p̄n(Q)) ! 0 as n ! 1.512

Proof. The claim follows from Lemma B.2 with yn = X
⇤
n, Un = p(X⇤

n|Z), S(yn) ⇠ p(Q|X⇤
n) and513

T (yn) ⇠ p(Q|Z,X⇤
n). These meet the condition for Lemma B.2 due to Lemma B.1.514

B.2 Convergence Rate515

Definition 3.5. A sequence of random variables Xn is uniformly integrable if516

lim
M!1

sup
n

E(|Xn|I|Xn|>M ) = 0 (12)

Lemma B.3. If |Xn|  Yn almost surely and Yn is uniformly integrable, Xn is uniformly integrable.517

Proof.

0  lim
M!1

sup
n

E(|Xn|I|Xn|>M )  lim
M!1

sup
n

E(YnIYn>M ) = 0 (74)

518

Lemma B.4 (Billingsley (1995), Section 16). If Xn and Yn are uniformly integrable, Xn + Yn is519

uniformly integrable.520

Condition 3.6. There exist distributions Dn such that for a sequence R1, R2, · · · > 0, Rn ! 0 as521

n ! 1,522
1

Rn
TV

�
Q̄

+
n , Dn

�
and

1

Rn
TV

�
Q̄n, Dn

�
(13)

are uniformly integrable when X
⇤
n ⇠ p(X⇤

n|Z).523

Theorem 3.7. Under congeniality and Condition 3.6, TV (p(Q|Z), p̄n(Q)) = O(Rn).524

Proof. Total variation distance is a metric, so525

1

Rn
TV(Q̄+

n , Q̄n) 
1

Rn
TV

�
Q̄

+
n , Dn

�
+

1

Rn
TV

�
Q̄n, Dn

�
. (75)

Now Condition 3.6 and Lemmas B.3 and B.4 imply that526

1

Rn
TV(Q̄+

n , Q̄n) (76)

is uniformly integrable with X
⇤
n ⇠ p(X⇤

n|Z).527

Recall that528

1

Rn
TV(Q̄+

n , Q̄n) =
1

Rn
sup
h

����
Z

h(Q)p(Q|Z,X⇤
n) dQ�

Z
h(Q)p(Q|X⇤

n) dQ

���� (77)

and529

1

Rn
TV(p(Q|Z), p̄n(Q))

=
1

Rn
sup
h

����
Z

h(Q)

Z
p(Q|Z,X⇤

n)p(X
⇤
n|Z) dX⇤

n dQ�
Z

h(Q)

Z
p(Q|X⇤

n)p(X
⇤
n|Z) dX⇤

n dQ

����
(78)
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where h is an indicator function.530

For any indicator function h, using the start of the proof of Lemma B.2 gives531

1

Rn

����
Z

h(Q)

Z
p(Q|Z,X⇤

n)p(X
⇤
n|Z) dX⇤

n dQ�
Z

h(Q)

Z
p(Q|X⇤

n)p(X
⇤
n|Z) dX⇤

n dQ

���� (79)


Z

p(X⇤
n|Z)

1

Rn

����
Z

h(Q)p(Q|Z,X⇤
n) dQ�

Z
h(Q)p(Q|X⇤

n) dQ

���� dX
⇤
n (80)


Z

p(X⇤
n|Z)

1

Rn
TV(Q̄+

n , Q̄n) dX
⇤
n (81)

Because R
�1
n TV(Q̄+

n , Q̄n) is uniformly integrable when X
⇤
n ⇠ p(X⇤

n|Z), there exists an M such532

that for all n,533

Z

Yn

p(X⇤
n|Z)

1

Rn

����
Z

h(Q)p(Q|Z,X⇤
n) dQ�

Z
h(Q)p(Q|X⇤

n) dQ

���� dX
⇤
n  1 (82)

where Yn = {X⇤
n | 1

Rn
TV(Q̄+

n , Q̄n) > M}.534

Now, for all n535

1

Rn

����
Z

h(Q)

Z
p(Q|Z,X⇤

n)p(X
⇤
n|Z) dX⇤

n dQ�
Z

h(Q)

Z
p(Q|X⇤

n)p(X
⇤
n|Z) dX⇤

n dQ

���� (83)


Z

p(X⇤
n|Z)

1

Rn

����
Z

h(Q)p(Q|Z,X⇤
n) dQ�

Z
h(Q)p(Q|X⇤

n) dQ

���� dX
⇤
n (84)

