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A Additional Background

A.1 Total Variation Distance Properties

Recall the definition of total variation distance:

Definition 2.1. The total variation distance between random variables (or distributions) P; and Py
is
TV(Py, P,) = sup | Pr(Py € A) — Pr(P; € A)f, 2
A

where A is any measurable set.
Lemma A.1 (Kelbert (2023)). Properties of total variation distance:

1. For probability densities p1 and po,
TViprp2) = 5 [ In1(o) = palo) (1)

2. Total variation distance is a metric.

3. Pinsker’s inequality: for distributions Py and P,
1
V(P P) < §KL(P1 || P2) (19)

4. Invariance to bijections: if f is a bijection and Py and P, are random variables,
TV(f(P1), f(P2)) = TV(P1, ) (20)
We also occasionally write TV (py, p2) for probability densities p; and po as

[ @@ de [ hwpa(a) o

where h is an indicator function of some measurable set A.

2n

TV (p1,p2) = sup

A.2 Bernstein—-von Mises Theorem Regularity Conditions

The version of the Bernstein—von Mises theorem we use is from van der Vaart (1998). To state the
regularity conditions, we need two definitions:

Definition A.2. A parametric probability density pq is differentiable in quadratic mean at Qo if
there exists a measurable vector-valued function £g, such that, as Q@ — Qo,

/ Wm — \ran(@) — 5(Q — Q)i (@) pQ0<x>)2dm=o<|Q—Qo||%>. 22)

Definition A.3. A randomised test is a function ¢: X — [0, 1].

The interepretation of ¢(X) is the probability of rejecting some null hypothesis after observing data
X.

Now we can state the regularity conditions of Theorem [2.2}
Condition A.4 (van der Vaart (1998)). For true parameter value Qo and observed data X,,:

1. The datapoints of X,, are i.i.d.

2. The likelihood p(x|Q) for a single datapoint x is differentiable in quadratic mean at Q.
3. The Fisher information matrix of p(x|Q) is nonsingular at Q.
4

. For every 3 > 0, there exists a sequence of randomised tests ¢,, such that

p(Xn‘QO)QSn(Xn) — Oa sup p(Xn|Q)(1 - ¢n(Xn)) — 0. (23)
[1Q—Qoll2>p

5. The prior p(Q) is absolutely continuous (as a measure) in a neighbourhood of Qg with a
continuous positive density at Q.

12
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A.3 Differential Privacy and Noise-Aware Synthetic Data

Differential privacy (DP) (Dwork et al. 2006b) quantifies the privacy loss from releasing the results
of analysing data. The quantification is done by looking at the output distributions of the analysis
algorithm for two datasets that differ in a single data subject (Dwork and Roth |2014):

Definition A.5. An algorithm M is (¢, 6)-DP if
Pr(M(X) e S) < e Pr(M(X')eS)+§ (24)
for all measurable sets S and all datasets X, X' that differ in one data subject.

The choice of € and ¢ is a matter of policy (Dwork [2008). One should set § < % for n datapoints, as
0~ % permits mechanisms that clearly violate privacy (Dwork and Roth 2014).

A common primitive for making an algorithm DP is the Gaussian mechanism (Dwork et al. 2006a),
which simply adds Gaussian noise to the output of a function:

Definition A.6. The Gaussian mechanism with noise variance 0%  and function f outputs f(X) +
N(0,0% 1) for input X.

For a given (¢, §)-bound and function f, the required value for 0%, can be computed tightly using
the analytical Gaussian mechanism (Balle and Wang 2018)).

Noise-Aware Private Synthetic Data To solve the uncertainty estimation problem for frequentist
analyses from DP synthetic data, Réisd et al. (2023) developed a noise-aware algorithm for generating
synthetic data called NAPSU-MQ. NAPSU-MQ takes discrete data, summarises it with marginal
queries, releases the query values under DP with the Gaussian mechanism, and finally generates
multiple synthetic datasets. The downstream analysis is done on each synthetic dataset, and the
results are combined using Rubin’s rules for synthetic data (Raghunathan et al.|2003; Rubin [1993),
which use the multiple analysis results to account for the extra uncertainty coming from the synthetic
data generation.

The synthetic data is generated by sampling the posterior predictive distribution

p(X*[3) = / p(X*(6)p(6]3) do. 25)

The conditioning on s and including the Gaussian mechanism in the model is what makes NAPSU-
MQ noise-aware, and allows Rubin’s rules to accurately account for the synthetic data generation and
DP noise in the downstream analysis.

A.4 Bayesian Inference with Gaussian Models

In this section, we collect well-known results on Bayesian inference of a Gaussian mean. See Gelman
et al. (2014) for proofs.

Scaled inverse-chi-square distribution This parameterisation of the inverse gamma distribution is
convenient in this setting.

