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1. Introduction 

We present a data-driven approach for the 
study of dynamical systems away from equilibrium. 
Using the stretching of individual polymer chains as a 
case study, we demonstrate the capability of this 
approach in learning and predicting the stochastic, 
non-equilibrium dynamics. Furthermore, it enables 
the construction of a set of reduced coordinates which 
are found to be physically interpretable, i.e. they are 
related to measurable physical variables. For a fixed 
temperature and flow strength, we can construct an 
energy landscape on the reduced coordinates, and find 
the stationary points of the system. We extend this 
approach to learn dynamics under varied flow 
strengths and temperatures, and use this to construct 
an evolving free energy landscape and phase 
transitions. 
2. Methodology and Results 

Understanding the non-equilibrium dynamics 
of complex systems is an active area of research within 
a range of fields – from nanotechnology [1] to weather 
prediction [2]. Differential equations and microscopic 
simulations are commonly used to describe the 
behavior of such systems, but solving them 
numerically becomes computationally intractable as 
the number of variables increases. Data-driven 
approaches have been proposed as a means of 
addressing this challenge, based on their ability to 
learn from large sets of variables. However, most 
models developed are black-box, trading short term 
predictive accuracy for stability and interpretability 
[3]. Since our aim is to provide meaningful insights 
into the dynamics of systems away from equilibrium, 
we chose to follow the data-driven approaches that 
leverage physical insights to design model 
architectures which have been shown to provide 
better interpretability and long-term predictive 
accuracy [3,4]. 
Our data-driven approach leverages the generalized 
Onsager principle [5] to learn macroscopic dynamical 
descriptions of complex stochastic dissipative systems 
influenced by varying external parameters. The 
approach simultaneously constructs reduced 
thermodynamic coordinates and interprets dynamics 
on these coordinates, addressing challenges of 
complexity and size that arise when constructing 
equations of state. The approach is applied to the 
problem of polymer stretching under elongational 
flow. We are interested specifically in the unfolding of 
DNA molecules because of the growing use of DNA in 
nanotechnology, including in the field of soft 
programmable materials, yet, understanding and 
controlling the deformation of DNA under external 
forces remains a challenge. Our results show that the 

approach is capable of identifying stable states and 
meta-stable states, as well as predicting statistics of 
unfolding accurately for a specific temperature and 
flow rate. The logical progression involves assessing 
the ability of the approach to generalize to varying 
conditions, such as different temperatures and flow 
strengths, in order to define a more comprehensive 
equation of state.  

To achieve this, we extended the model to 
incorporate elongational flow strength and 
temperature, and generated a series of stretching 
trajectories for varied forces and temperatures. The 
objective is to ensure that the thermodynamic 
coordinates remain interpretable and that the energy 
landscape accurately reflects the stable and meta-
stable states associated with each condition. 

In conclusion, we were able to demonstrate 
that the approach can be extended to incorporate 
varying forces with minimal loss of predictive 
accuracy, and capture the energy landscape evolution, 
including changes in stable states and meta-stable 
states. Integrating the approach into the control 
feedback system of a high-throughput single molecule 
platform could enable both a better understanding of 
such systems and enhanced control capabilities of the 
platform. 
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