=

Z

Yn

p(X⇤
n|Z)

1

Rn

����
Z

h(Q)p(Q|Z,X⇤
n) dQ�

Z
h(Q)p(Q|X⇤

n) dQ

���� dX
⇤
n

+

Z

Y C
n

p(X⇤
n|Z)

1

Rn

����
Z

h(Q)p(Q|Z,X⇤
n) dQ�

Z
h(Q)p(Q|X⇤

n) dQ

���� dX
⇤
n

(85)

 1 +

Z

Y C
n

p(X⇤
n|Z)M dX⇤

n (86)

 1 +M (87)

so TV (p(Q|Z), p̄n(Q)) = O(Rn).536

C Additional Examples537

C.1 Gaussian with Known Variance Details538

Checking where the mean and variance of µ⇤ ⇠ p̄n(µ) converge when nX⇤ ! 1 in the Gaussian539

mean estimation example, when both parties use the known variance model:540

E(µ⇤) = E(E(µ⇤|X⇤)) = E (µ̂nX⇤ ) (88)

= E
 1

�̂2
0
µ̂0 +

nX⇤
�̂2
k
X̄⇤

1
�̂2
0
+ nX⇤

�̂2
k

!
(89)

=

1
�̂2
0
µ̂0 +

nX⇤
�̂2
k
E(X̄⇤)

1
�̂2
0
+ nX⇤

�̂2
k

(90)

! E(X⇤) = µ̄nX (91)

as nX⇤ ! 1.541

Var(µ⇤) = E(Var(µ⇤|X⇤)) + Var(E(µ⇤|X⇤)) (92)

= E(�̂2
nX⇤ ) + Var(µ̂nX⇤ ) (93)
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542

E(�̂2
nX⇤ ) = E

 
1

nX⇤
�̂2
k

+ 1
�̂2
0

!
! 0, nX⇤ ! 1 (94)

Var (µ̂nX⇤ ) = Var

0

@
nX⇤
�̂2
k
X̄⇤ + µ̂0

�̂2
0

nX⇤
�̂2
k

+ 1
�̂2
0

1

A =

 nX⇤
�̂2
k

nX⇤
�̂2
k

+ 1
�̂2
0

!2

Var(X̄⇤) (95)

Var(X̄⇤) = E(Var(X̄⇤|µ̄)) + Var(E(X̄⇤|µ̄)) = 1

nX⇤
E(Var(x⇤

i )) + Var(µ̄) ! Var(µ̄) = �̄
2
nX

(96)
as nX⇤ ! 1.543

Putting these together,544

E(µ⇤) ! µ̄nX (97)

Var(µ⇤) ! �̄
2
nX

(98)
as nX⇤ ! 1.545

The plots of p(µ⇤) in Figures 2, 3, S1, S2 and S3 are density functions of a mixture of Gaussians,546

where each mixture component is the Gaussian posterior distribution from one synthetic dataset.547

C.2 Gaussian with Unknown Variance Upstream, Known Variance Downstream548

When the synthetic data is generated from the unknown variance model, p(X⇤|X) is549

�̄
2|X ⇠ Inv-�2(⌫̄nX , �̄

2
nX

) (99)

µ̄|�̄2
, X ⇠ N

✓
µ̄nX ,

�̄
2

̄nX

◆
(100)

x
⇤
i |µ̄, �̄2 ⇠ N (µ̄, �̄2). (101)

(102)

When downstream analysis is the model with known variance �̂
2
k, p(µ⇤|X⇤) is550

µ
⇤|X⇤ ⇠ N (µ̂nX⇤ , �̂

2
nX⇤ ) (103)

µ̂nX⇤ =

1
�̂0

2 µ̂0 +
nX⇤
�̂2
k
X̄

⇤

1
�̂2
0
+ nX⇤

�̂2
k

(104)

1

�̂2
nX⇤

=
1

�̂2
0

+
nX⇤

�̂2
k

. (105)

Checking where the mean and variance of p̄n(µ) converge when nX⇤ ! 1:551

E(µ⇤) = E(E(µ⇤|X⇤)) = E (µ̂nX⇤ ) (106)

= E
 1

�̂2
0
µ̂0 +

nX⇤
�̂2
k
X̄⇤

1
�̂2
0
+ nX⇤

�̂2
k

!
(107)

=

1
�̂2
0
µ̂0 +

nX⇤
�̂2
k
E(X̄⇤)

1
�̂2
0
+ nX⇤

�̂2
k

(108)

! E(X⇤) = µ̄nX (109)
as nX⇤ ! 1.552

Var(µ⇤) = E(Var(µ⇤|X⇤)) + Var(E(µ⇤|X⇤)) (110)

= E(�̂2
nX⇤ ) + Var(µ̂nX⇤ ) (111)
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Figure S1: Convergence of the mixture of synthetic data posteriors (in orange) with different values
of m and nX⇤ in Gaussian mean estimation with known variance.