II]V—XQ(Z/, 52) = Inv-Gamma (a = g,ﬁ = 252) . (26)
If 6 ~ Inv-x2(v, s?), 0 > 0,
p(0) = ;Z()f) s¥ 9~ (5HD e 4 27)
2
E(0) = ViQSQ, v>2 (28)
Var(f) = = 22)12/(1 vy st u>4 (29)
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Gaussian Model with Known Variance When the variance of the data is known to be a,i, and only
the mean is unknown, the conjugate prior is another Gaussian, and we get the following inference

problem:

Ho~ N(M(Jv 0(2))
il ~ N (u, 07).-

The posterior with n datapoints with sample mean X is:

(1 X ~ N(pin,07)
" C%g+—2

1 1 n

= + —.
2 2 2
On ) O

(30)
€1y

(32)

(33)

(34)

Gaussian Model with Unknown Variance When the variance of the data is also unknown, the
conjugate prior is a inverse-chi-squared for the variance, and Gaussian for the mean, which gives the

following inference problem:
0% ~ Inv-x* (1o, o)
2
o
plo® ~ N (um )
Ko
mi‘/h 02 ~ N(,u7 02)'

The joint posterior of z and o2 for n datapoints is:

%X ~ Tnv-x?(vn, 02)

with
o1&
X =- T;
nia
82 = ! i(l‘l — X)2
n—1 p
fin = Ko n X

/io+nﬂ0+/£o—|—n

Kn =Ko +n

Vp =19 +n

Ron
Ko +n

2
ﬂ‘X ~ty, </Ln7 Un) .
Fon

[ V)

Vno? = vgos + (n —1)s* +

The marginal posterior of p is

B Missing Proofs

B.1 Consistency Proof

For ease of reference, we repeat Theorem [2.2]and Condition

14

(X *uo)2~

(35)
(36)

(37)

(38)
(39)
(40)

(41)

(42)

(43)

(44)
(45)

(46)

(47)
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Theorem 2.2 (Bernstein—von Mises (van der Vaart|1998)). Let n denote the size of the dataset X,,.
Under regularity conditions stated in Condition in Supplemental Section for true parameter
value Qo, the posterior Q(X,,) ~ p(Q|X,,) satisfies
= P

TV (Vr(Q(Xy) = Qo) N (1(X5), %)) — 0 ©)
asn — oo for some u(X,) and ¥, that do not depend on the prior, where the convergence in
probability is over sampling X,, ~ p(X,,|Qo).
Recall that Q;F ~ p(Q|Z, X), and Q,, ~ p(Q|X}).
Condition 3.2. For all () there exist distributions D,, such that

TV (Qf,D,) £ 0 and TV (Qn,D,) 250 (10)

as n — oo, where the convergence in probability is over sampling X ~ p(X*|Z, Q).
Lemma 3.3. f the assumptions of Theorem[2.2](Condition and the following assumptions:

(1) Z and X* are conditionally independent given Q); and

(2) p(Z|Q) > 0 forall Q,
hold for the downstream analysis for all QQo, then Conditionholds.

Proof. Under Assumption (1)
p(QlZ, X3) x p(X;1Q)p(Z|Q)p(Q) (48)

so we can view both p(Q|Z, X)) and p(Q|X}) as the posteriors for the same Bayesian inference
problem with observed data X, and priors p(Q|Z) x p(Z|Q)p(Q) and p(Q), respectively. Due
to Condition (5) and Assumption (2), p(Q|Z) has an everywhere positive density. Recall that
QF ~p(Q|Z, X)) and Q,, ~ p(Q|X}). Now, Theoremgives
~ P
TV (Vr(Qy; = Qo) N (i, %)) = 0 (49)
and ,
as n — oo, where p,,, 2 are equal in the two cases because they do not depend on the prior. The
probability is over X* ~ p(X|Qo). Because of Assumption (1), p(X}|Qo) = p(X:|Z, Qo), so the
convergence also holds with probability over X, ~ p(X|Z, Qo). These hold for any Q. Because
the function f,(q) = v/n(q — Qo) is a bijection and total variation distance is invariant to bijections,
Condition [3.2 holds with D,, being the pushforward distribution D,, = f,; Lo/ (ttn, X), with the @

of Condition[3.2 being ()y. Note that D, is allowed to depend on () in Condition[3.2]due to the order
of quantifiers. O

Lemma B.1. Under Condition|3.2)
TV(Q), Q) = 0 (51)
as n — oo, with the probability over X ~ p(X|Z).

Proof. Total variation distance is a metric, so
TV (Q},Qn) < TV (Q;f,Dy) + TV (Qn, Dy,) (52)
so by Condition [3.2]
TV (Qf,Qn) 550 (53)
as n — oo, with the probability over X ~ p(X}|Z, Q).

