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ABSTRACT

Score-based diffusion models have recently emerged as state-of-the-art generative
models for a variety of data modalities. Nonetheless, it remains unclear how to
adapt these models to generate long multivariate time series. Viewing a time
series as the discretization of an underlying continuous process, we introduce
SigDiffusion, a novel diffusion model operating on log-signature embeddings
of the data. The forward and backward processes gradually perturb and denoise
log-signatures preserving their algebraic structure. To recover a signal from its
log-signature, we provide new closed-form inversion formulae expressing the
coefficients obtained by expanding the signal in a given basis (e.g. Fourier or
orthogonal polynomials) as explicit polynomial functions of the log-signature.
Finally, we show that combining SigDiffusion with these inversion formulae
results in highly realistic time series generation, competitive with the current
state-of-the-art on various datasets of synthetic and real-world examples.

1 INTRODUCTION

Time series generation has been the focus of many research contributions in recent years due to the
increasing demand for high-quality data augmentation in fields such as healthcare (Trottet et al., 2023)
and finance (Hwang et al., 2023). Because the sampling rate is often arbitrary and non-uniform, it is
natural to assume that the data is collected from measurements of some underlying physical system
that evolves in continuous time. This requires the adoption of modelling tools capable of processing
temporal signals as continuous functions of time. We will often refer to such functions as paths.

The idea of representing a path via its iterated integrals has been the object of numerous mathematical
studies, from geometry (Chen, 1957; 1958) to control theory (Fliess et al., 1983) to stochastic analysis
(Lyons, 1998). The collection of such iterated integrals is often referred to as the signature of a
path. Thanks to its numerous algebraic and analytic properties, which we will briefly summarise in
Section 2, the signature provides a universal feature map for temporal signals evolving in continuous
time, which is faithful, robust to irregular sampling, and efficient to compute. As a result, signature
methods have recently become mainstream in many areas of machine learning dealing with irregular
time series, from deep learning (Kidger et al., 2019; Morrill et al., 2021; Cirone et al., 2023; 2024) to
kernel methods (Salvi et al., 2021a; Lemercier et al., 2021b; Issa et al., 2024), with applications in
quantitative finance (Arribas et al., 2020; Salvi et al., 2021b; Horvath et al., 2023; Pannier & Salvi,
2024), cybersecurity (Cochrane et al., 2021), weather forecasting (Lemercier et al., 2021a), and causal
inference (Manten et al., 2024). For a concise summary of this topic, we refer the interested reader to
a recent survey by Fermanian et al. (2023b).

Score-based diffusion models have recently become a mainstream tool for modelling complex
distributions in computer vision, audio, and text (Song et al., 2020; Biloš et al., 2023; Popov et al.,
2021; Cai et al., 2020; Voleti et al., 2022). The main idea consists of gradually perturbing the
observed data distribution with noise following a reversible diffusion process trained via score-
matching techniques. The forward diffusion is trained until attaining some base distribution which
is easy to sample. A sample from the learned data distribution is then generated by running the
backward denoising process starting from the base distribution.

Despite recent efforts summarised in Section 4, it remains unclear how to adapt score-based diffusion
models to generate long signals in continuous time.
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Contributions In this paper, we make use of the log-signature, a compressed version of the
signature, as a parameter-free Lie algebra embedding for time series. In Section 2, we introduce
SigDiffusion, a new diffusion model that gradually perturbs and denoises log-signatures preserv-
ing their algebraic structure. To recover a path from its log-signature embedding, we provide novel
closed-form inversion formulae in Section 3. Notably, we prove that the coefficients in the expansion
of a path in a given basis, such as Fourier or orthogonal polynomials, can be expressed as explicit
polynomial functions on the log-signature. Our results provide a major improvement over existing
signature inversion algorithms (Fermanian et al., 2023a; Kidger et al., 2019; Chang & Lyons, 2019)
which suffer from scalability issues and, in general, are only effective on simple examples of short
piecewise-linear paths. In Section 5, we demonstrate how the combination of SigDiffusion with
our inversion formulae provides a time series generative approach, competitive with state-of-the-art
diffusion models for temporal data on various datasets of synthetic and real-world examples.

2 GENERATING LOG-SIGNATURES WITH SCORE-BASED DIFFUSION MODELS

We begin this section by recalling the relevant background material before introducing our
SigDiffusion model. We will limit ourselves to reporting only the key properties of signa-
tures and the notation necessary for the inversion formulae in Section 3. Additional examples of
signature computations can be found in Appendix A.3,

2.1 THE (LOG)SIGNATURE

Let x : [0, 1] → Rd be a smooth d-dimensional time series defined on a time interval [0, 1]. We
will equivalently refer to this object as a path. The step-n signature S≤n(x) of x is defined as the
following collection of iterated integrals

S≤n(x) = (1, S1(x), ....Sn(x)) (1)

where

Sk(x) =

∫
0≤t1<...<tk≤1

dxt1 ⊗ ...⊗ dxtk for 1 ≤ k ≤ n

and ⊗ denotes the tensor product. Intuitively, one can view the signature as a set of tensors of
increasing dimension, where the value of the m-th tensor at the index i1, i2, . . . , im represents
the “volume” enclosed by the i1, i2, . . . , im-th channels of x. This makes the signature transform
particularly effective at capturing information about the shape of multivariate paths.

Example 2.1. Assume d = 2, and denote the two channels of x as x = (x1, x2). Then S1(x), S2(x)
are tensors with shape [2] and [2, 2] respectively

S1(x) =

∫ 1

0

dxt1 =

(∫ 1

0
dx1

t1∫ 1

0
dx2

t1

)
,

S2(x) =

∫ 1

0

∫ t1

0

dxt1 ⊗ dxt2 =

(∫ 1

0

∫ t1
0

dx1
t2dx

1
t1

∫ 1

0

∫ t1
0

dx2
t2dx

1
t1∫ 1

0

∫ t1
0

dx1
t2dx

2
t1

∫ 1

0

∫ t1
0

dx2
t2dx

2
t1

)
.

Denoting the standard basis of Rd as e1, e2, ..., ed, we define a basis of the space of k-dimensional
tensors as

ei1i2...ik = e1 ⊗ e2 ⊗ ...⊗ ek, for 1 ≤ i1, ..., ik ≤ d and 0 ≤ k ≤ n.

We refer to these basis elements as words. In Section 3, we will make use of the notation
⟨ei1i2...ik , S≤n(x)⟩ ∈ R to extract the (i1, ..., ik)

th element of the k-th signature tensor Sk(x).

Words can be manipulated by two key operations: the shuffle product� and right half-shuffle product
≻. The shuffle product of two words of length r and s (with r + s ≤ n) is defined as the sum
over the

(
r+s
s

)
ways of interleaving the two words. For a formal definition, we refer readers to

Reutenauer (2003, Section 1.4). Much of the internal structure of the signature is characterized by
the shuffle identity (see Lemma A.0.1), which uses the shuffle and half-shuffle products to describe
the relationship between elements of higher and lower-order signature tensors. This identity is crucial

2
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in our proofs of the inversion formulae in Appendix C. A rigorous algebraic explanation of these
concepts is provided in Appendix A.1.

Moreover, it turns out that the space of signatures follows the structure of a step-n free nilpotent Lie
group Gn(Rd). We denote by Ln(Rd) the unique Lie algebra associated with Gn(Rd), and we call
its elements log-signatures. Gn(Rd) is the image of the Ln(Rd) under the exponential map

Gn(Rd) = exp(Ln(Rd)) (2)

where, in the case of signatures, exp denotes the tensor exponential defined in Appendix A.2.
Furthermore, one can use the tensor logarithm (see Equation (13)) to convert log-signatures to
signatures. These two operations are mutually inverse.

We note that the Lie algebra Ln(Rd) is a vector space of dimension β(d, n) with

β(d, n) =

n∑
k=1

1

k

∑
i|k

µ

(
k

i

)
di,

where µ is the Möbius function (Reutenauer, 2003). Crucially, the Lie algebra is isomorphic to the
Euclidean space Rβ(d,n), which motivates the diffusion model architecture in Section 2.3.

2.2 SIGNATURE AS A TIME SERIES EMBEDDING

The (log)signature exhibits additional properties making it an especially interesting object in the
context of generative modelling for sequential data. In this section we summarise such properties
without providing technical details, as these have been discussed at length in various texts in the
literature. For a thorough review, we refer the interested reader to (Cass & Salvi, 2024, Chapter 1).

Efficient computations Although, at first sight, the (log)signature looks like an object difficult to
compute, it is possible to carry out these computations elegantly and efficiently using Chen’s relation

Lemma 2.0.1 (Chen’s relation). For any two smooth paths x, y : [0, 1] → Rd the following holds

S≤n(x ∗ y) = S≤n(x) · S≤n(y), (3)

where ∗ denotes path-concatenation, and · is the signature tensor product defined in Equation (11).

Combining Chen’s relation with the fact that the signature of a linear path is simply the tensor
exponential of its increment (see Example A.2) provides us with an efficient algorithm for computing
signatures of piecewise linear paths. This approach eliminates the need to calculate integrals when
computing signature embeddings. See Appendix A.3 for simple examples of computations.

Robustness to irregular sampling Furthermore, the (log)signature is invariant under reparameter-
izations. This property essentially allows the signature transform to act as a filter that removes an
infinite dimensional group of symmetries given by time reparameterizations. Practically speaking,
the action of reparameterizing a path can be thought of as the action of sampling its observations at a
different frequency, resulting in robustness to irregular sampling.

Fast decay in the magnitude of coefficients Another important property of the signature is the
factorial decay of its coefficients. We refer the interested reader to (Cass & Salvi, 2024, Proposition
1.2.3) for a precise statement and proof. This fast decay implies that truncating the signature at a
sufficiently high level retains the bulk of the critical information about the underlying path.

Uniqueness The signature is unique for certain classes of paths, ensuring a one-to-one identifiability
with the underlying path. An example of such classes is given by paths which share an identical,
strictly monotone coordinate and are started at the same origin. More general examples are discussed
in (Cass & Salvi, 2024, Section 4.1). This property is important if one is interested, as we are, in
recovering the path from its signature. Yet, providing a viable algorithm for inverting the signature
has, until now, been challenging; valid although non-scalable solutions have been proposed only for
special classes of piecewise linear paths (Chang & Lyons, 2019; Fermanian et al., 2023a; Kidger
et al., 2019). In Section 3 we provide new closed-form inversion formulae that address this limitation.
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Space of truncated signatures

𝑇1
𝑛 ℝ𝑑

Smooth paths

𝑥: 0,1 → ℝ𝑑

Space of polynomial/Fourier 

coefficients

Τℝ𝑁 ℝ2𝑁

Step 2: Convert coefficients back to paths by their corresponding bases

Step 1: Retrieve basis coefficients via proposed formulae

Inversion goal

Signature transform 𝑆≤𝑛(𝑥)

Figure 1: Proposed idea of signature inversion.

2.3 DIFFUSION MODELS ON LOG-SIGNATURE EMBEDDINGS

As described in Section 2.1, any element of Gn(Rd) corresponds to the step-n signature of a smooth
path. Taking the tensor logarithm in Equation (13) then implies that an arbitrary element of Ln(Rd)
corresponds to the step-n log-signature of a smooth path. Because the Lie algebra Ln(Rd) is a linear
space, adding two log-signatures will yield another log-signature. Furthermore, the dimensional-
ity β(d, n) of Ln(Rd) is strictly smaller than dn+1−1

d−1 , making the log-signature a more compact
representation of a path compared to the signature while retaining the same information. We can
leverage these two properties to run score-based diffusion models on Ln(Rd) followed by an explicit
log-signature inversion that we discuss in the next section.