553

E(�̂2
nX⇤ ) = E

 
1

nX⇤
�̂2
k

+ 1
�̂2
0

!
! 0, nX⇤ ! 1 (112)

Var (µ̂nX⇤ ) = Var

0

@
nX⇤
�̂2
k
X̄⇤ + µ̂0

�̂2
0

nX⇤
�̂2
k

+ 1
�̂2
0

1

A =

 nX⇤
�̂2
k

nX⇤
�̂2
k

+ 1
�̂2
0

!2

Var(X̄⇤) (113)

Var(X̄⇤) = E(Var(X̄⇤|µ̄, �̄2)) + Var(E(X̄⇤|µ̄, �̄2)) =
1

nX⇤
E(�̄2) + Var(µ̄) ! Var(µ̄) =

�̄
2
0

̄nX

(114)

as nX⇤ ! 1.554
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Figure S2: Results when the synthetic data is generated from the unknown variance Gaussian mean
estimation model, and the analyst uses the model with known variance. On the left, the analyst’s
known variance is correct, on the right it is incorrect. In both cases, the mixture of synthetic data
posteriors converges to the data provider’s posterior. In both panels, m = 400 and nX⇤

nX
= 20.

Putting these together,555

E(µ⇤) ! µ̄nX (115)

Var(µ⇤) ! �̄
2
0

̄nX

(116)

as nX⇤ ! 1, so µ
⇤ asymptotically has the same mean and variance as the marginal posterior of µ in556

the synthetic data model, which is not the same as the downstream posterior distribution p(µ|X, IA)557

on the real data.558

We verify this with the simulation in Figure S2, where the synthetic data is generated from the model559

with unknown variance, while the analyst uses the known variance model. The setting is otherwise560

identical to the case where both used the known variance model in Figure 2. The mixture of synthetic561

data posteriors converges to the data provider’s posterior, even when the analyst uses an incorrect562

value for the known variance �̂
2
k.563

C.3 Size of the Synthetic Dataset564

In the preceding analysis, most of the approximations hold when nX⇤ is large, even when nX⇤ ⇡ nX .565

However, based on the experiment with different values of nX⇤ and m in Figure S1, nX⇤ � nX is566

needed for all of the approximations to hold.567

This is explained by looking at Var(X̄⇤). In the case where both parties use the known variance568

model,569

Var(X̄⇤) =
1

nX⇤
E(Var(x⇤

i )) + Var(µ̄) (117)

=
1

nX⇤
(�̄2

k + �̄
2
nX

) + �̄
2
nX

(118)

=
1

nX⇤
�̄
2
k +

✓
1 +

1

nX⇤

◆
1

1
�̄2
0
+ nX

�̄2
k

(119)

If nX ⇡ nX⇤ and both are large, 1 + 1
nX⇤ ⇡ 1 and 1

�̄2
0
+ nX

�̄2
k
⇡ nX

�̄2
k

, so570

Var(X̄⇤) ⇡ �̄
2
k

nX⇤
+

�̄
2
k

nX
⇡ 2�̄2

k

nX
(120)

With these approximations,571

Var(µ̄) ⇡ �̄
2
k

nX
(121)
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so572

Var(X̄⇤) ⇡ 2Var(µ̄) (122)

while the nX⇤ ! 1 limit is Var(X̄⇤) ! Var(µ̄). This means that nX⇤ � nX is required.573

The same happens when the synthetic data is generated from the unknown variance model:574

Var(X̄⇤) =
1

nX⇤
E(�̄2) + Var(µ̄) (123)

=
1

nX⇤

⌫̄0 + nX

⌫̄0 + nX � 2
�̄
2
nX

+
�̄
2
nX

̄0 + nX
(124)

If nX ⇡ nX⇤ and both are large, ⌫̄0+nX
⌫̄0+nX�2 ⇡ 1 and ̄0 + nX ⇡ nX , so575

Var(X̄⇤) ⇡
�̄
2
nX

nX⇤
+

�̄
2
nX

nX
⇡

2�̄2
nX

nX
(125)