It remains to show with the probability over X ~ p(X*|Z) instead of X} ~ p(X}|Z,Q).
With X ~ p(X}|Z), for any € > 0,

P (IV@.Q0 > = [ Pr (TV(Q}.Qu) > p(QI2) 4@ 64

X;1z,Q

Al
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holds for any Q, so -
lim Pr (TV(Q/},Q,) >¢€) =0 (55)

The dominated convergence theorem then implies that

lim  Pr (TV(Q,Qn) >¢) =0 (56)

n—00 X*|Z
so
TV(Q),Qn) 250 (57)
as m — oo, with the probability over X ~ p(X|Z). O

Lemma B.2. Let y,, ~ U, be an arbitrary sequence of continuous random variables and let S(yy,),
T (yn) be continuous random variables that depend on y,,. Let the density functions of S(yy»), T(yn)
and Uy, be fs(y,), fr(y,) and fu,, respectively. If

TV(S(yn)s T(yn)) = 0 (58)
as n — oo, where the probability is over y,, ~ U, then

asn — oQ.

Proof. Let h be an indicator function of = over any measurable set and let € > 0. Then

[0 [ s @) am e = [ 16@) [ fr @) dmds] @0
- ‘ [ 1@ [ o, ) Fstan (2) = ) @) dyn (61)
=| [ 7 0) [ ) st ) = i) ©)
< [ fo,t) | [ 1) st @) = Fr) @) | s, (©3)
= [ o, o) | [ W@ sty (@) o~ [ 1)y, (2) da] d (64)

Because TV (S(yn), T (yn)) L, 0, for large enough n, there is a set Y, with TV(S(yn), T(yn)) < §
for all y,, € Y,,, and Pr(y, € Y,¥) < £. As

TV(S(yn). 7(1)) = sup / B(a) fg () d — / W) fron @ de <1 (63
now

/ for () / W) fs(y,y (@) dz — / W) fr(y,y (@) da| dy, (66)

- / for () / h(z) fs iy (2) dz — / h(@) fr(y, (@) dz| dy,

Yn

(67)

[ o) | [ W) s @)= [ 1) i @) de| du
<L fU,l(yn)gdyn+Lc fUn(yn)dyn (68)
<s+s (69)
. (70)
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for large enough n. Now

TV ( [ Fstp @) o), [ Frin @), () )
—sup | [ 10) [ Ssip @) s = [160) [ o)) dnds| - 02)
<e (73)
for any € > 0 with large enough n. O

Theorem 3.4. Under congeniality and Condition TV (p(Q|2),pn(Q)) — 0 asn — oco.

Proof. The claim follows from Lemma[B.2|with y,, = X, U,, = p(X}|2), S(yn) ~ p(Q|X};) and
T(yn) ~ p(Q|Z, X¥). These meet the condition for Lemma|: due to LemmalB. 1 O

B.2 Convergence Rate

Definition 3.5. A sequence of random variables X,, is uniformly integrable if

lim sup E(|X,[Ix,>a) =0 (12)
M—oco p
Lemma B.3. If | X,| <Y, almost surely and Y,, is uniformly integrable, X,, is uniformly integrable.

Proof.
0 < lim supE(|X,|Ix,|>m) < lim sup E(Y, Iy, ) =0 (74)
M—oo p M—oo p

O
Lemma B.4 (Billingsley (1995), Section 16). If X,, and Y,, are uniformly integrable, X, + Y, is
uniformly integrable.

Condition 3.6. There exist distributions D,, such that for a sequence Ry, Ry,--- >0, R,, — 0 as
n — 0o,

1 _ 1 ~
R—nTV( t.D,) and R—nTv(QmDn) (13)

are uniformly integrable when X ~ p(X|Z).
Theorem 3.7. Under congeniality and Condition[3.6] TV (p(Q|Z),pn(Q)) = O(Ry).

Proof. Total variation distance is a metric, so

1 - 1 _ 1 _
— T + < —T D — T D,) .
7 TV(@n Qn) < 5= TV(Qr Dn) + = TV (@, D) (75)
Now Condition [3.6/and Lemmas [B.3 and [B.4/imply that
1 _ _
7 TV(@Q:, Qn) (76)
is uniformly integrable with X} ~ p(X}*|Z).
Recall that
1
= TV(Q. Q) = sup‘/ §QI2.X;)4Q - [ HQW@QIX;) d@‘ 77)
and
TV (p(Q12), 5 (Q))
R
sup‘ [ 1@ [s@iz xpxiimaxzae - [ @) [ralxnxizax; dcz‘
(78)
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where & is an indicator function.
For any indicator function h, using the start of the proof of Lemma[B.2 gives
1

|/ m@ / §@IZ.X)0(X;12)4X;0Q - [ m@) [ pexp(x;I2)dx; o] (79)

