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A PSEUDO CODE OF PTOM

Algorithm 1 PToM
Input: Number of MCTS tree Ns, update interval Tu, capacity of the trajectory buffer L, goal set
Gj (j ̸= i), initial belief of agents’ goals b0,0ij (gj).
Output: Actions aK,t

i , planning module network θ, goal-conditioned policy network ω.
for each episode K do

generate initial state of this episode sK,0 randomly
for t = 0 to Tmax − 1 do

repeat
sample gl

−i from bK,t
ij (gj)(j ̸= i)

get Ql(s
K,t, a,gl

−i) (∀a) via MCTS
until Ns times
calculate Qavg(s

K,t, a) (∀a) [Eq. 4]
choose action aK,t

i from πMCTS(a|sK,t) [Eq. 5]
intra-ToM update bK,t+1

ij [Eq. 1]
collect data of this step to the trajectory buffer

end for
if the trajectory buffer is full then

update ω [Eq. 3]
end if
if K × Tmax ≡ 0 (mod Tu) then

update θ [Eq. 6]
end if
inter-ToM update bK+1,0

ij [Eq. 2]
end for

B THEORETICAL ANALYSIS

We aim to offer a concise theoretical analysis. Due to the complexity of environments characterized
by both temporal and spatial structures, attaining theoretical guarantees in such environments can
be inherently challenging. To strike a balance, we have undertaken a verification of the theoretical
guarantee associated with PToM in the matrix games. These games encapsulate the same dilemma of
sequential games. For clarity, our analysis will be conducted in the context of a two-player game, and
the analysis can be extended to games involving a greater number of agents. Consider a two-player
game where both players have two goals: “Cooperate” and “Defect,” resulting in a utility matrix
shown in Table 3.

Table 3: Utility matrix for a two-player game. Each element in the table represents the utility of the
row player (first value) and the utility of the column player (second value). The utility values R, S,
T , and P determine different game paradigms.

Cooperate Defect
Cooperate R,R S, T

Defect T, S P, P

Suppose PToM is the row player. At a certain timestep, the column player selects its goal gcolumn to
be “Cooperate” with a probability of p and to be “efect” with a probability of 1− p. We sample the
opponent’s goal to simulate using Monte Carlo Tree Search (MCTS), with a frequency of p+ ϵ to
“Cooperate” and a frequency of 1− p− ϵ to “Defect.”

In the current state s, we have two possible actions: a1 for cooperation and a2 for defection. During
the MCTS planning process, when the opponent aims to “Cooperate,” we have:

Q(s, a1|gcolumn = “Cooperate”) = R(1 + ϵR)

Q(s, a2|gcolumn = “Cooperate”) = T (1 + ϵT )
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When the opponent aims to “Defect,” we have:

Q(s, a1|gcolumn = “Defect”) = S(1 + ϵS)

Q(s, a2|gcolumn = “Defect”) = P (1 + ϵP )

Thus, we can calculate the overall Q-values as follows:

Q(s, a1) = (p+ ϵ)R(1 + ϵR) + (1− p− ϵ)S(1 + ϵS)

Q(s, a2) = (p+ ϵ)T (1 + ϵT ) + (1− p− ϵ)P (1 + ϵP )

In the learning process, the goal-conditioned policy network is trained using supervised learning, and
its accuracy significantly improves with sufficient rounds of observation. Consequently, the accuracy
of the environment simulation within the Monte Carlo Tree Search (MCTS) algorithm becomes
exceedingly high. In such a scenario, the convergence guarantee of MCTS remains intact, resulting in
a final precision of MCTS that is remarkably high. Specifically, we have |ϵR|, |ϵS |, |ϵT |, |ϵP | ≪ |ϵ|,
and these small error terms can be safely ignored.

Then, when
T + S −R− P

p(R− T ) + (1− p)(S − P )
ϵ < 1,

the optimal strategy that PToM obtains is consistent with the true optimal strategy. Two factors affect
the size of |ϵ|: the accuracy of ToM in inferring the opponent’s goals and the deviation between
frequency and probability when sampling the goal. To address the accuracy issue, we employ two
layers of modules, intra-ToM and inter-ToM, to make accurate predictions as early as possible in each
episode. For the deviation between frequency and probability, we increase the value of Ns to reduce
this deviation. In practical applications, the choice of an appropriate Ns depends on the trade-off
between computational speed and sampling accuracy.