With these approximations,576

Var(µ̄) ⇡
�̄
2
nX

nX
(126)

so577

Var(X̄⇤) ⇡ 2Var(µ̄). (127)

C.4 Further Approximation578

When nX⇤ is large,579

Var(µ⇤) ⇡ E(�̂2
X⇤) + Var(X̄⇤) (128)

If nX⇤ = cnX for some c > 0, from the analyses in Section C.3, we get580

Var(X̄) ⇡
✓
1 +

1

c

◆
Var(µ̄) (129)

so581

Var(µ⇤) ⇡ E(�̂2
nX⇤ ) +

✓
1 +

1

c

◆
Var(µ̄) (130)

Solving for Var(µ) gives582

Var(µ̄) ⇡
✓
1 +

1

c

◆�1 �
Var(µ⇤)� E(�̂2

nX⇤ )
�

(131)

which gives a Rubin’s rules-like approximation of Var(µ) that can be computed from smaller synthetic583

datasets with nX⇤ ⇡ nX .584

We validate this with the experiment in Figure S3, which shows that approximating p(µ|X, IA) with585

a Gaussian with variance from (131) is closer to the real data posterior than the mixed posterior586

approximation from Section 3.587

C.5 Logistic Regression588

Setting Details In the toy data setting of Räisä et al. (2023), the real dataset consists of nX = 2000589

i.i.d. samples of three binary variables. The first two variables are sampled with independent coinflips,590

and the third is sampled from logistic regression on the other two, with coefficients (1, 0).591

We generate synthetic data with the NAPSU-MQ algorithm (Räisä et al. 2023), instructing the592

algorithm to generate m synthetic datasets of size nX⇤ . DP-GLM doesn’t use synthetic data, so we593

run it directly on the real data. For the privacy bounds, we vary ✏, and set � = n
�2
X = 2.5 · 10�7,594

which is how DP mechanisms are typically evaluated.595
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Figure S3: Results with the Gaussian approximation with nX⇤ = nX , showing that the Gaussian
approximation is closer to the real data posterior than the mixture of synthetic data posteriors. On the
left, the synthetic data is generated from the known variance model, and on the right, the synthetic
data is generated from the unknown variance model. In both cases, the known variances for both
parties are correct, and m = 400.

Hyperparameters For NAPSU-MQ, we use the hyperparameters of Räisä et al. (2023), except596

we used NUTS (Hoffman and Gelman 2014) with 200 warmup samples and 500 kept samples for597

✏ 2 {0.5, 1}, and 1500 kept samples for ✏ = 0.1, as the posterior sampling algorithm. The prior is598

N (0, 102I), and the marginal queries are the full set of 3-way marginals of all three variables.599

The hyperparameters of DP-GLM are the L2-norm upper bound R for the covariates of the logistic600

regression, a coefficient norm upper bound s, and the parameters of the posterior sampling algorithm601

DP-GLM uses. We set R =
p
2 so that the covariates do not get clipped, and set s = 5 after some602

preliminary runs. The posterior sampling algorithm is NUTS (Hoffman and Gelman 2014) with 1000603

warmup iterations and 1000 kept samples from 4 parallel chains.604

Plotting Details The plotted density of DP-GLM in Figure 4 is a kernel density estimate from the605

posterior samples DP-GLM returns. The non-DP density is a Laplace approximation. Both synthetic606

data methods use Laplace approximations in the downstream analysis, so their posteriors are mixtures607

of these Laplace approximations for each synthetic dataset. This was also used in Figure S5.608

Sampling the exact posterior In order to sample the exact posterior p(Q|s̃), we use another609

decomposition:610

p(Q|s̃) =
Z

p(Q|s̃, X)p(X|s̃) dX =

Z
p(Q|X)p(X|s̃) dX, (132)

where p(Q|s̃, X) = p(Q|X) due to the independencies of the graphical model in Figure 1. It remains611

to sample p(X|s̃). This is not tractable in general, but is possible in the toy data setting due to using612

the full set of 3-way marginals that covers all possible values of a datapoint, and the simplicity of the613

toy data.614

We can decompose615

p(X|s̃) =
Z

p(s|s̃)p(X|s) d✓ dX =

Z
p(X|s)