We briefly recall that score-based diffusion models work by progressively corrupting data with noise
until reaching a tractable form and learn to reverse this process, obtaining new samples from the
underlying data distribution p(x). They deploy a deep learning architecture to estimate the gradient
of the log probability density sθ(t, x) ≈ ∇x log pt(x) at each noise level t, called the score (Song
& Ermon, 2019). The reverse diffusion process is then facilitated by iteratively making steps in
the direction of the score while progressively reducing the noise level. Taking these steps on an
infinitesimally small noise grid yields a trajectory described by a reverse-time stochastic differential
equation (SDE) (Anderson, 1982) dx = [f(x, t) − g(t)2∇x log pt(x)]dt + g(t)dw, where t flows
backwards from T to 0 and w is Brownian motion with a negative time step dt. One obtains the
initial point x(T ) by sampling from a given tractable distribution. The score ∇x log pt(x) therefore
naturally arises in this SDE-based. Equivalently, one can also solve the probability flow ODE (Song
et al., 2020) dx = [f(x, t) − 1

2g(t)
2∇x log pt(x)]dt, which is what we will be doing. In this paper,

we model the forward data perturbation process through a stochastic differential equation

dx = −1

2
β(t)xdt+

√
β(t)dw (4)

where β(t) is linear on t ∈ [0, 1]. Following previous works (Ho et al., 2020; Biloš et al., 2023; Yuan
& Qiao, 2024), we use a simple transformer architecture with sinusoidal positional embeddings of t.

3 SIGNATURE INVERSION

In this section, we provide explicit signature inversion formulae. We do so by expressing the
coefficients of the expansion of a path in the Fourier or orthogonal polynomial bases as a polynomial
function on the log-signature. The necessary background material on orthogonal polynomials and
Fourier series can be found in Appendix B. See Figure 3 for an outline of the proposed idea.

In light of Equation (2) and Lemma A.0.2, a polynomial function on the truncated log-signature
is equivalently expressed as a linear functional on the signature. We will provide our inversion
formulae using this second representation. Throughout this section, x : [0, 1] → R will denote a
1-dimensional smooth path. The results in the sequel can be naturally extended to multidimensional
paths by applying the same procedure channel by channel.

Depending on the type of basis we chose to represent the path, we will often need to reparameterize
the path from the interval [0, 1] to a specified time interval [a, b] and augment it with time as
well as with additional channels c1, c2, ..., cr : [a, b] → R, tailor-made for the specific type of
inversion. We denote the augmented path by x̂(t) = (t, c1(t), ..., cr(t), x(t)) ∈ Rr+2. Note that
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these transformations are fully deterministic and do not affect the complexity of the generation task
outlined in Section 2.3. Furthermore, we will use the shorthand notation S(x̂) for the step-n signature
S≤n(x̂) throughout the section, and assume that the truncation level n is always high enough to
retrieve the desired number of basis coefficients. All proofs can be found in Appendix C.

3.1 INVERSION VIA FOURIER COEFFICIENTS

In this section, we derive closed-form expressions for retrieving the first n Fourier coefficients of
a path from its signature. First, recall that the Fourier series of a 2π-periodic path x(t) up to order
n ∈ N is xn(t) = a0 +

∑n
n=1(an cos(nt) + bn sin(nt)) where a0, an, bn are defined as

a0 =
1

2π

∫ 2π

0

x(t)dt, (5)

an =
1

π

∫ 2π

0

x(t) cos(nt)dt, (6)

bn =
1

π

∫ 2π

0

x(t) sin(nt)dt. (7)

Theorem 3.1. Let x : [0, 2π] → R be a periodic smooth path such that x(0) = 0, and consider the
augmentation x̂(t) = (t, sin(t), cos(t)− 1, x(t)) ∈ R4. Then the following relations hold

a0 =
1

2π
⟨e4 ≻ e1, S(x̂)⟩,

an =
1

π

n∑
k=0

k∑
q=0

(
n

k

)(
k

q

)
cos(

1

2
(n− k)π)⟨e4 � e�n−k

2 � e�q
3 ) ≻ e1, S(x̂)⟩,

bn =
1

π

n∑
k=0

k∑
q=0

(
n

k

)(
k

q

)
sin(

1

2
(n− k)π)⟨e4 � e�n−k

2 � e�q
3 ) ≻ e1, S(x̂)⟩.

(8)

3.2 INVERSION VIA ORTHOGONAL POLYNOMIALS

To accommodate path generation use cases for which a non-Fourier representation is more suitable,
next we derive formulae for inverting the signature using expansions of the path in orthogonal
polynomial bases. Recall that any orthogonal polynomial family (pn)n∈N with a weight function
ω : [a, b] → R satisfies a 3-term recurrence relation

pn(t) = (Ant+Bn)pn−1(t) + Cnpn−2(t), n ≥ 2, (9)
with p0(t) = 1 and p1(t) = A1t+B1. Also, note that any smooth (or at least square-integrable) path
x(t) with x(a) = 0 can be approximated arbitrarily well as x(t) ≈

∑∞
n=0 αnpn(t) where αn is the

n-th orthogonal polynomial coefficient

αn =
1

(pn, pn)

∫ b

a

x(t)pn(t)ω(t)dt, (10)

and (·, ·) denotes the inner product (f, g) =
∫ b

a
f(t)g(t)ω(t)dt. We include several examples of such

polynomial families in Appendix B.
Theorem 3.2. Let x : [a, b] → R be a smooth path such that x(a) = 0. Consider the augmentation
x̂(t) = (t, ω(t)x(t)) ∈ R2, where ω(t) corresponds to the weight function of a system of orthogonal
polynomials (pn)n∈N and is well defined on the closed and compact interval [a, b]. Then, there
exists a linear combination ℓn of words such that the nth coefficient in Equation (10) satisfies
αn = ⟨ℓn, S(x̂)⟩. Furthermore, the sequence (ℓn)n∈N satisfies the following recurrence relation

ℓn = An
(pn−1, pn−1)

(pn, pn)
e1 ≻ ℓn−1 + (Ana+Bn)

(pn−1, pn−1)

(pn, pn)
ℓn−1 + Cn

(pn−2, pn−2)

(pn, pn)
ℓn−2,

with

ℓ0 =
A0

(p0, p0)
e21 and ℓ1 =

A1

(p1, p1)
(e121 + e211) +

A1a+B1

(p1, p1)
e21.

Remark. The results in Theorem 3.2 require signatures of x̂ = (t, w(t)x(t)). However, sometimes
one may only have signatures of x̃ = (t, x(t)). In Appendix C.2 we propose an alternative method by
approximating the weight function as a Taylor series.
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3.3 INVERSION TIME COMPLEXITY

The inversion formulae all boil down to evaluating specific linear combinations of signature terms.
Evaluating a linear functional has a time complexity linear in the size of the signature. Since this
evaluation is repeated for each of the n recovered basis coefficients, the total number of operations
is nm, where n in the number of basis coefficients and m is the length of the signature truncated at
level n+ 2. For a d-dimensional path, length of a step-N signature is dN+1−1

d−1 , giving the inversion a
time complexity of O(NdN ).

4 RELATED WORK

Multivariate time series generation Synthesizing multivariate time series has been an active
area of research in the past several years, predominantly relying on generative adversarial networks
(GANs) (Goodfellow et al., 2014). Simple recurrent neural networks acting as generators and
discriminators (Mogren, 2016; Esteban et al., 2017) later evolved into encoder-decoder architectures
where the adversarial generation happens in a learned latent space (Yoon et al., 2019; Pei et al.,
2021; Jeon et al., 2022). To synthesise time series in continuous time, architectures based on neural
differential equations in the latent space (Rubanova et al., 2019; Yildiz et al., 2019) have emerged as
generalisations of RNNs. More flexible alternatives have later been proposed in the forms of neural
controlled differential equations (Kidger et al., 2020) and state space ODEs (Zhou et al., 2023).

Diffusion models for time series generation There are a number of denoising probabilistic
diffusion models (DDPMs) currently at the forefront of time series synthesis, such as DiffTime (Ho
et al., 2020), which reformulates the constrained time series generation problem in terms of conditional
denoising diffusion (Tashiro et al., 2021). Most recently, Diffusion-TS (Yuan & Qiao, 2024) has
demonstrated superior performance on benchmark datasets and long time series by disentangling
temporal features via a Fourier-based training objective. To learn long-range dependencies, both the
aforementioned methods use transformer (Vaswani et al., 2017)-based diffusion functions. Many
recent efforts attempt to generalize score-based diffusion to infinite-dimensional function spaces
(Kerrigan et al., 2022; Dutordoir et al., 2023; Phillips et al., 2022; Lim et al., 2023). However, unlike
their discrete-time counterparts, they have not yet been benchmarked on a variety of real-world
temporal data. One exception to this is a diffusion framework proposed by Biloš et al. (2023),
which synthesises continuous time series by replacing the time-independent noise corruption with
samples from a Gaussian process, forcing the diffusion to remain in the space of continuous functions.
Another promising approach for training diffusion models in function space is the Denoising Diffusion
Operators (DDOs) method (Lim et al., 2023). While it has not been previously applied to time series,
our evaluation in Section 5 demonstrates its strong performance in this context. Additionally, there
is a growing body of recent literature focusing on application-specific time series generation via
diffusion models, such as speech enhancement (Lay et al., 2023; Lemercier et al., 2023), soft sensing
(Dai et al., 2023), and battery charging behaviour (Li et al., 2024).

Signature inversion The uniqueness property of signatures mentioned in Section 2.2 has motivated
several previous attempts to answer the question of inverting the signature transform, mostly as
theoretical contributions focusing on one specific class of paths (Lyons & Xu, 2017; Chang et al.,
2016; Lyons & Xu, 2018). The only fast and scalable signature inversion strategy to date is the
Insertion method (Chang & Lyons, 2019), which provides an algorithm and theoretical error bounds
for inverting piecewise linear paths. It was recently optimised (Fermanian et al., 2023a) and released
as a part of the Signatory (Kidger et al., 2019) package. There are also examples of inversion via deep
learning (Kidger et al., 2019) and evolutionary algorithms (Buehler et al., 2020), but they provide no
convergence guarantees and become largely inefficient when deployed on real-world time series.

5 EXPERIMENTS

In Section 5.1, we demonstrate that the newly proposed signature inversion method achieves more
accurate reconstructions compared to the previous Insertion (Chang & Lyons, 2019; Fermanian
et al., 2023a) and Optimization (Kidger et al., 2019) methods. We also analyze the inversion quality
and time complexity across different orthogonal polynomial classes. In Section 5.2, we show
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Figure 2: Comparison of different inversion methods.

that (log)signatures, combined with our closed-form inversion, provide an exceptionally effective
embedding for time series diffusion models. First, Section 5.2.1 visualizes the trade-off between the
precision of time series representation and model complexity introduced by the choice of the signature
truncation level. Finally, in Section 5.2.2, we present experiments demonstrating that generating
step-4 log-signatures via the SigDiffusion pipeline outperforms other recent diffusion models
across several standard metrics.

5.1 INVERSION EVALUATION

We perform experiments to evaluate the proposed analytical signature inversion formulae derived in
Section 3 via several families of orthogonal bases. Using example paths given by sums of random sine
waves with injected Gaussian noise, we reconstruct the original paths from their step-12 signatures.
Figure 2 compares inversion of these paths via Legendre and Fourier coefficients to the Insertion
method (Chang & Lyons, 2019; Fermanian et al., 2023a) and Optimization method (Kidger et al.,
2019), showcasing the improvement in inversion quality provided by our explicit inversion formulae.
Figure 3 presents the time consumption against the L2 error with an increasing degree of polynomials.
Notably, the factor holding the most influence over the reconstruction quality is the truncation level of
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Figure 3: L2 error of signature inversion via orthogonal polynomials with respect to the polynomial
order N and time. Error and time are calculated by an average of 15 paths with 200 sample points.

the signature, as it bounds the order of polynomials we can retrieve. We refer the interested reader to
a discussion about inversion quality in Appendix D. Namely, Figures 11 and 12 show more examples
of inverted signatures using different types of paths and polynomial bases.