<o

/ (X \Z)—TV( A, Q) dX: (81)

L

p(Q|Z,X7)dQ — /h p(QX7) dQ‘ ax: (80)

Because R, ! TV(Q:,Q,) is uniformly integrable when X ~ p(X*|Z), there exists an M such
that for all n,

1
X*|Z) =
| nxiiz) g

where Y, = {X}; | - TV(Q;}, Qn) > M}.

rQ)p(QZ, X)) dQ — / p(Q|X}) dQ’ dX; <1 (82)

Now, for all n

| 1@ [s@iz iz ax;ae - [ 1@ /p(QXZ)p(XZIZ)dXZdQ‘ (83)

s/p<x;:\2>37

1
= X*|Z) =
/an< 24

[ @@z xa- [wawax: d@\ ax: (34)

[r@u@iz - [mamalx:) dQ’dX*

(85)
* L * *
o [ 25| [ maw@iz x00 - [ @@l ae] ax;
<14 / p(X5|2)M dX: (86)
Yo
<1+ M (87)
0 TV (p(Q12),50(@)) = O(R,). 0

C Additional Examples

C.1 Gaussian with Known Variance Details

Checking where the mean and variance of u* ~ p,,(u) converge when nx+ — oo in the Gaussian
mean estimation example, when both parties use the known variance model:

E(p") = B(E(u*[X7)) = E (jiny.) (883)

%ﬂo + X
=E ( T X ) (89)

2 fio + “HE(X*)
¥ (90)
S E(X) = iy (01)

as nx+ — OQ.

Var(u®) = B(Var(u'|X")) + Var(E(u"|X7)) (92)
= E(0,,.) + Var(finy.) (93)
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1
E(, . )=E (1) —0,nx+ — 00 (94)

It o
"X* X* + £ MD 713(2* 2
Var (finy. ) = Var | ——7 | = [ 52— | Var(X®) 95)

Var(X*) = E(Var(X*|j1)) + Var(E(X*|)) = E(Var(z})) + Var(i) — Var(it) = &2

nx = nx
(96)
as nx= — OQ.
Putting these together,
E(u*) = finx 7
Var(p*) — &2 (98)

as ny« — 00.

The plots of p(u*) in Figures |Z E and are density functions of a mixture of Gaussians,
where each mixture component is the Gaussian posterior distribution from one synthetic dataset.

C.2 Gaussian with Unknown Variance Upstream, Known Variance Downstream

When the synthetic data is generated from the unknown variance model, p(X*|X) is

%X ~Inv-x*(Vny, 00 ) (99)
52
Ao, X ~ N (Mnx, _> (100)
Fonx
y|m, 0% ~ N (i, a%). (101)
(102)
When downstream analysis is the model with known variance 67, p(p*| X ™) is
WX~ N(fing. 07 ) (103)
e »
Hnys = ?%_F—nf; ( )
1 1 x
=t (105)
O xx ) Ok
Checking where the mean and variance of p,, (1) converge when nx+ — 0o:
E(p") = E(E(u"|X7) = E (fny.) (106)
flo + "5 X+
Y (i S (107)
7+
g%gﬂo + XE(X*)
- . o (108)
2 57
- E(X* ) = [iny (109)
asnxx — 0.
Var(p*) = E(Var(p*| X ™)) + Var(E(p*| X)) (110)
=E(67 )+ Var(fin,.) (111)
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Figure S1: Convergence of the mixture of synthetic data posteriors (in orange) with different values
of m and n x~ in Gaussian mean estimation with known variance.

Var(X*)

N 1
E(67,..) = L ) 7 Onxe = oo (112)
T 95
ns X+ + Ly nE N

Var (fin,.) = Var | —-——" | = | 7= | Var(X*) (113)

St 5 ta

k 0 k 0

) Faln =2 1 9 _ _ i
E(Var(X*|n,5°)) + Var(E(X*|g,5°)) = - E(5°) + Var(z) — Var(iz) = —
X)k

as ny+ — 00.

(114)
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M H
—— Analyst's p(u|X, I) Data Provider's p(u|X, Is) —— With syn. data p,(u)

Figure S2: Results when the synthetic data is generated from the unknown variance Gaussian mean
estimation model, and the analyst uses the model with known variance. On the left, the analyst’s
known variance is correct, on the right it is incorrect. In both cases, the mixture of synthetic data
posteriors converges to the data provider’s posterior. In both panels, m = 400 and % = 20.

Putting these together,

E(1*) = finx (115)
o _, 00
Var(p*) - —— (116)
Fonx

as nx- — 00, so u* asymptotically has the same mean and variance as the marginal posterior of & in
the synthetic data model, which is not the same as the downstream posterior distribution p(u| X, I4)
on the real data.