Z
p(s, ✓|s̃) d✓ dX, (133)

so we can sample (s, ✓) ⇠ p(s, ✓|s) and then sample X ⇠ p(X|s) to obtain a sample from p(X|s̃).616

Due to the simplicity of the toy data setting, sampling both p(s, ✓|s) and p(X|s) is possible.617

NAPSU-MQ uses the following Bayesian inference problem:618

✓ ⇠ Prior (134)
X ⇠ MEDn

✓ (135)
s = a(X) (136)

s̃ ⇠ N (s,�2
DP ), (137)
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Figure S4: (a) Coverages of credible intervals in the toy data experiment. The mixture of synthetic
data posteriors is accurate, except with ✏ = 0.1, where it may not have converged yet. (b) Widths of
credible intervals in the toy data experiment. DP-GLM produces much wider intervals than other
methods, except with ✏ = 0.1.

where a are the marginal queries, �2
DP is the noise variance of the Gaussian mechanism, and MEDn

✓619

is the maximum entropy distribution (Räisä et al. 2023) with point probability620

p(x) = exp(✓Ta(x)� ✓0(✓)), (138)

where ✓0 is the log-normalising constant.621

In the toy data setting, a is the full set of 3-way marginals for all of the 3 variables. In other words,622

a(x) is the one-hot coding of x, so s = a(X) is a vector of counts of how many times each of the 8623

possible values is repeated in X . This means that sampling p(X|s) is simple:624

1. For each possible value of a datapoint, find the corresponding count from s, and repeat that625

datapoint according the that count.626

2. Shuffle the datapoints to a random order.627

As the downstream analysis p(Q|X) doesn’t depend on the order of the datapoints, the second step is628

not actually needed.629

To sample p(s, ✓|s̃), we use a Metropolis-within-Gibbs sampler (Gilks et al. 1995) that sequentially630

updates s and ✓ while keeping the other fixed. The proposal for ✓ is obtained from Hamiltonian Monte631

Carlo (HMC) (Duane et al. 1987; Neal 2011). The proposal for s is obtained by repeatedly choosing632

a random index in s to increment and another to decrement. It is possible to obtain negative values in633
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Figure S5: Convergence of the mixture of synthetic data posteriors (in blue) with different values of
m and nX⇤ in the toy data logistic regression experiment.

s from this proposal, but those will always be rejected by the acceptance test, as the likelihood for634

them is 0.635

To initialise the sampler, we pick an initial value for ✓ from a Gaussian distribution, and pick the636

initial s by rounding s̃ to integer values, changing the rounded values such that they sum to n while637

ensuring that all values are non-negative.638

The step size for the HMC we used is 0.05, and the number of steps is 20. In the s proposal, we639

repeat the combination of an increment and a decrement 30 times. We take 20000 samples in total640

from 4 parallel chains, and drop the first 20% as warmup samples.641

The method described in this section is similar to the noise-aware Bayesian inference method of642

Ju et al. (2022). The difference between the two is that Ju et al. (2022) use X instead of s as the643

auxiliary variable, and they sample the X proposals from the model, changing one datapoint at a644

time. This makes their algorithm more generalisable.645
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D Gaussian Known Variance Convergence Rate646

Theorem D.1. When the up- and downstream models are Gaussian mean estimations with known647

variance, when Dn = N (X̄, n
�1

�
2
k),648

p
nTV

�
Q̄n, Dn

�
(139)

and649 p
nTV

�
Q̄

+
n , Dn

�
(140)

are uniformly integrable when X
⇤
n ⇠ p(X⇤

n|X).650

Proof. When the downstream model is Gaussian mean estimation with known variance,651

Q̄n = N (µn,�
2
n) (141)

652

µn =

1
�2
0
µ0 +

n
�2
k
X̄

1
�2
0
+ n

�2
k

(142)

653
1

�2
n

=
1

�2
0

+
n

�2
k

(143)

We start with the proof for
p
nTV

�
Q̄n, Dn

�
. By Pinsker’s equality and the formula for KL-654

divergence between Gaussians,655

p
nTV

�
Q̄n, Dn

�

r

1

2
nKL(Q̄n ||Dn) (144)

=

s
1

4
n

✓
�2
k

n�2
n

+
(µn � X̄)2

�2
n

� 1 + ln
n�2

n

�2
k

◆
(145)



s����
1

4
n

✓
�2
k

n�2
n

� 1

◆����+
1

4
n
(µn � X̄)2

�2
n

+

����
1

4
n ln

n�2
n

�2
k

���� (146)



s����
1

4
n

✓
�2
k

n�2
n

� 1

◆����+

s
1

4
n
(µn � X̄)2

�2
n

+

s����
1

4
n ln

n�2
n

�2
k

���� (147)

