
A Appendix

A.1 Additional results

In this section, we include more detailed results of experiments in Section 5, evaluating the
intermediate-p robustness of models trained on different objectives, across different datasets and
perturbation distributions. Specifically, the intermediate-q robustness metrics we consider, ẐMC and
ẐPS, correspond to estimations of the functional q-norm of the cross entropy loss function evaluated
over the perturbation distribution using the Monte Carlo estimator and the path sampling estimator
respectively. We also include the standard cross entropy loss and adversarial loss metrics for com-
parison purposes. The following results were obtained from multiple training runs using 3 different
random seeds.

MNIST `1-norm ball In Table 4, we report the mean and standard deviation of all intermediate-q
robustness estimates over the `1-norm ball with radius ✏ = 0.3 on MNIST for models trained
according to the cross entropy loss (“Standard”), the Monte Carlo estimate (“MC”), the path sampling
estimate computed with Hamiltonian Monte Carlo (“PS”), and PGD adversarial loss. For training,
we used m = 50 to compute the MC estimate, and m = 25 and L = 2 to compute the path sampling
estimate. The adversarially trained model was trained using PGD with 50 iterations. The evaluation
estimate ẐMC was computed with m = 2000 samples and ẐPS+HMC was computed with m = 100
samples and L = 20 leapfrog steps. The evaluation adversarial loss was computed with PGD with
100 iterations. While both estimators interpolate between loss over random samples (i.e. q = 1),
and adversarial loss (i.e. q = 1), the path sampling estimator with HMC consistently results in
higher (better) estimates of the desired integral for the same number of iterations. These results
also show promise for training according to the path sampling metric, as the models trained with
the PS+HMC estimate of the objective for larger values of q get increasingly better performance
on intermediate-q robustness metrics (i.e. lower ẐPS+HMC) as compared to models trained with the
MC estimate. However, the adversarially trained model still does better in terms of intermediate-q
performance, likely due to the nature of MNIST. We also include test robust accuracy of each trained
model (from the PGD-100 evaluation) in Table 5, which shows that training using these estimates
with increasingly large q does indeed improve worst-case robust performance. We note that we didn’t
include standard accuracy here, because on MNIST, an adversarially trained model doesn’t lose much
in terms of standard performance, however on more challenging datasets, we would expect to see a
similar decrease in standard accuracy as we increase q, and thus one could choose a value of q based
on the desired trade-off between standard and robust accuracy.

CIFAR-10 `1-norm ball In Table 6, we report the mean and standard deviation of all intermediate-
q robustness estimates over the `1-norm ball with radius ✏ = 0.03 on CIFAR-10 in Table 4 for
models trained according to the cross entropy loss (“Standard”), the Monte Carlo estimate (“MC”),
and PGD adversarial loss. For training, we used m = 10 to compute the MC estimate, and the
adversarially trained model was trained using PGD with 10 iterations. The evaluation estimate ẐMC

was computed with m = 500 samples and ẐPS+HMC was computed with m = 50 samples and L = 10
leapfrog steps. The evaluation adversarial loss was computed with PGD with 50 iterations and 10
restarts. The results show that, given enough iterations, the intermediate-q robustness estimates do
interpolate between loss over random samples and loss over worst-case samples. However, given the
more challenging nature of CIFAR-10 vs. MNIST, more samples are needed to get good estimates of
the desired integral, making the problem more computationally intensive. While for models trained
with the MC estimator, we do see an improvement in intermediate-q robust performance from training
with q = 10 vs. q = 1, training using values of q larger than 10 does not provide much, if any,
additional benefit. However, given the same number of iterations, we were not able to improve upon
these results by training using the path sampling estimator, suggesting that the number of samples is
just not large enough to get a good estimate of the objective for either estimator.