We verify this with the simulation in Figure[S2, where the synthetic data is generated from the model
with unknown variance, while the analyst uses the known variance model. The setting is otherwise
identical to the case where both used the known variance model in Figure 2] The mixture of synthetic
data posteriors converges to the data provider’s posterior, even when the analyst uses an incorrect
value for the known variance 67.

C.3 Size of the Synthetic Dataset

In the preceding analysis, most of the approximations hold when n x - is large, even when nx~ ~ nx.
However, based on the experiment with different values of nx+ and m in Figure |S_T|, nx= > nx is
needed for all of the approximations to hold.

This is explained by looking at Var(X*). In the case where both parties use the known variance
model,

_ 1
Var(X*):n E(Var(z;)) + Var() (117
X*
1
= (Gr+062.)+02, (118)
1 x
1, 1
= o, + 1+ _— 119
nx« " ( ”X*>;g+7:§ (e

If ny ~ nx- and both are large, 1 + ﬁ ~ 1and % + 25 ~ ¥ 5o
0 k k
o o o
o % 20
. . B (120)

Var(X*) ~ T x = nx nx

With these approximations,

Var(fi) ~ —& (121)
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$0
Var(X*) ~ 2Var(ji) (122)

while the nx« — oo limit is Var(X*) — Var(jz). This means that nx« > nx is required.

The same happens when the synthetic data is generated from the unknown variance model:

. 1

Var(X*) = o E(5?) + Var(fi) (123)
— ~2

_ b oty sy Tnx (124)

nxsvyg+nxy —2 "X Ro +nx

If nx ~ nx~ and both are large, % ~ land kg + nx ~ nx, so
~ =2 =2 252
Var(X*) ~ Tnx + Inx o, Znx (125)
T x * nx nx
With these approximations,
~2
o
Var(ji) ~ —% (126)
nx
S0
Var(X*) ~ 2Var(fi). (127)
C.4 Further Approximation
When nx- is large,
Var(p*) =~ E(6%.) + Var(X™*) (128)

If nx+ = cnx for some ¢ > 0, from the analyses in Section |C.3, we get

Var(X) ~ (1 + i) Var(i) (129)
SO
Var(u*) ~ E(67 ) + (1 + i) Var(f1) (130)
Solving for Var(u) gives
-1
Var(fi) ~ (1 + i) (Var(u*) —E(67_.)) 131)

which gives a Rubin’s rules-like approximation of Var(y) that can be computed from smaller synthetic
datasets with nx+ ~ nx.

We validate this with the experiment in Figure[S3] which shows that approximating p(u| X, I4) with
a Gaussian with variance from (131)) is closer to the real data posterior than the mixed posterior
approximation from Section

C.5 Logistic Regression

Setting Details In the toy data setting of Réisd et al. (2023), the real dataset consists of nx = 2000
i.i.d. samples of three binary variables. The first two variables are sampled with independent coinflips,
and the third is sampled from logistic regression on the other two, with coefficients (1, 0).

We generate synthetic data with the NAPSU-MQ algorithm (Réisd et al. 2023), instructing the
algorithm to generate m synthetic datasets of size n x-. DP-GLM doesn’t use synthetic data, so we
run it directly on the real data. For the privacy bounds, we vary ¢, and set § = n;f =25-1077,
which is how DP mechanisms are typically evaluated.
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Data Provider's p(u|X, Is) ——=- Gaussian approximation

Figure S3: Results with the Gaussian approximation with nx+ = nx, showing that the Gaussian
approximation is closer to the real data posterior than the mixture of synthetic data posteriors. On the
left, the synthetic data is generated from the known variance model, and on the right, the synthetic
data is generated from the unknown variance model. In both cases, the known variances for both
parties are correct, and m = 400.

Hyperparameters For NAPSU-MQ, we use the hyperparameters of Réisd et al. (2023), except
we used NUTS (Hoffman and Gelman 2014) with 200 warmup samples and 500 kept samples for
e € {0.5,1}, and 1500 kept samples for ¢ = 0.1, as the posterior sampling algorithm. The prior is
N(0,1021), and the marginal queries are the full set of 3-way marginals of all three variables.

The hyperparameters of DP-GLM are the Ly-norm upper bound R for the covariates of the logistic
regression, a coefficient norm upper bound s, and the parameters of the posterior sampling algorithm
DP-GLM uses. We set R = /2 so that the covariates do not get clipped, and set s = 5 after some
preliminary runs. The posterior sampling algorithm is NUTS (Hoffman and Gelman 2014) with 1000
warmup iterations and 1000 kept samples from 4 parallel chains.