C SCHELLING DIAGRAMS OF SSDS

(a) SSH (b) SPD (c) SS

Figure 3: Schelling diagrams for (a) SSH, (b) SPD, and (c) SS. The black dashed line in (b) shows
the overall average return were the individual to choose defection.

Game types are determined by the relative values of elements in the payoff matrix. The Schelling
diagram compares the rewards of different potential strategies (i.e., cooperation and defection here)
given a fixed number of other cooperators. It is a natural generalization of the payoff matrix for
two-player games to multi-player settings. Here, we use Schelling diagrams to validate our temporal
and spatial extension of the matrix-form games.

Figure 3(a) shows the Schelling diagram of SSH. Defection (i.e., hunting hare) is a safe strategy
as a reasonable reward is guaranteed independent of the other agents’ strategies. Cooperation (i.e.,
hunting stag) poses the risk of being left with nothing (when there are no others hunting stag), but is
more rewarding if at least one other agent hunts stag. That is to say, hunting hare is risk dominant, and
hunting stag is reward dominant. This is consistent with the dilemma described by the matrix-form
stag-hunt game (Bloembergen et al., 2011).

Prisoner’s dilemma describes the tension between self-interest and group benefit. For a player,
the optimal strategy is defection independent of others’ strategies, which brings about the only
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Nash equilibrium where everyone defects. However, from the perspective of the whole group, total
defection leads to minimal group benefit. Instead, group benefit is maximized by mutual cooperation.
Figure 3(b) shows that defection (i.e. collecting apples) is always a better choice than cooperation
(i.e., picking up waste) and that the average reward increases with the number of cooperators. This
demonstrates that SPD keeps the nature of the prisoner’s dilemma.

Different from the prisoner’s dilemma where cooperation incurs cost to the acting players and benefits
only others, in the snowdrift game, the costly cooperation can accrue benefit not only to others but
also to the acting player (Souza et al., 2009). For the snowdrift game, there are two pure-strategy Nash
equilibria: player 1 cooperates and player 2 defects; player 1 defects and player 2 cooperates. That is,
the optimal strategy is playing the strategy different from the coplayer. As shown in Figure 3(c), in
SS, one player’s optimal strategy is cooperation (i.e., removing snowdrifts) when no other players
cooperate, but when there are other cooperators, the optimal strategy is defection (i.e., free-riding).
Our SS is an appropriate extension of the matrix-form snowdrift game.

D GOAL DEFINITION IN SSDS

D.1 SEQUENTIAL STAG-HUNT GAME (SSH)

In SSH, we define two goals: gC as hunting stags and gD as hunting hares.

D.2 SEQUENTIAL SNOWDRIFT GAME (SS)

In SS, we define two goals: gC as removing the drifts, and gD as staying lazy (i.e. not attempting to
remove any snowdrifts). For inter-ToM, the goal gC is decomposed into 6 parts: gCk (1 ≤ k ≤ 6),
where gCk represents removing k snowdrift(s) in one episode. bK,0

ij (gCk) and bK,0
ij (gD) will be

updated according to Eq. 2. During an episode, if the opponent j has removed m snowdrift(s) at time
t of the episode K, our belief bK,t

ij (gCj ) =
∑6

k=m+1 b
K,0
ij (gCk

j ).

For intra-ToM, each snowdrift s is defined as a subgoal gC[s]. We use Eq. 1 conditioned on gC to
update our belief:

bK,t+1
ij (g

C[s]
j |gCj ) =

1

Z1
bK,t
ij (g

C[s]
j |gCj )Pri(a

K,t
j |sK,0:t, g

C[s]
j ),

where Z1 is the normalization factor. We can update our belief of an agent removing a snowdrift s:

bK,t
ij (gC[s]) = bK,t

ij (g
C[s]
j |gCj )b

K,t
ij (gCj ).

At the start of an episode, bK,0
ij (g

C[s]
j |gCj ) is set to be uniform, which means bK,0

ij (g
C[s]
j |gCj ) = 1

6 . We
train the goal-conditioned policy network ω conditioned on gC[s].

D.3 SEQUENTIAL PRISONER’S DILEMMA (SPD)

In SPD, we define two goals: gC as cleaning up waste and gD as collecting apples.