5.2 GENERATING LONG TIME SERIES

In this section, we introduce the SigDiffusions pipeline for generating multivariate time series
with the following strategy: 1) Choose an orthogonal basis and order N sufficient to represent the
signal with enough detail to retain its meaningful components while smoothing out unnecessary noise.
2) Compute the log-signature of the signal, truncated at level N + 2. 3) Train and sample a diffusion
model to generate these log-signatures. 4) Invert the synthetic samples back to time series using our
closed-form formulae.
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5.2.1 TIME SERIES REPRESENTATION AND MODEL CAPACITY

Here, we highlight the trade-off between model capacity and the faithfulness of the time series
representation as given by its truncated Fourier series. Since the signature inversion formulae are
exact, the inversion quality depends only on how well the underlying signal is approximated by
the retrieved Fourier basis coefficients. When the primary goal is to model the overall shape of
a multivariate time series, it is sufficient to truncate the signature, and thus the Fourier series, at
a low level. Low truncation levels capture most of this information, smooth out high-order noise,
and simplify the generation task. In contrast, modelling signals with high frequencies requires
higher truncation levels, increasing the complexity of the diffusion task. As the signature size
grows exponentially with the truncation level, generating highly oscillatory time series with high
fidelity—capturing intricate cross-channel dependencies—becomes increasingly constrained by the
model’s capacity. We illustrate the Fourier approximation quality for different truncation levels
in Figure 4, where each signature level gets progressively more difficult to generate. Additional
visualizations of this trade-off, evaluated on standard time series metrics, can be found in Figure 16
in the appendix.

Figure 4: Best possible recovery (i.e. the Fourier approximation) for different signature truncation
levels of a sample from the Exchange rates dataset (see Section 5.2.2). Left to right: Real data, Level
4, 7, 10, 13, 16.

5.2.2 GENERATING STEP-4 LOG-SIGNATURES

We now demonstrate the exceptional ability of signatures to capture the shape and cross-channel
dependencies of time series at low truncation levels. We show that SigDiffusions applied to
step-4 log-signatures, combined with Fourier inversion, outperform state-of-the-art diffusion-based
models on the task of generating 1000-point-long time series.

Datasets We perform experiments on five different time series datasets: Sines - a benchmark
dataset of 5-dimensional sine curves with randomly sampled frequency and phase (Yoon et al.,
2019), Predator-prey - a two-dimensional continuous system evolving according to a set of ODEs,
Household Electric Power Consumption (HEPC) (UCI Machine Learning Repository, 2024) - the
univariate voltage feature from a real-world dataset of household power consumption, Exchange
Rates (Lai et al., 2018; Lai, 2017) - a real-world dataset containing daily exchange rates of 8
currencies, and Weather (Kolle, 2024) - a real-world dataset reporting weather measurements.

Metrics We use the metrics established in Yoon et al. (2019). The Discriminative Score reports
the out-of-sample accuracy of an RNN classifier trained to distinguish between real and generated
time series. To improve readability, we report values offset by 0.5, so that in the ideal case where
real and generated samples are indistinguishable by the classifier, this metric will approach 0. The
Predictive Score measures the loss of a next-point predictor RNN trained exclusively on synthetic
data, with the loss evaluated on the real data set. We also run the Kolmogorov-Smirnov (KS) test
on marginal distributions of random batches of ground truth and generated paths. We repeat this
test 1000 times with a batch size of 64 and report the mean KS score with the mean Type I error for
a 5% significance threshold. Since the cross-channel terms of the log-signature are not necessary
for the inversion methods, we generate a concatenated vector of the log-signatures of each separate
dimension plus their augmentation described in Section 3.

Benchmarks Table 1 lists the time series generation performance metrics compared with four
recent diffusion model architectures specifically designed to handle long or continuous-time paths:

• Diffusion-TS (Yuan & Qiao, 2024) This model introduces a novel Fourier-based training objec-
tive to disentangle temporal features of different seasonalities. This interpretable decomposition
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Table 1: Results for generating time series of length 1000.
Dataset Model Discriminative Score Predictive Score

Sines

SigDiffusion (ours) 0.095±.023 0.096±.004
DDO (γ = 1) 0.041±.018 0.091±.000
Diffusion-TS 0.416±.046 0.147±.006
CSPD-GP (RNN) 0.469±.005 0.111±.005
CSPD-GP (Transformer) 0.500±.002 0.239±.015
TimeGAN 0.362±.128 0.151±.035

Predator-prey

SigDiffusion (ours) 0.135±.073 0.048±.000
DDO (γ = 10) 0.072±.036 0.050±.000
Diffusion-TS 0.500±.000 0.459±.044
CSPD-GP (RNN) 0.181±.068 0.051±.000
CSPD-GP (Transformer) 0.498±.002 0.922±.002
TimeGAN 0.244±.070 0.050±.001

HEPC

SigDiffusion (ours) 0.097±.122 0.080±.000
DDO (γ = 1) 0.103±.058 0.080±.000
Diffusion-TS 0.452±.037 0.187±.000
CSPD-GP (RNN) 0.416±.117 0.211±.005
CSPD-GP (Transformer) 0.500±.001 0.569±..000

Exchange Rates

SigDiffusion (ours) 0.189±.064 0.044±.004
DDO (γ = 1) 0.208±.064 0.069±.001
Diffusion-TS 0.500±.000 0.150±.050
CSPD-GP (RNN) 0.500±.001 0.182±.050
CSPD-GP (Transformer) 0.500±.000 0.373±.005
TimeGAN 0.394±.151 0.313±.007

Weather

SigDiffusion (ours) 0.322±.153 0.166±.002
DDO (γ = 10) 0.497±.002 0.304±.004
Diffusion-TS 0.499±.001 0.447±.033
CSPD-GP (RNN) 0.500±.001 0.502±.005
CSPD-GP (Transformer) 0.500±.000 0.492±.000

strategy makes the model particularly robust to varying time series lengths, demonstrating strong
performance relative to other benchmarks as the training time series become longer.

• CSPD-GP (Biloš et al., 2023) This approach replaces the time-independent noise corruption
mechanism with samples drawn from a Gaussian process, effectively modeling diffusion on time
series as a process occurring within the space of continuous functions. CSPD-GP (RNN) and
CSPD-GP (Transformer) refer to score-based diffusion models with the score function either
being an RNN or a transformer.

• Denoising Diffusion Operators (DDOs) DDO (Lim et al., 2023) These models generalise
diffusion models to function spaces with a Hilbert space-valued Gaussian process to perturb the
input data. Additionally, they use neural operators for the score function, ensuring consistency
with the underlying function space formulation. DDO’s kernel smoothness hyperparameter γ is
tuned and reported for each dataset.

We also report the performance of TimeGAN Yoon et al. (2019) in Table 1 to provide a non-diffusion-
based example. The metrics are computed using 1000 samples from each model. Table 2 shows the
model sizes and training times, demonstrating that SigDiffusion outperforms the other models
while also having the most efficient architecture. Table 4 in the Appendix evaluates the time series
marginals using the KS test. More details about the experimental setup can be found in Appendix E.
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Table 2: Comparison of model sizes.
Dataset Model Parameters Training Time Sampling Time

Sines

SigDiffusion (ours) 229K 8 min 11 sec
DDO (γ = 1) 4.12M 3.6 h 42 min
Diffusion-TS 4.18M 57 min 15 min
CSPD-GP (RNN) 759K 9 min 1 min
CSPD-GP (Transformer) 973K 15 min 5 min
TimeGAN 170K 8.8 h 2 s

Predator-prey

SigDiffusion (ours) 211K 8 min 12 sec
DDO (γ = 10) 4.12M 3.5 h 42 min
Diffusion-TS 4.17M 55 min 14 min
CSPD-GP (RNN) 758K 8 min 1 min
CSPD-GP (Transformer) 972K 16 min 5 min
TimeGAN 28K 7.5 h 2 s

HEPC

SigDiffusion (ours) 205K 8 min 12 sec
DDO (γ = 1) 4.12M 2.6 h 42 min
Diffusion-TS 4.17M 50 min 15 min
CSPD-GP (RNN) 758K 4 min 1 min
CSPD-GP (Transformer) 972K 9 min 5 min

Exchange rates

SigDiffusion (ours) 246 K 9 min 11 sec
DDO (γ = 1) 4.12M 3.6 h 42 min
Diffusion-TS 4.29 M 1.2 h 20 min
CSPD-GP (RNN) 760 K 11 min 1 min
CSPD-GP (Transformer) 974 K 15 min 6 min
TimeGAN 431K 10 h 3 s

Weather

SigDiffusion (ours) 282K 8 min 12 sec
DDO (γ = 10) 4.12M 3.6 h 42 min
Diffusion-TS 4.3 M 1.4 h 20 min
CSPD-GP (RNN) 763 K 14 min 1 min
CSPD-GP (Transformer) 975 K 17 min 6 min

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced SigDiffusion, a new diffusion model that gradually perturbs and
denoises log-signature embeddings of long time series, preserving their Lie algebraic structure. To
recover the path from its log-signature, we proved that the coefficients in the expansion of a path
in a given basis, such as Fourier or orthogonal polynomials, can be expressed as explicit linear
functionals on the signature, or equivalently as polynomial functions on the log-signature. These
results provide explicit signature inversion formulae, representing a major improvement over signature
inversion algorithms previously proposed in the literature. Finally, we demonstrated how combining
SigDiffusion with these inversion formulae provides a powerful generative approach for time
series that is competitive with state-of-the-art diffusion models for temporal data.

As this is the first work on diffusion models for time series using signature embeddings, there are
still many research directions to explore. To mitigate the rapid growth in the number of required
signature features for high-frequency signals described in 5.2.1, future work could explore alternative
embeddings to the signature. For example, other types of path developments derived from rough path
theory, which embed temporal signals into (compact) Lie groups, such as those proposed by Cass
& Turner (2024), may offer a more parsimonious representation. These alternatives retain many of
the desirable properties of signatures, including the availability of a flat-space Lie algebra. However,
it remains unclear how an inversion mechanism would work in these cases. Finally, it would be
interesting to understand how discrete-time signatures (Diehl et al., 2023) could be leveraged to
encode discrete sequences on Lie groups and leverage this encoding to perform diffusion-based
generative modelling for text.
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APPENDIX

This appendix is structured in the following way. In Section A we complement the material presented
in Section 2 by adding additional details on the signature. In Section B, we provide examples of
orthogonal polynomial families one can use for signature inversion due to the derived inversion
formulae in Section 3. In Section C we provide proofs for the signature inversion Theorem 3.1 and
Theorem 3.2. Section D contains additional examples and discussion about the quality of signature
inversion by different bases. Section E provides details on the implementation of experiments.

A ADDITIONAL DETAILS ON THE SIGNATURE

In this section, we establish the foundational algebraic framework for signatures in Appendix A.1.
We then provide a mathematically rigorous definition of the (log)signature in Appendix A.2, building
upon the introduction in Section 2. The section concludes with illustrative signature computation
examples in Appendix A.3.

A.1 ALGEBRAIC SETUP

For any positive integer n ∈ N we consider the truncated tensor algebra over Rd

Tn(Rd) :=

n⊕
k=0

(Rd)⊗k,

where ⊗ denotes the outer product of vector spaces. For any scalar α ∈ R, we denote by Tn
α (Rd) =

{A ∈ Tn(Rd) : A0 = α} the hyperplane of elements in Tn(Rd) with the 0th term equal to α.