Plotting Details The plotted density of DP-GLM in Figure4]is a kernel density estimate from the
posterior samples DP-GLM returns. The non-DP density is a Laplace approximation. Both synthetic
data methods use Laplace approximations in the downstream analysis, so their posteriors are mixtures
of these Laplace approximations for each synthetic dataset. This was also used in Figure[S3]

Sampling the exact posterior In order to sample the exact posterior p(Q|$), we use another
decomposition:

p(QJ3) = / QI3 X)p(X[5) dX = / P(QIX)p(X]3) X, (132)

where p(Q|3, X) = p(Q|X) due to the independencies of the graphical model in Figure[l] It remains
to sample p(X |3). This is not tractable in general, but is possible in the toy data setting due to using
the full set of 3-way marginals that covers all possible values of a datapoint, and the simplicity of the
toy data.

We can decompose
p(X15) = [ (sI5)n(X[s) 404X = [ p(X]s) [ pls.015) a0, (133)

so we can sample (s, ) ~ p(s,0|s) and then sample X ~ p(X|s) to obtain a sample from p(X]|3).
Due to the simplicity of the toy data setting, sampling both p(s, 8|s) and p(X|s) is possible.

NAPSU-MQ uses the following Bayesian inference problem:

f ~ Prior (134)
X ~ MEDy (135)
s=a(X) (136)
5~ N(s,05p), (137)
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Figure S4: (a) Coverages of credible intervals in the toy data experiment. The mixture of synthetic
data posteriors is accurate, except with e = 0.1, where it may not have converged yet. (b) Widths of
credible intervals in the toy data experiment. DP-GLM produces much wider intervals than other
methods, except with e = 0.1.

where a are the marginal queries, 0%, is the noise variance of the Gaussian mechanism, and MEDy
is the maximum entropy distribution (Réisi et al. 2023) with point probability

p(x) = exp(07a(x) = 00(0)), (138)
where 6 is the log-normalising constant.

In the toy data setting, a is the full set of 3-way marginals for all of the 3 variables. In other words,
a(x) is the one-hot coding of x, so s = a(X) is a vector of counts of how many times each of the 8
possible values is repeated in X. This means that sampling p(X|s) is simple:

1. For each possible value of a datapoint, find the corresponding count from s, and repeat that
datapoint according the that count.

2. Shuffle the datapoints to a random order.

As the downstream analysis p(@)|X) doesn’t depend on the order of the datapoints, the second step is
not actually needed.

To sample p(s, 0]5), we use a Metropolis-within-Gibbs sampler (Gilks et al.|{1995) that sequentially
updates s and 6 while keeping the other fixed. The proposal for € is obtained from Hamiltonian Monte
Carlo (HMC) (Duane et al.|1987; Neal 2011). The proposal for s is obtained by repeatedly choosing
arandom index in s to increment and another to decrement. It is possible to obtain negative values in
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Figure S5: Convergence of the mixture of synthetic data posteriors (in blue) with different values of
m and nx~ in the toy data logistic regression experiment.

s from this proposal, but those will always be rejected by the acceptance test, as the likelihood for
them is 0.

To initialise the sampler, we pick an initial value for 6 from a Gaussian distribution, and pick the
initial s by rounding s to integer values, changing the rounded values such that they sum to n while
ensuring that all values are non-negative.

The step size for the HMC we used is 0.05, and the number of steps is 20. In the s proposal, we
repeat the combination of an increment and a decrement 30 times. We take 20000 samples in total
from 4 parallel chains, and drop the first 20% as warmup samples.

The method described in this section is similar to the noise-aware Bayesian inference method of
Ju et al. (2022). The difference between the two is that Ju et al. use X instead of s as the
auxiliary variable, and they sample the X proposals from the model, changing one datapoint at a
time. This makes their algorithm more generalisable.
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D Gaussian Known Variance Convergence Rate

Theorem D.1. When the up- and downstream models are Gaussia
variance, when D,, = N (X,n"1o3),

VATV (Qu. Dy)
and

VRTV (QY, D)

are uniformly integrable when X ~ p(X}|X).

n mean estimations with known

(139)

(140)

Proof. When the downstream model is Gaussian mean estimation with known variance,

Qn = N(Uvu 0'72;)
o+ X

Hn = L_i_ﬂ
a2 o7

1 1+n

2 T 2" 9

o2 o o;

We start with the proof for v/nTV (Q,, D
divergence between Gaussians,

(141)

(142)

(143)

n) By Pinsker’s equality and the formula for KL-

VTV (Qn, D \/%nKL (Qn || Dn) (144)
- \/in (Tj% 4 Ut %X)2 — 1+ ”:) (145)
o e A
g\/in(ElNJr\/in 2+\/’inlnrf§ (147)

The last inequality can be deduced from the fact that the Lo-norm is

upper bounded by the L; norm.