CIFAR-10 spatial transformations In Table 7, we report the mean and standard deviation of all
intermediate-q robustness estimates over nondifferentiable spatial transformations on CIFAR-10 for
models trained according to the cross entropy loss (“Standard”) and the Monte Carlo estimate (“MC”).
For training, we used m = 10 to compute the MC estimate. The evaluation estimates ẐMC and ẐPS

were computed with m = 500 samples, where in this case the path sampling estimate ẐPS is based on

13



Table 4: Mean and standard deviation over 3 training runs with different random seeds for experiments
on MNIST for the `1-norm ball with radius 0.3. The results show that the intermediate-q robustness
metrics, ẐMC and ẐPS+HMC, interpolate between loss over random samples (when q = 1) and
adversarial loss (when q = 1), with the path sampling estimator consistently resulting in higher
(better) estimates for larger values of q. Models trained using the PS+HMC estimate with larger q
have better intermediate-q performance (lower ẐPS+HMC) for corresponding values of q than those
trained using the MC estimate.

Train method Standard ẐMC ẐPS+HMC Adv. loss
q = 1 q = 10 q = 102 q = 103 q = 1 q = 10 q = 102 q = 103

Standard 0.028 0.043 0.140 0.251 0.268 0.043 0.160 1.420 4.456 11.649
±0.001 ±0.004 ±0.023 ±0.041 ±0.045 ±0.004 ±0.028 ±0.202 ±0.495 ±0.893

MC q = 1 0.034 0.032 0.084 0.143 0.154 0.032 0.088 0.692 2.133 7.363
±0.001 ±0.000 ±0.001 ±0.002 ±0.003 ±0.000 ±0.002 ±0.026 ±0.087 ±0.435

MC q = 10 0.027 0.026 0.058 0.098 0.105 0.026 0.058 0.412 1.336 3.722
±0.001 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.001 ±0.011 ±0.050 ±0.231

MC q = 102 0.026 0.025 0.055 0.093 0.099 0.025 0.055 0.388 1.261 3.492
±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.015 ±0.069 ±0.291

MC q = 103 0.026 0.025 0.055 0.093 0.100 0.025 0.055 0.390 1.268 3.488
±0.002 ±0.002 ±0.001 ±0.002 ±0.001 ±0.002 ±0.001 ±0.013 ±0.059 ±0.242

PS q = 1 0.037 0.035 0.094 0.163 0.174 0.035 0.101 0.781 2.334 8.881
±0.001 ±0.001 ±0.003 ±0.005 ±0.007 ±0.001 ±0.005 ±0.027 ±0.064 ±0.616

PS q = 10 0.034 0.031 0.075 0.126 0.135 0.031 0.075 0.467 1.307 5.012
±0.001 ±0.001 ±0.001 ±0.002 ±0.003 ±0.001 ±0.001 ±0.014 ±0.029 ±0.353

PS q = 102 0.030 0.028 0.060 0.099 0.107 0.028 0.058 0.304 0.816 2.613
±0.003 ±0.002 ±0.006 ±0.010 ±0.011 ±0.002 ±0.006 ±0.007 ±0.027 ±0.193

PS q = 103 0.024 0.024 0.047 0.077 0.083 0.024 0.045 0.239 0.684 1.646
±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.008 ±0.037 ±0.095

PGD-50 0.032 0.039 0.051 0.076 0.081 0.039 0.048 0.101 0.187 0.270
±0.005 ±0.006 ±0.007 ±0.010 ±0.011 ±0.006 ±0.007 ±0.016 ±0.040 ±0.033

Table 5: Robust accuracy (PGD-100) of experiments on MNIST for perturbations in the `1 ball of
radius ✏ = 0.3.

Training method Robust accuracy
Standard 4.69%
MC q = 1 25.21%
MC q = 10 43.54%
MC q = 102 47.27%
MC q = 103 45.45%
PS q = 1 22.27%
PS q = 10 43.57%
PS q = 102 65.11%
PS q = 103 69.45%
PGD-50 91.55%

using Gaussian random walk Metropolis Hastings to sample from the unnormalized loss distribution
rather than Hamiltonian Monte Carlo due to the non-differentable perturbation distribution. The
evaluation adversarial loss was approximated by averaging the maximum loss value encountered for
each example during the Metropolis Hastings sampling process. As with the case of the `1-norm ball
perturbation distribution on CIFAR-10, a larger number of samples are needed to get good estimates
of the desired integral, making training using these estimates challenging, as shown by the lack
of improvement in robust performance for larger values of q for models trained according to MC
q = 102 vs. MC q = 10.