Tn(Rd) is a non-commutative algebra when endowed with the tensor product · defined for any two
elements A = (A0, A1, ..., An) and B = (B0, B1, ...Bn) of Tn(Rd) as follows

A ·B = (C0, C1, ..., Cn) ∈ Tn(Rd), where Ck =

k∑
i=0

Ai ⊗Bk−i ∈ (Rd)⊗k. (11)

The standard basis of Rd is denoted by e1, e2, ..., ed. We will refer to these basis elements as letters.
Elements of the the induced standard basis of Tn(Rd) are often referred to as words and abbreviated

ei1i2...ik = e1 ⊗ e2 ⊗ ...⊗ ek, for 1 ≤ i1, ..., ik ≤ d and 0 ≤ k ≤ n.

We will make use of the dual pairing notation ⟨ei1i2...ik , A⟩ ∈ R to denote the (i1, ..., ik)
th element

of a tensor A ∈ Tn(Rd). This pairing is extended by linearity to any linear combination of words.

Following Reutenauer (2003), the truncated tensor algebra Tn(Rd) carries several additional algebraic
structures.

Firstly, it is a Lie algebra, where the Lie bracket is the commutator

[A,B] = A ·B −B ·A for A,B ∈ Tn(Rd).

We denote by Ln(Rd) the smallest Lie subalgebra of Tn(Rd) containing Rd. We note that the Lie
algebra Ln(Rd) is a vector space of dimension β(d, n) with

β(d, n) =

n∑
k=1

1

k

∑
i|k

µ

(
k

i

)
di,

where µ is the Möbius function (Reutenauer, 2003). Bases of this space are known as Hall bases
(Reutenauer, 2003; Reizenstein, 2017). One of the most well-known bases is the Lyndon basis
indexed by Lyndon words. A Lyndon word is a word occurring lexicographically earlier than any
word obtained by cyclically rotating its elements.

Secondly, Tn(Rd) is also a commutative algebra with respect to the shuffle product �. On basis
elements, the shuffle product of two words of length r and s (with r + s ≤ n) is the sum over
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the
(
r+s
s

)
ways of interleaving the two words. For a more formal definition see Reutenauer (2003,

Section 1.4).

Related to the shuffle product is the right half-shuffle product ≻ defined recursively as follows: for
any two words ei1...ir and ej1...js and letter ej

ei1...ir ≻ ej = ei1...irj and ei1...ir ≻ ej1...js = (ei1...ir ≻ ej1...js−1
+ ej1...js−1

≻ ei1...ir ) · ejs .

The right half-shuffle product will be useful for carrying out computations in the next section. Note
that the following relation between shuffle and right half-shuffle products holds (Salvi et al., 2023)

ei1...ir � ej1...js = ei1...ir ≻ ej1...js + ej1...js ≻ ei1...ir .

Equipped with this algebraic setup, we can now introduce the signature.

A.2 THE (LOG)SIGNATURE

Let x : [0, 1] → Rd be a smooth path. The step-n signature S≤n(x) of x is defined as the following
collection of iterated integrals

S≤n(x) = (1, S1(x), ....Sn(x)) ∈ Tn
1 (Rd) (12)

where
Sk(x) =

∫
0≤t1<...<tk≤1

dxt1 ⊗ ...⊗ dxtk ∈ (Rd)⊗k for 1 ≤ k ≤ n.

An important property of the signature is usually referred to as the shuffle identity. This result is
originally due to Ree (1958). For a modern proof see (Cass & Salvi, 2024, Theorem 1.3.10).
Lemma A.0.1 (Shuffle identity). (Ree, 1958) Let x : [0, 1] → Rd be a smooth path. For any two
words ei1...ir and ej1...js , with 0 ≤ r, s ≤ n, the following two identities hold〈

ei1...ir � ej1...js , S
≤n(x)

〉
=
〈
ei1...ir , S

≤n(x)
〉 〈

ej1...js , S
≤n(x)

〉
,

〈
ei1...ir ≻ ej1...js , S

≤n(x)
〉
=

∫ 1

0

〈
ei1...ir , S

≤n(x)t
〉
d
〈
ej1...js , S

≤n(x)t
〉
,

where S≤n(x)t is the step-n signature of the path x restricted to the interval [0, t].

An example of simple computations using the shuffle identity is presented in Appendix A.3.

Moreover, it turns out that the signature is more than just a generic element of Tn
1 (Rd); in fact, its

range has the structure of a Lie group as we shall explain next. Recall that the tensor exponential exp
and the tensor logarithm log are maps from Tn(Rd) to itself defined as follows

exp(A) :=
∑
k≥0

1

k!
A⊗k and log(1+A) =

∑
k≥1

(−1)k−1

k
(A)⊗k (13)

where 1 = (1, 0, ..., 0) ∈ Tn(Rd). It is a well-known fact that exp : Tn
0 (Rd) → Tn

1 (Rd) and
log : Tn

1 (Rd) → Tn
0 (Rd) are mutually inverse.

The step-n free nilpotent Lie group is the image of the free Lie algebra under the exponential map

Gn(Rd) = exp(Ln(Rd)) ⊂ Tn
1 (Rd). (14)

As its name suggests, Gn(Rd) is a Lie group and plays a central role in the theory of rough paths
(Friz & Victoir, 2010).

Here comes the connection with signatures. It is established by the following fundamental result due
to Chen (1957; 1958), which can also be viewed as a consequence of Chow’s results in Chow (1939).
Lemma A.0.2 (Chen–Chow). (Chen, 1957; 1958; Chow, 1939) The step-n free nilpotent Lie group
Gn(Rd) is precisely the image of the step-n signature map in Equation (12) when the latter is applied
to all smooth paths in Rd

Gn(Rd) = {S≤n(x) | x : [0, 1] → Rd smooth}.
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A.3 SIMPLE EXAMPLES OF SIGNATURE COMPUTATIONS

In the following examples, we alter the notation so that for a path x : [a, t] → Rd, the tensor
representing the k-th level of the signature computed on an interval [a, t] is denoted as

S(x)
(k)
a,t = (S(x)i1,...,ika,t : i1, . . . , ik ∈ {1, . . . , d}) ∈ (Rd)⊗k. (15)

Furthermore, we can express the value of S(x)(k)a,t at a particular set of indices i1, . . . , ik ∈ {1, . . . d}
as a k-fold iterated integral

S(x)i1,...,ika,t =

∫
a<t1<···<tk<t

dxi1
t1 . . . dx

ik
tk
.

We assume that the signature is always truncated at a sufficiently high level n, allowing us to denote
the step-n signature simply as

S(x)a,t = (1, S(x)
(1)
a,t , S(x)

(2)
a,t , S(x)

(3)
a,t , . . . , S(x)

(n)
a,t ) ∈ Tn

1 (Rd). (16)

Example A.1 (Geometric interpretation of a 2-dimensional path). Consider a path x̂ : [0, 9] → R2,
where x̂ = (x1

t , x
2
t ) = (t, x(t)). Here, x(t) is defined as

x2
t = x(t) =


√
3t t ∈ [0, 2]

2
√
3 t ∈ [2, 8]√
3t− 6

√
3 t ∈ [8, 9]

,

which is continuous and piecewise differentiable. In this case, ẋ1
t = 1, and ẋ2

t can be expressed as

ẋ2
t = ẋ(t) =


√
3 t ∈ (0, 2)

0 t ∈ (2, 8)√
3 t ∈ (8, 9)

.

One can compute the step-n signature of x̂ as

S(x̂)0,9 = (1, S(x̂)
(1)
0,9, S(x̂)

(2)
0,9, S(x̂)

(3)
0,9, . . . , S(x̂)

(n)
0,9 )

= (1, S(x̂)10,9, S(x̂)
2
0,9, S(x̂)

1,2
0,9, S(x̂)

2,1
0,9, S(x̂)

1,1,1
0,9 , . . . , S(x̂)i1,...,in0,9 ),

where

S(x̂)10,9 =

∫
0<s<9

dx1
s = x1

9 − x1
0 = 9

S(x̂)20,9 =

∫
0<s<9

dx2
s = x2

9 − x2
0 = 3

√
3

S(x̂)1,10,9 =

∫
0<r<s<9

dx1
rdx

1
s =

∫
0<s<9

x1
sdx

1
s =

1

2

(
x1
s

)2∣∣∣∣9
0

=
81

2

S(x̂)1,20,9 =

∫
0<r<s<9

dx1
rdx

2
s =

∫
0<s<9

sdx2
s =

∫
0<s<9

sẋ2
sds =

√
3

2
s2
∣∣∣∣2
0

+

√
3

2
s2
∣∣∣∣9
8

=
21

2

√
3

S(x̂)2,10,9 =

∫
0<r<s<9

dx2
rdx

1
s =

∫
0<s<9

x2
sds =

√
3

2
s2
∣∣∣∣2
0

+ 2
√
3s

∣∣∣∣8
2

+

√
3

2
s2 − 6

√
3s

∣∣∣∣9
8

=
33

2

√
3

S(x̂)2,20,9 =

∫
0<r<s<9

dx2
rdx

2
s =

∫
0<s<9

x2
sdx

2
s =

1

2

(
x2
s

)2∣∣∣∣9
0

=
27

2
.

From Figure 5, let A− and A+ represent the signed value of the shaded region. The signed Lévy area
of the path is defined as A− +A+. In this case, the signed Lévy area is −3

√
3. Surprisingly,

1

2

(
S(x̂)1,20,9 − S(x̂)2,10,9

)
=

1

2

(
21

2

√
3− 33

2

√
3

)
= −3

√
3 = A− +A+,

which is exactly the signed Lévy area.
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Figure 5: Path in Example A.1. The shaded region represents the signed Lévy area.

Another important example is given by the signature of linear paths.

Example A.2 (Signatures of linear paths). Suppose there is a linear path x : [a, b] → Rd. Then the
path x is linear in terms of t, i.e.

xt = xa +
t− a

b− a
(xb − xa) .

It follows that its derivative can be written as

dxt =
(xb − xa)

b− a
dt.

Recalling the definition of a signature, it holds that

S(x)i1,...,ika,b =

∫
a<t1<···<tk<b

dxi1
t1 . . . dx

ik
tk

=

∏k
j=1

(
x
ij
b − x

ij
a

)
(b− a)k

∫
a<t1<···<tk<b

dt1 . . . dtk

=

∏k
j=1

(
x
ij
b − x

ij
a

)
(b− a)k

(b− a)k

k!

=

∏k
j=1

(
x
ij
b − x

ij
a

)
k!

.

Therefore, the whole step-n signature can be expressed as a tensor exponential of the linear increment
xb − xa

S(x)
(k)
a,b =

(xb − xa)
⊗k

k!
,

S(x)a,b =

n∑
k=0

(xb − xa)
⊗k

k!

= exp⊗ (xb − xa) .

Chen’s identity in Lemma 2.0.1 is one of the most fundamental algebraic properties of the signature
as it describes the behaviour of the signature under the concatenation of paths.
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Definition A.1 (Concatenation). Consider two smooth paths x : [a, b] → Rd and y : [b, c] → Rd.
Define the concatenation of x and y, denoted by x ∗ y as a path [a, c] → Rd

(x ∗ y)t :=
{
xt if a ≤ t ≤ b

xb − yb + yt if b ≤ t ≤ c
.

Chen’s identity in Lemma 2.0.1 provides a method to simplify the analysis of longer paths by
converting them into manageable shorter ones. If we have a smooth path x : [t0, tn] → Rd, then
inductively, we can decompose the signature of x to

S(x)t0,tn = S(x)t0,t1 · S(x)t1,t2 · · · · · S(x)tn−1,tn .

Moreover, if we have a time series (t0, x0), ..., (tn, xn) ∈ Rd+1, we can treat x as a piecewise linear
path interpolating the data. Based on Example A.2, one can observe that

S(x)t0,tn = exp⊗ (xt1 − xt0) · exp⊗ (xt2 − xt1) · · · · · exp⊗
(
xtn − xtn−1

)
,

which is widely used in Python packages such as esig or iisignature.
Example A.3 (Example of shuffle identity). Consider a smooth path x = (x1

t , x
2
t ) : [a, b] → R2 .