Denote
0,3 1 n 9 0']% o
and
no?
Ca(n) =nln —* (149)
k
2
= —nlnik2 (150)
1 2
:—nln<(02+:2> Uj) (151)
0 k
o2
=-nln <’“2 + 1> (152)
nog
2 1
=Yk ( + 1> (153)
U
0
2 1 w
=Tk (+1> (154)
of u
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2
with n = 2%+ Because
0

we have ) Y ,
1

lim —O—gln ( + 1) = —U—g
uU—r 00 O'O u

which implies that C5(n) is bounded.

Futhermore,

Denote

Note that s, = O(n).

Then
1 n{fn — X)2
-n ( 5 ) = Spltn — X|
noi
1 n
2 2
% 90 Tk % %
SnHn X‘_S"L L+L+lX_X
R B =
1 n
s 7 10 +s % — 1] |X|
-l n [
o2 T o2 o2 T o2
1 n 1 n
2 Mo 2 =+ o=
s 0 +s k _ 9% k |X|
il on T, n 14 n
oz T2 2T T
1
a2 Ho o2 _
=Sn T L+SnL+L|X|'
of | o} o5 o}
Denote
(Tgﬂo
Cg(n):sn1+n
o5 | o}
and
1
a3
Cy(n) = sn4——
=zt

Because s, = O(n), we have C5(n) = O(1) and C4(n) = O(1), so C5(n) and C4(n) are bounded.

We now have

VATV (Qn, D) < \/i|cl(n)| + \/i|C’2(n)| + Cy(n) + Ca(n)X.

(155)

(156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)

By Lemmas[B.3]and [B.4] it suffices to show that each of the terms on the right is uniformly integrable.
The terms containing C7,C5 and C'3 are non-random and bounded in n, so they are uniformly
integrable. It remains to show that Csy(n)X is uniformly integrable. C's(n) is bounded, so we only

need to show that X is uniformly integrable.
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To bound the expectation in the definition of uniform integrability for | X|, we need some background
facts. For geometric series, with a € R and |r| < 1,

Zari = (167)
i=0
and differentiating both sides with regards to r gives
3 a(i+1)ri = —2 (168)
=0 IO
2 _
For a Gaussian random variable Y with mean p and variance o, Pr(Y > p+1¢) < e 22, X ~
N (1, o), so this tail bound gives
nt?
Pr(X >t+pu) <2 7. (169)
By the symmetry of the Gaussian distribution,
nt2
Pr(X < p—t) <2 *7%. (170)
Now
li E(| XI5 171
JJim_sup (1X T, > ar) (171)
= lim supE, (E(|X]I g 172
JJim_sup w (BOX 1500 110) (172)
= ]V}linoosng <ZE |X|HM+i<|X§M+i+1|M)> (173)
< lgrloostllpE# (ZE M+z+1)]1|x>M+l|u)> (174)
= i E (M +i+1)Pr(|X|>M+i 17
i sup u<§g +i+1)Pr(|X]|> +zlu)> (175)
= i E M+i+1) | Pr(X>M+i Pr(X <-M—i 176
Jim_sup ﬂ<; +it )( r(X > M +ilp) +Pr(X < zlu))) (176)
> 7"(M+i2—u)2 7n(u+M2+i)2
< 1l E, M+i+1 27 2o 177
i s (s () o
e _ (M+i;u>2 _ (M+1W2+’i)2
< lim E, M+i+1 2%, 2o . 1
< g Ee (s ey ()

When |M +i —pu| > 1, (M +i— p)? > M +1i — p. Itis possible that [M + i — pu| < 1 for exactly
two values of 4 that depend on p. Let ¢,; and ¢, be those values. We know that ¢,,; < 1+ pu— M

for j € {1,2}. Now

e}

E, (Z(M+z’+ e

=0

_ (M4i—p)?
20%

e}

=E, Z

1=0,i71,1,1F 12

 (M+i—p)?

2
20k

(M+i+1)e

(Mt —w)?
207
_ (M+iuo—m)?
202
k )

+E, <(M + i+ 1e (179)
+E, <(M +i40+1)e
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Now we can upper bound the series using (M +i — p)? > M +i — y1 and the formulas for geometric
series.

00 _ (Mti—p)?
E, > (M+i+1)e 2 (180)
1=0,i71,1,17 42
_ (MA4i—p)
(M+i+1)e * (181)
i= 01#1#1,27&“2
_ (MA4i—p)
<E, (M 4i+1)e > (182)
=0
oo _(M—p) _ 1 \?!
—B (Y rirne (e ) (183)
=0
00 @M —y0) _1 i 0 i) -1 i
:]EH ZMe 204 (8 20 > Z +1 207 <€ 2ak) (184)
=0 =
G e
Me k Me 29%
- (12 M e (189
k (1 —e 20%)

7<M—2u)
= —_ + 5 | Eu (6 %k > ; (186)
1—e 2% (1 _ 61>

*MEH *LIQ %#
E, <e 2% ) =e *E, <62"k ) . (187)

7(1\/1—2#)
lim — 4 >2 E, <e 207 >—0. (188)

M—o0 T 252 — 1
1—e *%% <16 2037

For the two other terms on the RHS of (179)

(Mg —p)?