Since each goal can be achieved multiple times in a single episode, PToM updates its prior belief
bK,0
ij at every time when agent j achieves a goal. At the end of the current episode, this value will be

assigned to the prior of the next episode, i.e., bK+1,0
ij .

E IMPLEMENTATION DETAILS

E.1 MCTS SIMULATION DETAILS

As introduced in Sec. 4.2, we run MCTS for Ns rounds. In each round, we run Ni search iterations
(see Browne et al. (2012) for details of each iteration). The score of an action a at state s̃k is:

Score(s̃k, a) = sign(Q(s̃k, a)) log(1 + |Q(s̃k, a)|) + cπθ(a|s̃k)
√∑

a′ N(s̃k, a′)

N(s̃k, a)

16



Under review as a conference paper at ICLR 2024

where Q(s̃k, a) denotes the average return obtained by selecting action a at state s̃k in the previous
search iterations. N(s̃k, a) represents the number of times action a has been selected at state s̃k

in the previous search iterations. πθ(a|s̃k) refers to the policy provided by the network θ. c is the
exploration coefficient. The sign function sign(·) returns a value of 1 if the input is non-negative, and
-1 if the input is negative. We select the action which has the highest score when reaching s̃k at the
selection phase of one search iteration.

E.2 NETWORK ARCHITECTURE

The goal-conditioned policy network ω and the policy-value network for MCTS θ both start with
three convolutional layers with the kernel size 3 and the stride size 1. Three layers have 16, 32, and
32 output channels, respectively. They are connected to two fully connected layers. The first layer
has an output of size 512, and the second layer gives the final output.

E.3 HYPERPARAMETERS

For each result in Table 1, Table 2, and Table 6, we performed 10 independent experiments using
different random seeds. The left-hand side of ± represents the average reward of the 10 trials, and
the right-hand side represents the standard error.

Hyperparameters for PToM are listed in Table 4.

Table 4: Hyperparameters in PToM
SSH SS SPD

horizon weight α 0.99 0.99 0.99
rationality coefficient β 2 2 2

discount factor γ 0.95 0.95 0.95
update interval Tu 2000 2000 2000

capacity of the trajectory buffer L 5000 5000 5000
number of MCTS rounds Ns 8 5 4

number of search iterations for each MCTS Ni 200 200 200
exploration coefficient c 3 6 4

F SUPPLEMENTARY RESULTS

F.1 LONG INTERACTION REFERENCE

To compare and evaluate the performance of few-shot adaptation between PToM and learning
baselines, we train a Long Interaction Reference (LI-Ref) agent to see how well a well-established
RL agent can perform in adaptation to opponents through extensive interactions

Specifically, for every type of opponents, one LI-Ref interacts with them and is trained via A3C to
converge from scratch. During the training phase, opponents’ parameters are fixed, which are the
convergent parameters in their self-play. In the subsequent adaptation phase, the trained LI-Ref agent
is tested in the same way as PToM and baseline algorithms. This process ensures that the LI-Ref
agent engages in extensive interactions with the agents it would encounter during the adaptation
phase. We use the LI-Ref agent’s performance in the adaptation phase as a reference point to explain
PToM’s performance.

PToM performs close to LI-Ref across the majority of scenarios, except when random agents or
exploiters serve as the opponent. This divergence primarily arises from the stability of the opponent’s
behavior in such scenarios, resulting in a relatively consistent optimal policy throughout each episode.
Over an extended duration of interaction, LI-Ref effectively acquires a robust and high-quality policy.
Surprisingly, PToM can even surpass LI-Ref in SPD especially when facing dynamic opponents like
PS-A3C. In such scenarios, the optimal response behavior may change dynamically along with the
opponent’s behavior in an episode. The ability to dynamically model opponents and plan accordingly
within the episode becomes imperative. Such ability may not be entirely compensated by prolonged
interaction experience.
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Table 5: Few-shot adaptation performance of LI-Ref in all three sequential social dilemma paradigms.
The interaction happens between 1 LI-Ref agent and 3 other agents using the column policy. Shown
is the average reward for LI-Ref from 1800 to 2400 step.