The last inequality can be deduced from the fact that the L2-norm is upper bounded by the L1 norm.656

Denote657

C1(n) = n

✓
�
2
k

n�2
n

� 1

◆
=

✓
1

�2
0

+
n

�2
k

◆
�
2
k � n =

�
2
k

�2
0

+ n� n =
�
2
k

�2
0

(148)

and658

C2(n) = n ln
n�

2
n

�2
k

(149)

= �n ln
�
2
k

n�2
n

(150)

= �n ln

✓✓
1

�2
0

+
n

�2
k

◆
�
2
k

n

◆
(151)

= �n ln

✓
�
2
k

n�2
0

+ 1

◆
(152)

= �u�
2
k

�2
0

ln

✓
1

u
+ 1

◆
(153)

= ��
2
k

�2
0

ln

✓
1

u
+ 1

◆u

(154)
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with n = u�2
k

�2
0

. Because659

lim
u!1

✓
1 +

1

u

◆u

= e (155)

we have660

lim
u!1

��
2
k

�2
0

ln

✓
1

u
+ 1

◆u

= ��
2
k

�2
0

(156)

which implies that C2(n) is bounded.661

Futhermore,662

s
1

4
n
(µn � X̄)2

�2
n

=
1

2

s

n

✓
1

�2
0

+
n

�2
k

◆
|µn � X̄| (157)

Denote663

sn =
1

2

s

n

✓
1

�2
0

+
n

�2
k

◆
(158)

Note that sn = O(n).664

Then665
s

1

4
n
n(µn � X̄)2

n�2
n

= sn|µn � X̄| (159)

sn|µn � X̄| = sn

�����

1
�2
0
µ0

1
�2
0
+ n

�2
k

+

n
�2
k

1
�2
0
+ n

�2
k

X̄ � X̄

����� (160)

 sn

1
�2
0
µ0

1
�2
0
+ n

�2
k

+ sn

�����

n
�2
k

1
�2
0
+ n

�2
k
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0
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1
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1
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Denote666

C3(n) = sn

1
�2
0
µ0

1
�2
0
+ n

�2
k

(164)

and667

C4(n) = sn

1
�2
0

1
�2
0
+ n

�2
k

. (165)

Because sn = O(n), we have C3(n) = O(1) and C4(n) = O(1), so C3(n) and C4(n) are bounded.668

We now have669

p
nTV

�
Q̄n, Dn

�

r

1

4
|C1(n)|+

r
1

4
|C2(n)|+ C3(n) + C4(n)X̄. (166)

By Lemmas B.3 and B.4, it suffices to show that each of the terms on the right is uniformly integrable.670

The terms containing C1, C2 and C3 are non-random and bounded in n, so they are uniformly671

integrable. It remains to show that C4(n)X̄ is uniformly integrable. C4(n) is bounded, so we only672

need to show that X̄ is uniformly integrable.673
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To bound the expectation in the definition of uniform integrability for |X̄|, we need some background674

facts. For geometric series, with a 2 R and |r| < 1,675

1X

i=0

ar
i =

a

1� r
, (167)

and differentiating both sides with regards to r gives676

1X

i=0

a(i+ 1)ri =
a

(1� r)2
. (168)

For a Gaussian random variable Y with mean µ and variance �, Pr(Y > µ + t)  e
� t2

2�2 . X̄ ⇠677

N
�
µ,

1
n�

2
k

�
, so this tail bound gives678

Pr(X̄ > t+ µ)  2e
� nt2

2�2
k . (169)

By the symmetry of the Gaussian distribution,679

Pr(X̄ < µ� t)  2e
� nt2

2�2
k . (170)

Now680
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E
�
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�
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E
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When |M + i� µ| � 1, (M + i� µ)2 � M + i� µ. It is possible that |M + i� µ| < 1 for exactly681

two values of i that depend on µ. Let iµ1 and iµ2 be those values. We know that iµj < 1 + µ�M682

for j 2 {1, 2}. Now683
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Now we can upper bound the series using (M + i�µ)2 � M + i�µ and the formulas for geometric684

series.685
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For the expectation, we have686
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is finite, as it is an evaluation of the moment generating function of µ, which means that687
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For the two other terms on the RHS of (179)688
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as M ! 1 by the dominated convergence theorem, as689