⟨e1, S(x)a,b⟩⟨e2, S(x)a,b⟩ =
∫
a<t<b

dx1
t

∫
a<t<b

dx2
t

=

∫
a<t<b

ẋ1
tdt

∫
a<t<b

ẋ2
tdt

by parts
=

∫
a<t<b

⟨e2, S(x)a,t⟩ẋ1
tdt+

∫
a<t<b

⟨e1, S(x)a,t⟩ẋ2
tdt

= ⟨e2,1, S(x)a,b⟩+ ⟨e1,2, S(x)a,b⟩.

By the shuffle identity, we have

⟨e1, S(x)a,b⟩⟨e2, S(x)a,b⟩ = ⟨e1, S(x)a,b⟩⟨e2, S(x)a,b⟩
= ⟨e1 � e2, S(x)a,b⟩
= ⟨e1,2 + e2,1, S(x)a,b⟩
= ⟨e1,2, S(x)a,b⟩+ ⟨e2,1, S(x)a,b⟩,

which is exactly the same as what we derived via integration by parts.

Example A.4 (Example of half-shuffle computations). Consider a two-dimensional real-valued
smooth path x̂ = (t, x(t)) : [a, b] → R2 with x(a) = 0. The first-level signature can computed as
follows:

⟨e1, S(x̂)a,t⟩ =
∫ t

a

ds = t− a, ⟨e2, S(x̂)a,t⟩ =
∫ t

a

d (x(s)) = x(t)− x(a) = x(t).

Then, one can express all integrals in terms of powers of t − a and x(t) by signatures of x̂. For
example, let n,m ∈ N0,∫ b

a

(t− a)nx(t)mdt =

∫ b

a

(t− a)nx(t)md(t− a)

=

∫ b

a

(⟨e1, S(x̂)a,t⟩)n (⟨e2, S(x̂)a,t⟩)m d (⟨e1, S(x̂)a,t⟩)

= ⟨(e�n
1 � e�m

2 ) ≻ e1, S(x̂)a,b⟩,

which is followed by the shuffle identity and right half-shuffle product in integrals.

B ORTHOGONAL POLYNOMIALS AND FOURIER SERIES

In this section, we introduce the background material on orthogonal polynomials and the Fourier
series necessary for the signature inversion formulae presented in the next section.
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B.1 ORTHOGONAL POLYNOMIALS

B.1.1 INNER PRODUCT AND ORTHOGONALITY

Consider a dot product (x, y) =
∑n

i=1 xiyi, where x, y ∈ Rn. If weights w1, · · · , wn ∈ R+ are
defined, (x, y)w =

∑n
i=1 wixiyi is measured as a weighted dot product, where (·, ·)w can be written

as (·, ·) for simplicity.

For p ∈ [1,∞), Lp
w(Ω) is the linear space of measurable functions from Ω to R such that their

weighted p-norms are bounded, i.e.

L2
w(Ω) =

{
v is measurable in Ω

∣∣∣∣ ∫
Ω

|v(t)|2w(t)dt < ∞
}
.

For example, let dα be a non-negative Borel measure supported on the interval [a, b] and V =

L2
w(a, b). One can define (f, g) =

∫ b

a
f(t)g(t)dα(t) as a Stieltjes integral for all f, g ∈ V. Note that

if α(t) is absolutely continuous, which will be the setting throughout this section, then one can find a
weight density w(t) such that dα(t) = w(t)dt. In this case, the definition of inner product over a
function space reduces to an integral with respect to a weight function, i.e.

(f, g) =

∫ b

a

f(t)g(t)w(t)dt.

We can then refer an orthogonal polynomial system to be orthogonal with respect to the weight
function w. We denote P[t] ⊂ L2

w(Ω) as the space of all polynomials. A polynomial of degree n,
p ∈ Pn[t], is monic if the coefficient of the n-th degree is one.
Definition B.1 (Orthogonal polynomials). For an arbitrary vector space V, u and v are orthogonal
if (u, v) = 0 with all u, v ∈ V. When V = P[t], a sequence of polynomials (pn)n∈N ∈ P[t] is called
orthogonal polynomials with respect to a weight w if for all m ̸= n,

(pn, pm) =

∫
pn(t)pm(t)w(t)dt = 0,

where deg(pn) = n is the degree of a polynomial. Furthermore, we say the sequence of orthogonal
polynomials is orthonormal if (pn, pn) = 1 for all n ∈ N.

For simplification, the inner product notation (·, ·) will be used without specifying the integral
formulation for the orthogonal polynomials. To construct a sequence of orthogonal polynomials in
Definition B.1, one can follow the Gram-Schmidt orthogonalisation process, which is stated below.
Theorem B.1 (Gram-Schmidt orthogonalisation). The polynomial system (pn)n∈N with respect to
the inner product (·, ·) can be constructed recursively by

p0 = 1, pn = tn −
n−1∑
i=1

(tn, pi)

(pi, pi)
pi for n ≥ 1 (17)

From the orthogonalisation process in Theorem B.1, we can see that the n-th polynomial pn has degree
n exactly, which means (pn)n∈N is a basis spanning P[t]. Furthermore, the orthogonal construction
makes the orthogonal polynomial system an orthogonal basis with respect to the corresponding inner
product. The following proposition forms an explicit expression for coefficients of (pk)k∈{0,··· ,n} in
an arbitrary n-th degree polynomial.
Proposition B.1.1 (Orthogonal polynomial expansion). Consider an arbitrary polynomial x(t) ∈
Pn[t]. One can express x(t) by a sequence of orthogonal polynomials (pk)k∈{0,··· ,n}, i.e.

x(t) =

n∑
k=0

(pk, x)

(pk, pk)
pk(t).

Remark. We have stated the orthogonal polynomial expansion for x ∈ Pn[t]. In general, by the
closure of orthogonal polynomial systems in L2

w(a, b), arbitrary f ∈ L2
w(a, b) can be written as an

infinite sequence of orthogonal polynomials.

f(t) =

∞∑
k=0

(pk, f)

(pk, pk)
pk(t).
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The N -th degree approximation of f is the best approximating polynomial with a degree less or equal
to N , denoted by

PNf(t) =

N∑
k=0

(pk, f)

(pk, pk)
pk(t). (18)

B.1.2 BASIC PROPERTIES

Here, we will list the main properties of orthogonal polynomials significant for our application.

THE THREE-TERM RECURRENCE RELATION

Theorem B.2 (Three-term recurrence relation). A system of orthogonal polynomials (pn)n∈N with
respect to a weight function w satisfies the three-term recurrence relation.

p0(t) = 1, p1(t) = A1t+B1, pn+1(t) = (An+1t+Bn+1)pn(t) + Cn+1pn−1(t),

for all n ∈ N, and Ai > 0 for all i ∈ N0.

Before proving the recurrence relation, we will first show that an orthogonal polynomial is orthogonal
to all polynomials with a degree lower than that of itself.
Lemma B.2.1. A polynomial q(t) ∈ Pn[t] satisfies (q, r) = 0 for all r(t) ∈ Pm[t] with m < n if and
only if q(t) = pn(t) up to some constant coefficient, where pn(t) denotes the orthogonal polynomial
with degree n.

Proof. =⇒: Consider q(t) = αnt
n +O(tn−1) and pn(t) = α̃nt

n +O(tn−1). Then we define

s(t) = q(t)− αn

α̃n
pn(t) = O(tn−1),

which has a degree at most n− 1. Therefore, for all m < n,

(s, pm) = (q, pm)− αn

α̃n
(pn, pm) = 0.

The former inner product (q, pm) = 0 by assumption, while the latter inner product (pn, pm) = 0 by
orthogonality. By Proposition B.1.1,

s(t) =

n−1∑
m=0

(pm, s)

(pm, pm)
pm(t) = 0 =⇒ q(t) =

α̃n

αn
pn(t).

⇐=: Consider r(t) =
∑m

k=0 rkpk(t). Let q(t) = cpn(t). Using the linearity of the inner product
and orthogonality of (pn)n∈N, for all m < n,

(q, r) =

(
cpn(t),

m∑
k=0

rkpk(t)

)
= c

m∑
k=0

rk(pn(t), pk(t)) = 0.

Now, we have enough tools to prove the famous three-term recurrence relation.

Proof of Theorem B.2. Consider a sequence of orthogonal polynomials (pn)n∈N. When n = 1, p1
can be expressed as A1t + B1 for A1, B1 ∈ R. This is because p1 is an element in an orthogonal
basis with degree 1. Based on the inner product of orthogonal polynomials,

(pk, tpn) =

∫
tpk(t)pn(t)w(t)dt = (tpk, pn).

Therefore, for 0 ≤ k < n − 1, we have (pk, tpn) = 0 by Lemma B.2.1. Since tpn(t) has degree
n+ 1, by Proposition B.1.1,

tpn(t) =

n+1∑
k=0

(pk, tpn)

(pk, pk)
pk(t) =

n+1∑
k=n−1

(pk, tpn)

(pk, pk)
pk(t) = αn−1pn−1(t) + αnpn(t) + αn+1pn+1(t)

=⇒ pn+1 =

(
1

αn+1
t− αn

αn+1

)
pn(t)−

αn−1

αn+1
pn−1(t),

which completes the proof.
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Remark. Recurrence is the core property of orthogonal polynomials in our setting, as one can find
higher-order coefficients based on lower-order coefficients given the analytical form of the orthogonal
polynomials. This idea coincides with the shuffle identity of signatures. As stated in Theorem 3.2,
one can construct an explicit recurrence relation for coefficients of orthogonal polynomials by linear
functionals acting on signatures.

APPROXIMATION RESULTS FOR FUNCTIONS IN L2
w

Without loss of generality, consider f ∈ L2
w(−1, 1), as we can always transform an arbitrary interval

[a, b] linearly into the interval [−1, 1]. Recall the N -th degree approximation PNf(t) defined in
Equation (18). The uniform convergence of the N -th degree approximation PNf(t) to f can be
found in Atkinson (2009), where we obtain

1√
2π

∥f − PNf∥2 ≤ ∥f − PNf∥∞ ≤ (1 + ∥PN∥)∥f − q∥∞, q ∈ PN ,

where ∥PN∥ relates to the system of orthogonal polynomials, and ∥f − q∥∞ depends on the smooth-
ness of f . In the case of Chebyshev polynomials, where the weight function is w(t) = 1/

√
1− t2,

∥PN∥ = 4
π log n+O(1) (Atkinson, 2009). For some α ∈ (0, 1],

∥f − PNf∥2 ≤ ck
logN

Nk+α
for N ≥ 2.

The bound result is shown numerically in Figure 6.
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Figure 6: Approximation (left) and convergence of L2 error (right) results for Chebyshev polynomials
with increasing degree N . As N increases, the colours change from blue to red in the left plots.
Paths are given by (from top to bottom): x1(t) = cos(10t)− sin(2πt), x2(t) = sin(10t) + e2t − t,
x3(t) = 2|2t− 1| − 1.

B.1.3 EXAMPLES

In this subsection, we will provide two general orthogonal polynomial families, Jacobi polynomials
and Hermite polynomials, which will be used for signature inversion in the next section. Figure 7
visualises the first few polynomials of these two kinds.
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Figure 7: Visualisation of the first 7 Legendre and Hermite polynomials.

JACOBI POLYNOMIALS

Jacobi polynomials p(α,β)n are a system of orthogonal polynomials with respect to the weight function
w : (−1, 1) → R such that

w(t;α, β) = (1− t)α(1 + t)β .