learning opponents rule-based opponents

PToM LOLA SI A3C PS-A3C random cooperator exploiter
SSH 3.47± 0.02 3.23± 0.02 3.40± 0.02 3.46± 0.01 3.97± 0.02 1.22± 0.01 3.42± 0.02 0.70± 0.01
SS 31.0± 0.14 20.9± 0.12 23.3± 0.11 22.7± 0.17 32.5± 0.12 16.0± 0.08 36.0± 0.00 12.0± 0.00

SPD 1.6± 0.28 2.0± 0.46 1.3± 0.29 0.0± 0.02 170.4± 5.56 94.2± 1.76 691.0± 0.88 0.0± 0.00

F.2 VISUALIZATION OF BELIEF UPDATE
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Figure 4: Visualization of PToM’s belief in adaptation to one exploiter in SSH. Every blue-filled
circle represents PToM’s inferred probability (i.e., belief) that an opponent hunts stags. The grey line
is a visual guide.

Figure 4 shows the update of a PToM agent’s belief over its opponent’s goal when it faces three
previously unseen exploiters in SSH. In the training phase, four PToM agents interact with each other.
Their beliefs over opponents’ goals converge at hunting stags with a high probability. Thus, at the
start of the adaptation phase shown in Figure 4, PToM’s belief of hunting stags is high. During the
interactions with these previously unseen opponents, PToM keeps updating its belief. PToM’s belief
constantly approaches the true goal of opponents, which is hunting hares.

F.3 ABLATION STUDY

To test the importance and necessity of each component in PToM, we construct three partially ablated
versions of PToM. The agent without inter-ToM (w/o inter-ToM) does not execute the inter-episode
update expressed as Eq. 2. W/o inter-ToM begins each episode with a uniform belief prior. The
agent without intra-ToM (w/o intra-ToM) does not execute the intra-episode update expressed as
Eq. 1. That is, for w/o intra-ToM, bK,t

ij (gj) = bK,0
ij (gj),∀t. The direct-OM agent removes the whole

opponent modeling module of PToM, and utilizes neural networks to model opponents directly. The
opponent policies are mappings from states to actions, and not conditioned on goals. Experimental
results for PToM and its three ablation versions in SSH are shown in Table 6.

In self-play, PToM have an advantage over direct-OM agents. It suggests that utilizing a goal
as a high-level representation of agents’ behavior is beneficial to opponent modeling in complex
environments. On the other hand, compared with w/o inter-ToM and w/o intra-ToM, PToM does
not exhibit a significant advantage in self-play. The inter-ToM and intra-ToM modules may not be
effective in the self-play setting, where a large number of interactions happen.

In the experiments testing few-shot adaptation, PToM outperforms its ablation versions. W/o inter-
ToM agents struggle when facing agents with fixed goals, such as cooperators and exploiters. As the
goals of cooperators and exploiters are fixed, correct actions can be taken immediately if the focal
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Table 6: Performance of PToM and its ablation versions in SSH. In (a) self-play, 4 agents of the
same kind are trained to converge. Shown is the normalized score after convergence. In (b) few-shot
adaptation, the interaction happens between 1 agent using the row policy and 3 other agents using
the column policy. Shown are the min-max normalized scores, with normalization bounds set by the
rewards of LI-Ref and the random policy. The results are depicted for the row policy from 1800 to
2400 step.

(a) Self-play performance

PToM w/o inter-ToM w/o intra-ToM direct-OM
0.9767± 0.0117 0.9708± 0.0146 0.9738± 0.0117 0.9417± 0.0146

(b) Few-shot adaptation performance

learning opponents rule-based opponents

LOLA SI A3C PS-A3C random cooperator exploiter
PToM 0.97± 0.02 0.96± 0.03 0.99± 0.02 0.88± 0.02 0.78± 0.07 1.00± 0.01 0.36± 0.03

w/o inter-ToM 0.97± 0.02 0.95± 0.02 0.92± 0.03 0.87± 0.02 0.78± 0.03 0.96± 0.02 0.31± 0.02

w/o intra-ToM 0.95± 0.02 0.94± 0.03 0.98± 0.02 0.84± 0.01 0.65± 0.04 0.99± 0.02 0.34± 0.03

direct-OM 0.95± 0.01 0.83± 0.03 0.84± 0.02 0.74± 0.03 0.60± 0.04 0.96± 0.03 0.31± 0.02

agent has accurate goal priors. W/o inter-ToM agents lack accurate goal priors at the beginning of an
episode. In every episode, they have to use multiple interactions to infer opponents’ goals and thus
miss out on early opportunities to maximize their interests.