A.2 Additional figures

We include additional plots showing the convergence of Monte Carlo and path sampling estimates
on a single test batch given an increasing number of samples. In Figure 2, we plot intermediate-q
robustness estimates for q = 10 and q = 100 on a standard trained model over the `1-norm ball

14



Table 6: Mean and standard deviation over 3 training runs with different random seeds for experiments
on CIFAR-10 for the `1-norm ball with radius 0.03. The results show that the intermediate-q
robustness metrics, ẐMC and ẐPS+HMC, interpolate between loss over random samples (when q = 1)
and adversarial loss (when q = 1), with the path sampling estimator consistently resulting in higher
(better) estimates for larger values of q. How to train for better intermediate-q robust performance on
CIFAR-10, while still being computationally reasonable, remains an open question.

Train method Standard ẐMC ẐPS+HMC Adv. loss
q = 1 q = 10 q = 102 q = 103 q = 1 q = 10 q = 102 q = 103

Standard 0.382 0.453 0.787 1.153 1.216 0.453 0.841 2.718 4.991 18.142
±0.002 ±0.006 ±0.023 ±0.037 ±0.039 ±0.006 ±0.026 ±0.090 ±0.117 ±0.448

MC q = 1 0.400 0.405 0.532 0.717 0.756 0.405 0.546 1.490 3.140 14.240
±0.005 ±0.004 ±0.006 ±0.009 ±0.010 ±0.004 ±0.006 ±0.015 ±0.017 ±0.011

MC q = 10 0.393 0.398 0.468 0.598 0.630 0.398 0.471 1.037 2.365 12.051
±0.002 ±0.003 ±0.004 ±0.005 ±0.005 ±0.003 ±0.004 ±0.013 ±0.019 ±0.036

MC q = 102 0.399 0.402 0.466 0.589 0.620 0.402 0.468 0.980 2.269 12.084
±0.003 ±0.003 ±0.003 ±0.003 ±0.004 ±0.003 ±0.003 ±0.006 ±0.020 ±0.135

MC q = 103 0.399 0.405 0.469 0.593 0.625 0.405 0.471 0.993 2.302 12.173
±0.003 ±0.003 ±0.002 ±0.003 ±0.004 ±0.003 ±0.002 ±0.005 ±0.009 ±0.128

PGD-10 0.731 0.733 0.734 0.743 0.761 0.733 0.734 0.743 0.796 1.411
±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.003 ±0.009

Table 7: Mean and standard deviation of robustness estimates over 3 training runs with different
random seeds for experiments on CIFAR-10 with non-differentiable parameterizations of flips,
rotation, translation, and scaling. The results show that the intermediate-q robustness metrics, ẐMC

and ẐPS, interpolate between loss over random samples (when q = 1) and adversarial loss (when
q = 1), with the path sampling estimator consistently resulting in higher (better) estimates for
larger values of q. However, training for intermediate-q robust performance on CIFAR-10 on this
perturbation distribution is more challenging due to the computional complexity.

Train method Standard ẐMC ẐPS Adv. loss
q = 1 q = 10 q = 102 q = 103 q = 1 q = 10 q = 102 q = 103

Standard 0.186 0.450 2.268 3.687 3.865 0.444 2.450 4.636 4.889 5.625
±0.007 ±0.017 ±0.067 ±0.095 ±0.114 ±0.017 ±0.068 ±0.113 ±0.111 ±0.134

MC q = 1 0.154 0.191 0.800 1.246 1.300 0.186 0.879 1.615 1.711 2.021
±0.011 ±0.002 ±0.026 ±0.024 ±0.023 ±0.004 ±0.018 ±0.039 ±0.018 ±0.036

MC q = 10 0.963 1.019 1.086 1.348 1.423 1.015 1.078 1.416 1.502 1.596
±0.014 ±0.012 ±0.010 ±0.027 ±0.029 ±0.012 ±0.010 ±0.033 ±0.078 ±0.038

MC q = 102 2.014 2.131 2.131 2.137 2.164 2.130 2.131 2.136 2.171 2.190
±0.001 ±0.002 ±0.001 ±0.002 ±0.001 ±0.002 ±0.002 ±0.002 ±0.001 ±0.006

perturbation distribution on CIFAR-10 (✏ = 0.3). Again, we see that HMC-based path sampling
provides a much better estimate of the integral than random sampling, especially for higher q, for the
same number of iterations (where iterations for the MC estimate is equal to m samples, and iterations
for the PS+HMC estimate is equal to m samples times L leapfrog steps). Additionally, convergence
plots for robustness estimates over the spatial transformations on CIFAR-10 (described in Section
5.2) are shown in Figure 3, specifically for q = 1 and q = 100 on a standard trained model over the
spatial transformations. We see that path sampling and Monte Carlo sampling converge to nearly the
same estimate for q = 1, but quickly diverge for q = 100, showing that path sampling works much
better as an estimator even when the perturbation set is non-differentiable and we do not have the
advantage of the Hamiltonian Monte Carlo sampler.