(M —w)
]Eu<(M—|—iuj—|—1)6 2k >§]E“<(M+1+u—M+1)e 20 ) (189)

Mty —w)?
=E, ((u +2)e %k ) (190)
—0 (191)
as M — oo by the dominated convergence theorem, as
_(]\/I+i‘uj—p)2 o
(n+2e i < (u+2e %, (192)

and the right-hand-side has a finite expectation.
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We have now shown that one part of the limit in (I78) is 0. For the other part, setting ;' = —p, and
using the reasoning above with p replaced by i/, we have

00 _ (u+M;~:>2
. 20
Jim E, Z(M+z+1)(e 7 ) (193)

i=0 N e
= lim E, (; (M +i+1) ( 207 )) (194)
=0. (195)
so the limit in is 0.
‘We have now shown that
A}iinoos%pEﬂmebM) =0, (196)

or, in other words, that |X | is uniformly integrable. As shown earlier, this concludes the proof that
VRTV (Qn, Dy,) (197)
is uniformly integrable when X* ~ p(X /| X).
To show that /n TV (Q;}, D,,) is uniformly integrable, as in the proof of Lemma
P(QIX, X*) o p(X*|Q)p(X]Q)p(Q), (198)

so we can view both p(Q|X, X¥) and p(Q|X:) as the posteriors for the same Bayesian inference
problem with observed data X *, and priors p(Q|X) x p(X|Q)p(Q) and p(Q), respectively. p(Q|X)
is Gaussian, so the uniform integrability of

VTV (Qy, Dn) (199)

follows from the previous case with different values for 1o and o2. O

E Finite Number of Synthetic Datasets

In practice, we only have a finite number of synthetic datasets, so we must further approximate

§@I2)~ [ pQIXIPX1Z)AX" ~ 3 p(QIXT = X)), (200)

=1
with X* ~ p(X*|2).

From the strong law of large numbers, for any n and @,
1 = * * * * * —
3 pQIX = X0 = [ HQIXIPXIZ)AX; = 5u(Q) Qo)
i=1

almost surely as m — oo when X7, ~ p(X|Z).

Total variation distance is a metric, so

( Zp QX7 ). p QIZ)>

- (202)
< TV< > e <Q>> TV (p(Q), p(@12))
Theorem [3.4]gives
lim TV (p(Q),0(Q12)) = 0. (203)
(201) implies (van der Vaart|1998| Corollary 2.30)
1 m
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for almost all X/, . s

1

lim lim TV —Z (QIX;,).pQ|Z)] =0 (205)
n—00 M—00 m —

almost surely when X7 ~ p(X}|Z).

Based on the experiment in Figure[ST] it looks like

lim lim TV Zp QIX;,.),p(Q2) | #0 (206)

m—00 N—r 00

because the distributions p(Q|X,,) become narrower as n increases, so a fixed number of them is
not enough to cover p(Q|Z).

F Relation to Missing Data Imputation

In the missing data setting, only a part X ;5 of the complete dataset X is observed, while a part X ;5
is missing (Rubin|1987). To facilitate downstream analysis, the missing data is imputed by sampling
KXmis ~ D(Xmis| Xobs, I1). Analogously with synthetic data, I; represents the imputer’s background
knowledge.

Like with synthetic data, we have the decomposition (Gelman et al.|[2014)

p(Q‘Xobsa IA) = /p(Q|Xobsa Xm197 IA)p(Xmis‘Xob& IA) de,is- (207)
If the analyst’s and imputer’s models are congenial in the sense that
P(Q|Xovs, L) = p(Q|Xobs, I1) (208)
and
p(QIX, I4) = p(QIX, Ir) (209)

for any complete dataset X, then

p(Q|XObSaIA) = p(Q‘XomeI) = /p(QlXobsaXmiszIl)p(Xmis‘Xobsvll)deis
(210)

= /p(Q|Xobsv X77Li37 IA)p(Xmis‘Xobw II) dX'rrLi37

so sampling p(Q|Xops, I4) can be done by sampling X ;s ~ p(Xomis|Xobs, [r) multiple times,
sampling p(Q|Xobs, Xmis, La) for each X,,;s, and combining the samples. Unlike with synthetic
data, where sampling p(Q|X, X*, I 4) would require the original data and defeat the purpose of using
synthetic data, in the missing data setting, sampling p(Q|Xops, Xmis, La) is simply the analysis for a
complete dataset, so generating large imputed datasets is not required.
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