There are many well-known special cases of Jacobi polynomials, such as Legendre polynomials p(0,0)n

and Chebyshev polynomials p(−1/2,−1/2)
n . In general, the analytical expression of Jacobi polynomials

(Ismail, 2005) is defined by the hypergeometric function 2F1:

p(α,β)n (t) =
(α+ 1)n

n!
2F1(−n, 1 + α+ β + n;α+ 1;

1

2
(1− t)),

where (α+ 1)n is the Pochhammer’s symbol. For orthogonality, Jacobi polynomials satisfy∫ 1

−1

(1−t)α(1+t)βp(α,β)m (t)p(α,β)n (t) =
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ α+ β + 1)n!
δnm, α, β > −1,

where δmn is the Kronecker delta. For fixed α, β, the recurrence relation of Jacobi polynomials is

p(α,β)n (t) =
2n+ α+ β − 1

2n(n+ α+ β)(2n+ α+ β − 2)

(
(2n+ α+ β)(2n+ α+ β − 2)t+ α2 − β2

)
p
(α,β)
n−1 (t)

− (n+ α− 1)(n+ β − 1)(2n+ α+ β)

n(n+ α+ β)(2n+ α+ β − 2)
p
(α,β)
n−2 (t).

HERMITE POLYNOMIALS

Hermite polynomials are a system of orthogonal polynomials with respect to the weight function
w : (−∞,∞) → R such that w(t) = exp(−t2/2). These are called the probabilist’s Hermite
polynomials, which we will use throughout the section. There is another form called the physicist’s
Hermite polynomials with respect to the weight function w(t) = exp(−t2). The explicit expression
of the probabilist’s Hermite polynomials can be written as

Hn(t) = n!

⌊n
2 ⌋∑

m=0

(
−1

2

)m
tn−2m

m!(n− 2m)!
,

with the orthogonality property∫ ∞

−∞
Hm(t)Hn(t)e

− t2

2 dt =
√
2πn!δmn. (19)

Lastly, we state the recurrence relation of Hermite polynomials as Hn+1(t) = xHn(t)− nHn−1(t).
Note that the weight of Hermite polynomials can be viewed as an unnormalised normal distribution. If
we are more interested in a particular region far away from the origin, we can define a “shift-and-scale”
version of Hermite polynomials with respect to the weight

wt0,ϵ(t) = exp((t− t0)
2/2ϵ2),

where t0 denotes the new centre and ϵ measures standard deviation. Let (Ht0,ϵ
n )n∈N denote the

shift-and-scale Hermite polynomials. Then, the orthogonality property is∫ ∞

−∞
Ht0,ϵ

m (t)Ht0,ϵ
n (t)e−

(t−t0)2

2ϵ2 dt = ϵ

∫ ∞

−∞
Ht0,ϵ

m (t0 + ϵy)Ht0,ϵ
n (t0 + ϵy)e−

y2

2 dy,
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by substitution y = (t− t0)/ϵ. Hence, if

Ht0,ϵ
n (t0 + ϵy) = Hn(y), n ∈ N, (20)

then (Ht0,ϵ
n )n∈N is an orthogonal polynomial system with orthogonality∫ ∞

−∞
Ht0,ϵ

m (t)Ht0,ϵ
n (t)e−

(t−t0)2

2ϵ2 dt = ϵ

∫ ∞

−∞
Hm(y)Hn(y)e

− y2

2 dy = ϵ
√
2πn!δmn,

which follows from the orthogonality of Hermite polynomials in Equation (19). Similarly, the
connection between Hermite and shift-and-scale Hermite polynomials in Equation (20) provides a
way to find the explicit form and recurrence relation of (Ht0,ϵ

n )n∈N, which are

Ht0,ϵ
n (t) = n!

⌊n
2 ⌋∑

m=0

(
−1

2

)m
1

m!(n− 2m)!

(
t− t0
ϵ

)n−2m

, (21)

Ht0,ϵ
n+1(t) =

1

ϵ
(t− t0)H

t0,ϵ
n (t)− nHt0,ϵ

n−1(t). (22)

Remark. Note that there is a simple expression for (Ht0,ϵ
n )n∈N at t = t0. One can easily observe

that

Ht0,ϵ
n (t0) =

{(
− 1

2

)n
2 n!

n
2 ! for even n

0 for odd n
.

B.2 FOURIER SERIES

One can also represent a function by a trigonometric series. Here, we only present a brief introduction
to the Fourier series, providing complementary details to the main result in Theorem 3.1.

B.2.1 TRIGONOMETRIC SERIES

Let f ∈ L1(−π, π). The Fourier series of f is defined by

F (t) =
a0
2

+

∞∑
k=1

(ak cos(kt) + bk sin(kt)) ,

where

ak =
1

π

∫ π

−π

f(t) cos(kt)dx, k ≥ 0

bk =
1

π

∫ π

−π

f(t) sin(kt)dx, k ≥ 1,

which can be derived from the orthogonal bases {cos kt}k and {sin kt}k. More generally, we can
extend the period to 2l ∈ R. For f ∈ L1(−l, l) and k ∈ Z,

F (t) =

∞∑
n=−∞

cke
i 2π

l kt, ck =
1

l

∫ l

0

f(t)e−i 2π
l ktdt. (23)

In the setting of the Fourier series, the expression for the k-th coefficient ck in the exponential form
can be defined as a linear functional Lk(x) = cxk on the space of Fourier series, for x ∈ L1(−l, l).

B.2.2 CONVERGENCE

Note that F (t) and f(t) are closely related. Under some regularity conditions, F (t) converges to
f(t). But in other cases, F (t) may not converge to f(t) or even a limit (Atkinson, 2009). To examine
the convergence of the Fourier series, we define the partial sum of the Fourier series as

SNf(t) =
a0
2

+

N∑
k=1

(ak cos(kt) + bk sin(kt)) .

Now we present pointwise convergence and uniform convergence results (Atkinson, 2009) of the
Fourier series for various functions.
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Theorem B.3 (Pointwise convergence for bounded variation). For a 2π-periodic function f of
bounded variation on [−π, π], its Fourier series at an arbitrary t converges to

1

2

(
f(t−) + f(t+)

)
.

Theorem B.4 (Uniform convergence for piecewise smooth functions). If f is a 2π-periodic piecewise
smooth function,

(a) if f is also continuous, then the Fourier series converges uniformly and continuously to f ;

(b) if f is not continuous, then the Fourier series converges uniformly to f on every closed
interval without discontinuous points.

Theorem B.5 (Uniform error bounds). Let f ∈ Ck,α
p (2π) be a 2π-periodic k times continuously

differentiable function that is Hölder continuous with the exponent α ∈ (0, 1]. Then, the 2-norm and
infinity-norm bound of the partial sum SNf can be expressed as

1√
2π

∥f − SNf∥2 ≤ ∥f − SNf∥∞ ≤ ck
logN

Nk+α
, for N ≥ 2.

For functions only defined in an interval [a, b], we can always shift and extend them to be 2π-periodic
functions. These theorems guarantee the convergence of common functions we will use in later
experiments. To illustrate this, Figure 8 shows how the convergence theories match with numerical
results. In particular, note that compared with the path x2(t) = sin(10t) + e2t − t, the other 2 paths
have better convergence results. The main reason is that the Fourier series of x2 at t = ±1 does not
pointwise converge to x2(±1). Since the Fourier series treats the interval [−1, 1] as one period over
R, by Theorem B.3, the series will converge to (x2(−1) + x2(1))/2 at t = ±1, leading to incorrect
convergence at boundaries. This property also arises in real-world non-periodic time series, leading
us to introduce the mirror augmentation later in Appendix E.

Comparing Figures 6 and 8, one can observe that orthogonal polynomials are better at approximating
continuously differentiable paths, while Fourier series coefficients are better at estimating paths with
spikes, and their computation is more stable in the long run. In a later section, Figure 9 provides a
summary of convergence results for different types of orthogonal polynomials and Fourier series,
which also match the results shown here.

B.3 APPROXIMATION QUALITY OF ORTHOGONAL POLYNOMIALS AND FOURIER SERIES

Finally, we present a numerical comparison of the approximation results given by the methods
introduced above.

B.3.1 EXPERIMENT SETUP

The experiment is set to compare

• Legendre polynomials: w(t) = 1

• two types of Jacobi polynomials: w(t) =
√
1 + t, w(t) =

√
1− t

• three types of shift-and-scale Hermite polynomials with different variance for pointwise
approximation: ϵ = 0.1, 0.05, 0.01

• Fourier series

For pointwise approximation via the Hermite polynomials, each sample point ti of the function will
be approximated by a system of Hermite polynomials centred at the point ti, i.e., (Hti,ϵ

n )n∈N. To
test approximation quality, we simulate random polynomial functions and random trigonometric
functions. The L2 error is then obtained by an average of L2 errors from approximations of 10
functions of each type.

B.3.2 APPROXIMATION RESULTS

Figure 9 illustrates the reduction in the L2 error given by an increase in the order of orthogonal
polynomials and Fourier series. Among all bases considered, the Fourier series delivers the least
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Figure 8: Approximation (left) and L2 convergence (right) results for Fourier series by increasing
order N , with the same experimental setting as Figure 6.

desirable approximation result for both path types, attributable to the non-guarantee of pointwise
convergence at ±1 given boundary inconsistencies. Three Jacobi polynomials, including Legendre
polynomials, exhibit comparable approximation outcomes, with a slight convergence advantage noted
for Legendre polynomials. Conversely, Hermite polynomials demonstrate a significantly reduced
approximation error, potentially due to their shifting focus on the point of interest. However, reducing
ϵ to achieve greater concentration on sample points can quickly inflate the coefficients of Hermite
polynomials, particularly when ϵ is exceedingly small. This behaviour is corroborated by the analytic
form and the recurrence relation of the shift-and-scale Hermite polynomials as shown in Equation
(21) and Equation (22). Accordingly, Hermite polynomials with ϵ = 0.01 do not outperform those
with ϵ = 0.05. It is also worth noting that the the step-like pattern of decrease observable in Hermite
polynomials can be traced back to Remark B.1.3. Figure 10 shows the L2 approximation error of
different bases for two of our real-world datasets. Here, we see that apart from using shift-and-scale
Hermite polynomials which come with additional complexity (see Figure 3), the Fourier series seems
to be the best candidate for signature inversion.
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Figure 9: L2 approximation error using different bases. The figures (from left to right) are the
corresponding error averaged over 10 random polynomial and trigonometric functions.
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Figure 10: Real data L2 approximation error using different bases. The figures (from left to right)
are the corresponding error averaged over 10 random samples from the HEPC and Exchange rates
datasets.

The approximation results elucidate that the Fourier series, in requiring additional assumptions about
function values at boundaries, fail to achieve pointwise convergence across all points as effectively
as orthogonal polynomials, which generally excel in approximating smooth paths. Among the
orthogonal polynomials, Hermite polynomials, even of low degrees, can approximate functions with
remarkable precision. However, this precision comes at the cost of extended computation times for
each sample point. To mitigate computational expense, we henceforth use Hermite polynomials with
ϵ = 0.05 as the representative of the Hermite family. The findings presented in Figures 9 and 10 play
a crucial role in our signature inversion method, as they establish a benchmark for the best possible
performance attainable in path reconstruction from signatures.

C PROOFS OF SIGNATURE INVERSION

In this section, we present the formal proofs of the signature inversion Theorem 3.2 and Theorem 3.1,
along with the remark in Section 3.2 about Taylor approximation of the weight function.