A.3 Experimental details

On both the `1 experiments and the spatial transform CIFAR-10 experiments, we train a PreAct
ResNet18 architecture using the SGD optimizer for 200 epochs with a starting learning rate of 0.1,
Nesterov momentum of 0.9, and weight decay 0.0005. On MNIST we train using the Adam optimizer
for 10 epochs with a starting learning rate of 0.001. We use a convolutional ReLU architecture with
two convolutional layers with 32 and 64 channels and kernel sizes of 4⇥ 4, which are followed by a

15



0 1000 2000 3000 4000 5000
Iterations

0.0

0.2

0.4

0.6

0.8

Es
tim

at
e

Path sampling + HMC Monte Carlo

(a)

0 1000 2000 3000 4000 5000
Iterations

0

1

2

3

4

Es
tim

at
e

Path sampling + HMC Monte Carlo

(b)

Figure 2: Comparison of the convergence of the path sampling with HMC estimate (ẐPS+HMC) and
Monte Carlo sampling estimate (ẐMC) of the functional q-norm of the loss over the `1-norm ball
perturbation distribution for (a) q = 10, and (b) q = 1000 with increasing iterations on a standard
trained model on CIFAR-10. Iterations corresponds m for the Monte Carlo estimator, and to m⇥ L

for the path sampling + HMC estimator, where we fix L = 10. For a smaller q = 10 (a), path
sampling with HMC is slightly better than Monte Carlo sampling. For a larger q = 1000 (b), using
path sampling with HMC allows for a much better estimate of robustness.

0 200 400 600 800 1000
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Es
tim

at
e

Path sampling + MCMC Monte Carlo

(a)

0 200 400 600 800 1000
Iterations

0

1

2

3

4

Es
tim

at
e

Path sampling + MCMC Monte Carlo

(b)

Figure 3: Comparison of the convergence of the path sampling (ẐPS) and Monte Carlo sampling
estimate (ẐMC) of the functional q-norm of the loss over the spatial transforms for (a) q = 1, and (b)
q = 100 with increasing iterations (corresponding to number of samples m) on a standard trained
model on CIFAR-10. For a smaller q = 1 (a), Monte Carlo sampling and path sampling converge to
the nearly the same estimate, whereas for a larger q = 100 (b), the estimates diverge quickly, with
path sampling providing a much better estimate given the same number of samples.

fully connected layer with 1024 units. Each training and evaluation run is performed using a single
Quadro RTX 8000 GPU.

A.3.1 `1-norm ball

We use a learning rate schedule that divides the starting learning rate by 10 halfway and two thirds of
the way through training. On CIFAR-10 training, we train for 200 epochs and we also do not use
random flip/crop data augmentation that is typically used for training CIFAR-10. For adversarial
training and evaluation, we set the step size such that ↵ = 2.5 · ✏/m, where m is the number of PGD
steps, and we use early stopping for adversarial training based on the adversarial validation loss. For
training and evaluation runs using HMC-based path sampling, we use � = 0.1, and set the step size

16



such that ↵ = ⇢ · �2
/L. For q = 1 and q = 10, we set ⇢ = 0.6, for q = 100 we set ⇢ = 0.4, and for

q = 1000, we set ⇢ = 0.2.

A.3.2 Non-differentiable spatial transforms

We perform standard training for 50 epochs, and training using the Monte Carlo sampling estimator
(for q = 1, q = 10, and q = 100) for 200 epochs. We use a learning rate schedule that linearly
increases from 0 to the maximum value of 0.1 for the first two fifths of training epochs, and then
linearly decreases to 0. When training using the MC estimator, we do not perform random flip/crop
data augmentation.

17