W/o intra-ToM agents exhibit poor performance when facing agents with dynamic behavior such as
LOLA, SI, PS-A3C, and random. These opponents have multiple goals, which all have a non-zero
probability of being chosen. But in a given episode, the specific goals of an opponent can be gradually
determined by analyzing its trajectory in this episode. However, w/o intra-ToM agents can only count
on inter-ToM, which only takes the past episodes into account, but does not consider the information
from the current episode. It results in inaccurate goal estimates in a given episode, which hurts the
performance in few-shot adaptation.

Direct-OM agents are at an overall disadvantage. Their opponent modeling solely relies on the neural
network, which makes it challenging to obtain significant updates during a short interaction. This
leads to inaccurate opponent modeling during the adaptation phase. Furthermore, direct-OM agents
utilize end-to-end opponent modeling, which introduces a higher degree of uncertainty compared
to the goal-conditioned policy. This uncertainty can reduce the precision of the simulated opponent
behavior during planning.

G EMERGENCE OF SOCIAL INTELLIGENCES

There are two kinds of social intelligence, self-organized cooperation and the alliance of the disad-
vantaged, emerging from the interaction between multiple PToM agents in SSH. We make a minor
modification to the game: the game terminates only when the time Tmax = 30 runs out.

Self-organized cooperation. As shown in Figure 5(a), at the start of the game, three agents (blue,
yellow, and purple) are two steps away from the stag at the bottom-right side, and the last agent
(green) is spawned alone in the upper left corner. One simple strategy for the three agents located at
the bottom-right corner is to hunt the nearby stag together. Although this is a riskless strategy, the
three agents each only obtain a reward of 10/3. Instead, if one agent chooses to collaborate with the
green agent at the top-left corner, all four agents each get a reward of 5. This strategy is riskier since
if the green agent chooses to hunt a nearby hare, the collaborative agent will not be able to catch
any stag. We show that PToM is able to achieve the aforementioned risky but rewarding collective
strategy. Specifically, the green agent refuses to catch the hare at his feet and shows the intention
of cooperating with others (see screenshots at step 3 and step 8 in Figure 5(a)). The yellow agent
refuses to catch the stag at the bottom-right corner and chooses to collaborate with the green agent
to hunt the stag in the top-left corner. In this process, all four agents receive the maximum profit.

19



Under review as a conference paper at ICLR 2024

Here, agents achieve pairwise cooperation through independent decision-making, without centralized
assignment of goals. Thus, we call this phenomenon self-organized cooperation.

(a) Self-organized cooperation

(b) Alliance of the disadvantaged

Figure 5: Screenshots for the emergence of (a) self-organized cooperation and (b) alliance of the
disadvantaged. Each panel shows agents’ locations at the current step and the trajectories between
the current step and the previously stated step.

Alliance of the disadvantaged. In addition to the aforementioned game rules, we assume agents
are heterogeneous. Specifically, the yellow agent (Y) is three times greedier than the blue agent (B)
and the green agent (G). That is, when the three agents cooperate to hunt a stag successfully, Y will
get a reward of 6, and the others get 2 each. When Y cooperates with one of B and G, Y will obtain
7.5, the other one gets 2.5. As shown in Figure 5(b), at the start of the game, Y locates between B
and G. Neither B nor G would like to cooperate with Y. Hence they need to move past Y to cooperate
with each other. To achieve this, agents B and G first move closer to each other in the first few steps.
However, to maximize its own profit, agent Y also moves toward B and G and hopes to hunt a stag
with them. To avoid collaboration with agent Y, after agents B and G are close enough to each other,
they move back and forth to mislead Y (see step 3 of Figure 5(b)). Once agent Y makes a wrong
guess of the directions agents B and G move, B and G will get rid of Y, and move to the nearest stag
to achieve cooperation (see Step 4 and 6 of Figure 5(b)), which maximizes the profit of agents B and
G.

From the above two cases, we find that although PToM aims to maximize self-interest, cooperation
emerges from the interaction between multiple PToM agents in SSDs. This shows that it may be
helpful in solving SSDs by equipping agents with the ability to infer others’ goals and behavior and
the ability to fast adjust their own responses.
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