C.1 PROOF OF ORTHOGONAL POLYNOMIAL INVERSION THEOREM 3.2

Recall the statement in Theorem 3.2 deriving the n-th polynomial coefficient αn (see Equation (10))
via a recurrence relation:

Let x : [a, b] → R be a smooth path such that x(a) = 0. Consider the augmentation x̂(t) =
(t, ω(t)x(t)) ∈ R2, where ω(t) corresponds to the weight function of a system of orthogonal
polynomials (pn)n∈N, and is well defined on the closed and compact interval [a, b]. Then, there
exists a linear combination ℓn of words such that the nth coefficient in Equation (10) satisfies
αn = ⟨ℓn, S(x̂)⟩. Furthermore, the sequence (ℓn)n∈N satisfies the following recurrence relation

ℓn = An
(pn−1, pn−1)

(pn, pn)
e1 ≻ ℓn−1 + (Ana+Bn)

(pn−1, pn−1)

(pn, pn)
ℓn−1 + Cn

(pn−2, pn−2)

(pn, pn)
ℓn−2,

with

ℓ0 =
A0

(p0, p0)
e21 and ℓ1 =

A1

(p1, p1)
(e121 + e211) +

A1a+B1

(p1, p1)
e21.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Proof. One can express the first two coefficients in an orthogonal polynomial expansion of x by the
signature:

α0 =
1

(p0, p0)

∫ b

a

A0x(t)ω(t)dt

= ⟨ A0

(p0, p0)
e2 ≻ e1, S(x̂)⟩

= ⟨ A0

(p0, p0)
e21, S(x̂)⟩

= ⟨ℓ0, S(x̂)⟩

α1 =
1

(p1, p1)

∫ b

a

(A1t+B1)x(t)ω(t)dt

=
A1

(p1, p1)

∫ b

a

(t− a)x(t)ω(t)dt+
A1a+B1

(p1, p1)

∫ b

a

x(t)ω(t)dt

=
A1

(p1, p1)
⟨(e1 � e2) ≻ e1, S(x̂)⟩+

A1a+B1

(p1, p1)
⟨e21, S(x̂)⟩

= ⟨ A1

(p1, p1)
(e121 + e211) +

A1a+B1

(p1, p1)
e21, S(x̂)⟩

= ⟨ℓ1, S(x̂)⟩.
Then one can find ℓn recursively by multiplying both sides of Equation (9) by x(t)ω(t) and integrating
on [a, b]:

∫ b

a

pn(t)x(t)ω(t)dt =

∫ b

a

(Ant+Bn)pn−1(t)x(t)ω(t)dt+

∫ b

a

Cnpn−2(x)x(t)ω(t)dt

=An

∫ b

a

(t− a)d

(∫ t

a

pn−1(s)x(s)ω(s)ds

)
+ (Ana+Bn)

∫ b

a

pn−1(t)x(t)ω(t)dt

+ Cn

∫ b

a

pn−2(x)x(t)ω(t)dt.

By definition of αn, ∫ b

a

pn(t)x(t)ω(t)d = (pn, pn)αn = (pn, pn)⟨ℓn, S(x̂)⟩

An

∫ b

a

(t− a)d

(∫ t

a

pn−1(s)x(s)ω(s)ds

)
= An(pn−1, pn−1)⟨e1 ≻ ℓn−1, S(x̂)⟩

(Ana+Bn)

∫ b

a

pn−1(t)x(t)ω(t)dt = (Ana+Bn)(pn−1, pn−1)⟨ℓn−1, S(x̂)⟩

Cn

∫ b

a

pn−2(x)x(t)ω(t)dt = Cn(pn−2, pn−2)⟨ℓn−2, S(x̂)⟩.

Therefore, the recurrence relation of linear functions on the signature retrieving the coefficients of
orthogonal polynomials is

⟨ℓn, S(x̂)⟩ =An
(pn−1, pn−1)

(pn, pn)
⟨e1 ≻ ℓn−1, S(x̂)⟩

+ (Ana+Bn)
(pn−1, pn−1)

(pn, pn)
⟨ℓn−1, S(x̂)⟩

+ Cn
(pn−2, pn−2)

(pn, pn)
⟨ℓn−2, S(x̂)⟩.
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From the proof, there are several assumptions about orthogonal polynomials made to derive the
recurrence relation. Firstly, the interval defined on the inner space is compact. Secondly, w(t) is
well defined on the closed interval. This may lead to a limited range of orthogonal polynomials.
For example, since the range of Hermite polynomials is not bounded, they are not applicable based
on our theorem. However, if we use a shift-and-scale version of the polynomials with most of the
weight density centred at a point, their weight can be truncated to a compact interval numerically.
The relation between the original Hermite polynomials and the shift-and-scale Hermite polynomials
is stated in Equation (20). One can centre the weight density using a small enough ϵ and shift it to a
point of interest ti. Since the non-zero density is centred as a small interval, Theorem 3.2 can be used
on the truncated density over the interval.

C.2 REMARK ON TAYLOR APPROXIMATION OF THE WEIGHT FUNCTION

The results in Theorem 3.2 require signatures of x̂ = (t, w(t)x(t)). However, sometimes one may
only have signatures of x̃ = (t, x(t)). Here, we propose a theoretically applicable method by
approximating the weight function as a Taylor polynomial.

Consider the Taylor approximation of ω around t = a, i.e.,

ω(t) ≈
M∑
i=0

diω

dti

∣∣∣
t=a

(t− a)i =

M∑
i=0

ωi(t− a)i.

Letting x̃t = (t, x(t)) and

ci := (e2 � e�i
1 ) ≻ e1 = i!(e21...1 + e121...1 + ...+ e1...121),

we have

α0 =
1

(p0, p0)

∫ b

a

A0x(t)ω(t)dt

=
A0

(p0, p0)

M∑
i=0

ωi

∫ b

a

(t− a)ix(t)dt

= ⟨ A0

(p0, p0)

M∑
i=0

ωi(e2 � e�i
1 ) ≻ e1, S(x̃)⟩

= ⟨ A0

(p0, p0)

M∑
i=0

ωici, S(x̃)⟩

= ⟨ℓ0, S(x̃)⟩,

α1 =
1

(p1, p1)

∫ b

a

(A1t+B1)x(t)ω(t)dt

=
1

(p1, p1)

∫ b

a

(A1(t− a) +A1a+B1)x(t)ω(t)dt

=
1

(p1, p1)

M∑
i=0

ωi

∫ b

a

(
A1(t− a)i+1 + (A1a+B1)(t− a)i

)
x(t)dt

= ⟨ 1

(p1, p1)

M∑
i=0

ωi

(
A1(e2 � e�i+1

1 ) + (A1a+B1)(e2 � e�i
1 )
)
≻ e1, S(x̃)⟩

= ⟨ 1

(p1, p1)

M∑
i=0

ωi(A1ci+1 + (A1a+B1)ci), S(x̃)a,b⟩

= ⟨ℓ1, S(x̃)⟩

By induction, the same relation as Theorem 3.2 holds

ℓn = An
(pn−1, pn−1)

(pn, pn)
e1 ≻ ℓn−1 + (Ana+Bn)

(pn−1, pn−1)

(pn, pn)
ℓn−1 + Cn

(pn−2, pn−2)

(pn, pn)
ℓn−2.
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There are several reasons why we say the Taylor approximation method is “theoretically applicable”.
The expansion of the weight function around a point a is hard to find analytically, and even if one
manages to find the series, it may diverge. Secondly, if the series converges, one still needs to
determine how many orders of approximation lead to an error within a certain tolerance. Moreover,
if the convergence rate is slow, more terms in the series are needed, resulting in higher levels of
truncation of the signature. In this case, the computation of the necessary step-n signature for a given
tolerance would increase exponentially.

C.3 PROOF OF FOURIER INVERSION IN THEOREM 3.1

Recall the statement in Theorem 3.1 deriving the Fourier coefficients a0, an, bn (see Equations (5),
(6), (7)) of a path as follows:

Let x : [0, 2π] → R be a periodic smooth path such that x(0) = 0, and consider the augmentation
x̂(t) = (t, sin(t), cos(t)− 1, x(t)) ∈ R4. Then the following relations hold

a0 =
1

2π
⟨e4 ≻ e1, S(x̂)⟩,

an =
1

π

n∑
k=0

k∑
q=0

(
n

k

)(
k

q

)
cos(

1

2
(n− k)π)⟨e4 � e�n−k

2 � e�q
3 ) ≻ e1, S(x̂)⟩,

bn =
1

π

n∑
k=0

k∑
q=0

(
n

k

)(
k

q

)
sin(

1

2
(n− k)π)⟨e4 � e�n−k

2 � e�q
3 ) ≻ e1, S(x̂)⟩.

(24)

Proof. By Multiple-Angle formulas, we have

sin(nt) =

n∑
k=0

(
n

k

)
cosk(t)sinn−k(t) sin(

1

2
(n− k)π), (25)

cos(nt) =

n∑
k=0

(
n

k

)
cosk(t)sinn−k(t) cos(

1

2
(n− k)π). (26)

We can now connect Equation (7), Equation (25), and the shuffle identity of the signature described
in Lemma A.0.1 to obtain and expression for bn as

bn =
1

π

∫ 2π

0

x(t) sin(nt)dt

=
1

π

∫ 2π

0

x(t)

n∑
k=0

(
n

k

)
cosk(t)sinn−k(t) sin(

1

2
(n− k)π)dt

=
1

π

n∑
k=0

(
n

k

)
sin(

1

2
(n− k)π)

∫ 2π

0

x(t) cosk(t)sinn−k(t)dt

=
1

π

n∑
k=0

(
n

k

)
sin(

1

2
(n− k)π)

∫ 2π

0

x(t)((cos(t)− 1) + 1)ksinn−k(t)dt

=
1

π

n∑
k=0

(
n

k

)
sin(

1

2
(n− k)π)

∫ 2π

0

x(t)sinn−k(t)

k∑
q=0

(
k

q

)
(cos(t)− 1)qdt

=
1

π

n∑
k=0

k∑
q=0

(
n

k

)(
k

q

)
sin(

1

2
(n− k)π)

∫ 2π

0

x(t)sinn−k(t)(cos(t)− 1)qdt

=
1

π

n∑
k=0

k∑
q=0

(
n

k

)(
k

q

)
sin(

1

2
(n− k)π)⟨e4 � e�n−k

2 � e�q
3 ) ≻ e1, S(x̂)⟩.

(27)
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Similarly, we rearrange Equation (6) with Equation (26) to obtain the formula for an

an =
1

π

∫ 2π

0

x(t) cos(nt)dt

=
1

π

n∑
k=0

k∑
q=0

(
n

k

)(
k

q

)
cos(

1

2
(n− k)π)⟨e4 � e�n−k

2 � e�q
3 ) ≻ e1, S(x̂)⟩.

(28)

Finally, we get a0 immediately as

a0 =
1

2π

∫ 2π

0

x(t)dt = ⟨e4 ≻ e1, S(x̂)⟩. (29)

D VISUALISING INVERSION BY DIFFERENT BASES

To demonstrate the quality of inversion results, both low-frequency and high-frequency trigonometric
paths are generated. We also showcase the inversion quality of two of our real-world datasets. Figure
11 presents the outcomes of inversions via five different polynomial and Fourier bases. In each plot,
the path reconstruction from the signature is depicted in red, whereas the reconstruction derived
solely from the bases is shown in blue. The latter serves as a benchmark, representing the optimal
outcome achievable through inversion. The reconstruction results rely on 3 main factors, which are

1. the degree/order of bases n and corresponding levels of truncated signatures;
2. the complexity of paths, such as frequency and smoothness;
3. the weight function of orthogonal polynomials.

Factor 1 significantly influences the path reconstruction, consequently leading to a varied performance
in signature inversion. The orders of the bases employed here are described in Table D, establishing a
relationship with the levels of truncated signatures as supported by Theorem 3.2 and Theorem 3.1.
While higher levels of signatures could potentially be utilised, the order of the polynomial and Fourier
coefficients is constrained by the truncation level of the signature. Figure 9 indicates that as the order
increases, the approximation quality improves. It is, therefore, expected that the reconstruction from
signatures will increasingly resemble the original paths.

Factor 2 also crucially contributes to the approximation by bases. A comparison between the first and
second columns of Figure 11 reveals that all bases can approximate the simple path featured in the
first column more accurately. However, the Jacobi polynomials are less effective in approximating the
high-frequency path with the current degree of polynomials, as demonstrated in the second column.
Consequently, more complex paths might yield less satisfactory inversion results due to the limitations
of bases.