(µ+ 2)e
� (M+iµj�µ)2

2�2
k  (µ+ 2)e

� 0
2�2

k , (192)

and the right-hand-side has a finite expectation.690
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We have now shown that one part of the limit in (178) is 0. For the other part, setting µ
0 = �µ, and691

using the reasoning above with µ replaced by µ
0, we have692
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2�2
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= 0. (195)
so the limit in (178) is 0.693

We have now shown that694

lim
M!1

sup
n

E
�
|X̄|I|X̄|>M

�
= 0, (196)

or, in other words, that |X̄| is uniformly integrable. As shown earlier, this concludes the proof that695
p
nTV

�
Q̄n, Dn

�
(197)

is uniformly integrable when X
⇤
n ⇠ p(X⇤

n|X).696

To show that
p
nTV

�
Q̄

+
n , Dn

�
is uniformly integrable, as in the proof of Lemma 3.3697

p(Q|X,X
⇤) / p(X⇤|Q)p(X|Q)p(Q), (198)

so we can view both p(Q|X,X
⇤
n) and p(Q|X⇤

n) as the posteriors for the same Bayesian inference698

problem with observed data X⇤, and priors p(Q|X) / p(X|Q)p(Q) and p(Q), respectively. p(Q|X)699

is Gaussian, so the uniform integrability of700
p
nTV

�
Q̄

+
n , Dn

�
(199)

follows from the previous case with different values for µ0 and �
2
0 .701

E Finite Number of Synthetic Datasets702

In practice, we only have a finite number of synthetic datasets, so we must further approximate703

p(Q|Z) ⇡
Z

p(Q|X⇤)p(X⇤|Z) dX⇤ ⇡ 1

m

mX

i=1

p(Q|X⇤ = X
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i ), (200)

with X
⇤
i ⇠ p(X⇤|Z).704

From the strong law of large numbers, for any n and Q,705
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almost surely as m ! 1 when X
⇤
i,n ⇠ p(X⇤

n|Z).706

Total variation distance is a metric, so707
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Theorem 3.4 gives708

lim
n!1
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(201) implies (van der Vaart 1998, Corollary 2.30)709
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for almost all X⇤
i,n, so710
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almost surely when X
⇤
j,n ⇠ p(X⇤

n|Z).711

Based on the experiment in Figure S1, it looks like712

lim
m!1
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n!1

TV

0

@ 1

m

mX

j=1

p(Q|X⇤
j,n), p(Q|Z)

1

A 6= 0 (206)

because the distributions p(Q|X⇤
i,n) become narrower as n increases, so a fixed number of them is713

not enough to cover p(Q|Z).714

F Relation to Missing Data Imputation715

In the missing data setting, only a part Xobs of the complete dataset X is observed, while a part Xmis716

is missing (Rubin 1987). To facilitate downstream analysis, the missing data is imputed by sampling717

Xmis ⇠ p(Xmis|Xobs, II). Analogously with synthetic data, II represents the imputer’s background718

knowledge.719

Like with synthetic data, we have the decomposition (Gelman et al. 2014)720

p(Q|Xobs, IA) =

Z
p(Q|Xobs, Xmis, IA)p(Xmis|Xobs, IA) dXmis. (207)

If the analyst’s and imputer’s models are congenial in the sense that721

p(Q|Xobs, IA) = p(Q|Xobs, II) (208)

and722

p(Q|X, IA) = p(Q|X, II) (209)
for any complete dataset X , then723

p(Q|Xobs, IA) = p(Q|Xobs, II) =

Z
p(Q|Xobs, Xmis, II)p(Xmis|Xobs, II) dXmis

=

Z
p(Q|Xobs, Xmis, IA)p(Xmis|Xobs, II) dXmis,

(210)

so sampling p(Q|Xobs, IA) can be done by sampling Xmis ⇠ p(Xmis|Xobs, II) multiple times,724

sampling p(Q|Xobs, Xmis, IA) for each Xmis, and combining the samples. Unlike with synthetic725

data, where sampling p(Q|X,X
⇤
, IA) would require the original data and defeat the purpose of using726

synthetic data, in the missing data setting, sampling p(Q|Xobs, Xmis, IA) is simply the analysis for a727

complete dataset, so generating large imputed datasets is not required.728
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