Relative to the above factors, factor 3 plays a minor role in the reconstruction process. As observed
in Figure 11, the left tail of Jacobi(0, 0.5) and the right tail of Jacobi(0.5, 0) approximations tend
towards divergence, likely due to overflow errors as their weight functions approach zero at t → ±1.
Meanwhile, the signature inversion of Hermite polynomials, conducted on a pointwise basis, yields
precise results even when lower degrees of polynomials are used due to each sample point being
estimated at the centre of the weight function.

Finally, we provide a brief demonstration of signature inversion on rough paths. Paths are generated
from fractional Brownian motion (FBM) (Mandelbrot & Van Ness, 1968) with Hurst index 0.5 and
0.9. Figure 12 shows the inversion results via different bases on FBM paths. Notably, pointwise
inversion via Hermite polynomials captures more subtle changes in the paths, while inversion via
Fourier coefficients falls behind in this setting. Figure 13 visualises the inversion quality for samples
from the HEPC and Exchange rates datasets. Step-12 signatures are used in the mentioned figures.

E EXPERIMENT DETAILS

In this section, we provide additional details about the experimental setup. We follow the score-based
generative diffusion via a variance-preserving SDE paradigm proposed in Song & Ermon (2019).
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Table 3: Approximation methods with corresponding orders used in Figure 11
Approximation method Order n Level of truncated signature

Legendre 10 n+2=12
Jacobi(0, 0.5) 10 n+2=12
Jacobi(0.5, 0) 10 n+2=12
Hermite (ϵ = 0.05) 2 n+2=4
Fourier 10 n+2=12
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Figure 11: Inversion results for low-frequency and high-frequency example paths, with approximation
bases (from top to bottom) Legendre (Jacobi(0, 0)), Jacobi(0, 0.5), Jacobi(0.5, 0)), Hermite (ϵ =
0.05) and Fourier.
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Figure 12: Inversion results on fractional Brownian motion with Hurst 0.5 and 0.9, with approximation
bases (from top to bottom) Legendre (Jacobi(0, 0)), Jacobi(0, 0.5), Jacobi(0.5, 0), Hermite (ϵ = 0.05)
and Fourier.
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Figure 13: Inversion results on real-world time series. The left column is a sample from the HEPC
dataset. The right column is a sample from the Exchange rates dataset (for readability, we only
plot one of the eight dimensions). The approximation bases (from top to bottom) are Legendre
(Jacobi(0, 0)), Jacobi(0, 0.5), Jacobi(0.5, 0), Hermite (ϵ = 0.05) and Fourier.
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Table 4: KS Test average scores and type I errors on the marginals of time series of length 1000.
Dataset Model t=300 t=500 t=700 t=900

Sines

SigDiffusion (ours) 0.22, 34% 0.24, 45% 0.23, 34% 0.23, 34%
DDO (γ = 1) 0.17, 7% 0.16, 5% 0.20, 16% 0.23, 36%
Diffusion-TS 0.63, 98% 0.59, 98% 0.67, 99% 0.54, 98%
CSPD-GP (RNN) 0.78, 100% 0.55, 100% 0.47, 90% 0.39, 85%
CSPD-GP (Transformer) 0.59, 100% 0.61, 100% 0.57, 100% 0.63, 100%

Predator-prey

SigDiffusion (ours) 0.19, 13% 0.26, 55% 0.21, 30% 0.22, 33%
DDO (γ = 10) 0.35, 96% 0.30, 88% 0.36, 98% 0.41, 100%
Diffusion-TS 1.00, 100% 1.00, 100% 1.00, 100% 1.00, 100%
CSPD-GP (RNN) 0.28, 62% 0.25, 46% 0.37, 91% 0.38, 89%
CSPD-GP (Transformer) 0.80, 100% 0.78, 100% 0.79, 100% 0.74, 100%

HEPC

SigDiffusion (ours) 0.20, 16% 0.19, 11% 0.21, 21% 0.20, 19%
DDO (γ = 1) 0.25, 57% 0.24, 43% 0.25, 50% 0.25, 49%
Diffusion-TS 0.85, 100% 0.87, 100% 0.83, 100% 0.87, 100%
CSPD-GP (RNN) 0.53, 100% 0.54, 100% 0.55, 100% 0.56, 100%
CSPD-GP (Transformer) 1.00, 100% 1.00, 100% 1.00, 100% 1.00, 100%

Exchange rates

SigDiffusion (ours) 0.26, 54% 0.23, 39% 0.22, 35% 0.24, 46%
DDO (γ = 1) 0.19, 18% 0.19, 19% 0.19, 19% 0.20, 20%
Diffusion-TS 0.88, 100% 0.90, 100% 0.91, 100% 0.90, 100%
CSPD-GP (RNN) 0.60, 100% 0.60, 100% 0.56, 100% 0.59, 100%
CSPD-GP (Transformer) 0.99, 100% 0.99, 100% 0.98, 100% 0.99, 100%

Weather

SigDiffusion (ours) 0.33, 78% 0.31, 71% 0.32, 71% 0.32, 69%
DDO (γ = 10) 0.26, 45% 0.26, 47% 0.26, 47% 0.26, 45%
Diffusion-TS 0.49, 99% 0.50, 100% 0.49, 99% 0.49, 100%
CSPD-GP (RNN) 0.57, 100% 0.56, 100& 0.56, 100% 0.56, 100%
CSPD-GP (Transformer) 0.90, 100% 0.92, 100% 0.91, 100% 0.91, 100%

We tune βmin and βmax in Equation (4) to be 0.1 and 5 respectively. We use a denoising score-
matching (Vincent, 2011) objective for training the score network sθ. For sampling, we discretize the
probability flow ODE derived from Equation (4)

dxt = −1

2
β(t)[xt + sθ(t, xt)]dt, t ∈ [0, 1] (30)

with an initial point x0 ∼ N (0, I). To solve the discretized ODE, we use a Tsit5 solver with 128
time steps. We adopt the implementation of the Predictive and Discriminative Score metrics from
TimeGAN (Yoon, 2024). To satisfy the conditions for Fourier inversion, we augment the paths with
additional channels as described in Theorem 3.1, and we add an extra point to the beginning of each
path, making it start with 0.

The model architecture remains fixed throughout the experiments as a transformer with 4 residual
layers, a hidden size of 64, and 4 attention heads. Note that other relevant works (Yuan & Qiao,
2024; Coletta et al., 2024; Biloš et al., 2023) follow a very similar or bigger architecture. We use the
Adam optimizer. We run the experiments on an NVIDIA GeForce RTX 4070 Ti GPU. Table 4 details
additional KS test performance metrics (see Section 5).

For the task of generating time series described in Section 5.2, we fix the number of samples to 1000,
the batch size to 128, the number of epochs to 1200, and the learning rate to 0.001. The details
variable across datasets are listed in Table 5.

If Figure 14 we show a visualisation of the real and synthetic datasets projected onto a 2-dimensional
space using t-SNE (Van der Maaten & Hinton, 2008). Figure 15 shows sample paths for each model
and dataset, compared to the ground truth. Observations from these figures align with the metrics in
Table 1. From Figure 15, one can see how the signature acts as a smoothing filter but can preserve the
cross-dimensional relationships in the data (i.e. the shape of channels with respect to each other).

Choice of inversion basis and order For all datasets, we used the Fourier inversion scheme with
step-4 log-signatures, allowing us to recover the Fourier coefficients up to a2 and b2. This choice was
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1

Figure 14: t-SNE plots (Van der Maaten & Hinton, 2008). Models left to right: SigDiffusion (ours),
DDO, Diffusion-TS, CSPD-GP (RNN), CSPD-GP (Transformer). Datasets top to bottom: Sines,
Predator-prey, HEPC, Exchange rates, Weather.
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2

Figure 15: Sample paths. Left to right: Real data, SigDiffusion (ours), DDO, Diffusion-TS, CSPD-GP
(RNN), CSPD-GP (Transformer). Datasets top to bottom: Sines, Predator-prey, HEPC, Exchange
rates, Weather. Colors denote different path dimensions.

Figure 16: Mean marginal KS score (see Table 4) by signature truncation level. Datasets top to
bottom: Predator-prey, HEPC.
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Table 5: Datasets for long time series generation.
Dataset Mirror augmentation Data points Dimensions

Sines Yes 10000 5
HEPC No 10242 1
Predator-prey No 10000 2
Exchange rates No 6588 8
Weather No 10340 14

guided by initial cross-validation. Since the focus of this work is to demonstrate the effectiveness and
robustness of (log)signatures as time series embeddings in diffusion models, we kept the experimental
setup the same for all datasets. Figure 16 shows the sample quality of two synthetic datasets with
respect to the truncation level of the signature.

The mirror augmentation For many datasets, we might not wish to assume path periodicity as
required in the Fourier inversion conditions in Theorem 3.1. We observed that a useful trick in this
case is to concatenate the path with a reversed version of itself before performing the additional
augmentations. We denote this the mirror augmentation. Table 5 indicates the datasets for which this
augmentation was performed.

Datasets As previously described in Section 5, we measure the performance of SigDiffusions
on two synthetic (Sines and Predator-prey) and three real-world (HEPC, Exchange Rates, Weather)
public datasets. We generate Sines the same way the Sine dataset is generated in TimeGAN (Yoon
et al., 2019), by sampling sine curves at a random phase and frequency but changing the sampling
rate to 1000. Predator-prey is a dataset consisting of sample trajectories of a two-dimensional system
of ODEs adopted from Biloš et al. (2023)

ẋ =
2

3
x− 2

3
xy,

ẏ = xy − y.

We generated Predator-prey on a time grid of 1000 points on the interval t ∈ [0, 10]. HEPC (UCI
Machine Learning Repository, 2024) is a household electricity consumption dataset collected minute-
wise for 47 months from 2006 to 2010. We slice the dataset to windows of length 1000 with a stride
of 200, yielding a dataset of 10242 entries. We select the voltage feature to generate as a univariate
time series. We use the Exchange Rates dataset provided in Lai et al. (2018); Lai (2017) and slice it
with a stride of 1, yielding 6588 time series. Lastly, the Weather dataset was measured and published
by the Max-Planck-Institute for Biogeochemistry (Kolle, 2024). We take the first 14 features from
this dataset describing the the pressure, temperature, humidity, and wind conditions, and we slice the
time series with a stride of 5 to get 10340 samples.

Benchmarks We compare our models to four recent diffusion models for long time series genera-
tion: Diffusion-TS (Yuan & Qiao, 2024), DDO (Lim et al., 2023), and two variants of CSPD-GP (Biloš
et al., 2023) - one with an RNN for a score function and one with a transformer. For Diffusion-TS and
CSPD-GP, we kept the model configurations as they were proposed in the authors’ implementations
for datasets with similar dimensions and number of data points. One exception to this is halving
the batch size for transformer-based architectures due to memory constraints. We also halved the
number of epochs to preserve the proposed number of training steps. As DDO has previously only
been implemented on image-shaped data, we altered the code in the authors’ GitHub implementation
to generate samples of shape (time series length x 1 x number of channels). We always report the
performance for the RBF kernel smoothness hyperparameter y ∈ [0.05, 0.2, 1, 5, 10] corresponding
to the highest predictive score. We trained the model for 300 epochs (see Appendix Section J of the
DDO paper by Lim et al. (2023)) with a batch size of 32 and kept the remaining hyperparameters as
proposed for the Volcano dataset. Table 2 shows the number of parameters and computation times for
each model. We used the publicly available code to run the benchmarks:

• https://github.com/morganstanley/MSML (Stanley, 2024)
• https://github.com/Y-debug-sys/Diffusion-TS (Yuan, 2024)
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• https://github.com/lim0606/ddo (Lim, 2023)
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