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ABSTRACT

Large Language Models have shown remarkable efficacy in generating streaming
data such as text and audio, thanks to their temporally uni-directional attention
mechanism, which models correlations between the current token and previous
tokens. However, video streaming remains much less explored, despite a growing
need for live video processing. State-of-the-art video diffusion models leverage bi-
directional temporal attention to model the correlations between the current frame
and all the surrounding (i.e. including future) frames, which hinders them from
processing streaming videos. To address this problem, we present LIVE2DIFF, the
first attempt at designing a video diffusion model with uni-directional temporal
attention, specifically targeting live streaming video translation. Compared to
previous works, our approach ensures temporal consistency and smoothness by
correlating the current frame with its predecessors and a few initial warmup frames,
without any future frames. Additionally, we use a highly efficient denoising
scheme featuring a KV -cache mechanism and pipelining, to facilitate streaming
video translation at interactive framerates. Extensive experiments demonstrate the
effectiveness of the proposed attention mechanism and pipeline, outperforming
previous methods in terms of temporal smoothness and/or efficiency.

1 INTRODUCTION

Large Language Models (LLMs) have recently been very successful in natural language processing
and various other domains (Jiang et al., 2023; 2024; Touvron et al., 2023a;b; Vaswani et al., 2017). At
the core of LLMs is the autoregressive next-token prediction, seamlessly enabling real-time streaming
data generation. Such a mechanism processes data continuously as it streams in, bypassing the need
for batch storage and delayed processing. This token prediction mode has been widely used in many
applications such as dialog systems (Anthropic, 2024; OpenAI, 2024), text-to-speech (Wang et al.,
2023a; Zhang et al., 2023b), audio generation (Copet et al., 2023; Huang et al., 2023; Kreuk et al.,
2022), etc. Despite the recent success of this streamed generation of sequential data like text and
audio, it has not been fully explored for another very common sequential data type: videos. However,
generating videos in a streaming manner is clearly worth investigating given the growing practical
demand, particularly in live video processing, where the original input frames need to be translated
into a target style on the fly.

Motivated by this, we study next-frame-prediction for producing streaming videos, with streaming
video-to-video translation as the target application. Most existing video diffusion models exploit tem-
poral self-attention modeling in a bi-directional manner, where the models are trained on sequences of
input frames to capture the pairwise correlations between all frames in a sequence (Blattmann et al.,
2023a;b; Geyer et al., 2023; Guo et al., 2023; Gupta et al., 2023; Yang et al., 2023). Despite some
promising results, these models have limitations for streaming video. Early frames in a sequence
rely on information from later frames, and vice versa for those at the end, which impedes efficient
real-time processing of each frame as it streams in.

To address this issue, we redesign the attention mechanism of video diffusion models for streaming
video translation, ensuring both high efficacy and temporal consistency. First, we make temporal self-
attention uni-directional via an attention mask, akin to attention in LLMs (Jiang et al., 2023; Vaswani
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Figure 1: We visualize different types of temporal self-attention when the number of frames (F = 8)
exceeds the length of the context window (L = 4). The j-th cell of the i-th row is highlighted if the
output for frame i may contain information from frame j. The red square delineates the attention
mask used during training. (a) shows temporal self-attention in current video diffusion models, which
is bi-directional within the context window without overlap between chunks. (b) uses a sliding
window with overlap Ls (three subsequent positions of which are highlighted in different colors,
for clarity) and fuses the output of overlap regions. (c) denotes the uni-directional attention widely
used in LLMs. (d) shows the attention proposed by our method. We set the initial Lw frames as
warmup frames and apply bi-directional attention to them, while using uni-directional attention for
the subsequent frames. The initial warmup frames also contribute to the output for all future frames.

et al., 2017). This removes the dependency of early frames on later frames in both training and
inference, making the model applicable to streaming videos. However, ensuring both high inference
efficiency and performance on long video streams using unidirectional attention is non-trivial. An
approach is to use dense attention with all previous frames for next-frame prediction. However, it
increases time complexity and decreases performance when the video length exceeds the attention
window size used during training. Another option is to limit temporal self-attention to a smaller fixed
window size during inference. Unfortunately, unlike the sufficient context attention from user input
tokens in LLM (Jiang et al., 2023; Vaswani et al., 2017; Xiao et al., 2023), it is difficult to generate
satisfactory frames with limited context attention at the beginning of the video stream, which further
results in artifacts in later frames. To tackle this, we introduce warmup area in the unidirectional
attention mask, which incorporates bi-directional self-attention modeling to compensate for the
limited context attention at the beginning of the stream. During inference, we include the attention
from a few warmup frames at the start of the stream to the current frame. Such a tailored attention
design ensures both stream processing efficacy and temporal consistency modeling.

Building upon our tailored attention mechanism, we present LIVE2DIFF, a pipeline that processes
LIVE video streams by a uni-directional video DIFFUSION model while ensuring high efficacy and
temporal consistency. First, our attention modeling mechanism removes the influence of later frames
on previous frames, allowing for the reuse of K and V maps from previously generated frames. This
eliminates the need for recomputation when processing subsequent frames. We carefully designed
a KV -cache feature in the diffusion pipeline to cache and reuse K/V maps, resulting in significant
computation time savings. Second, we further include a lightweight depth prior in the input, ensuring
structural consistency with the conditioning stream. Finally, LIVE2DIFF uses the batch denoising
strategy to further improve stream processing efficacy, achieving 16FPS for 512 × 512 videos on
an RTX 4090 GPU. We conduct extensive experiments to validate the superiority of LIVE2DIFF in
terms of temporal smoothness and/or efficiency. We summarize our main contributions as follows,

• To the best of our knowledge, we are the first to incorporate uni-directional temporal attention
modeling into video diffusion models for video stream translation.

• We introduce a new pipeline LIVE2DIFF, which aims at achieving live stream video
translation with both high efficacy (16FPS on an RTX 4090 GPU) and temporal consistency.

• We conduct extensive experiments including both quantitative and qualitative evaluation to
verify the effectiveness of LIVE2DIFF.
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2 RELATED WORK

Attention. LLMs (Jiang et al., 2023; 2024; Touvron et al., 2023a;b) owe their success largely to the
remarkable efficacy of the attention mechanism (Vaswani et al., 2017). In order to support the auto-
regressive prediction of the next token, they use a uni-directional (or “masked”) attention mechanism,
restricting the model to learning the dependence of later tokens on earlier ones, but no dependence
of earlier tokens on later ones. However, for tasks with very long token sequences, relating the
current token to all previous tokens becomes intractable. To address this, STREAMINGLLM (Xiao
et al., 2023) proposes to relate the current token to several initial tokens and a number of most
recent tokens, which improves efficiency in handling long tokens. While such kind of uni-directional
attention is widely used in generating text and audio, video generation has not yet followed this trend:
Bi-directional attention without masks is commonly used in video diffusion models (Blattmann et al.,
2023a;b; Guo et al., 2023; Gupta et al., 2023) to generate video chunks. In this work, we study the use
of uni-directional temporal attention in video diffusion models. While our method draws inspiration
from STREAMINGLLM, it is the first time that such a design is studied in the video domain.

Video Diffusion Models. The multitude of possible conditioning modalities has made diffusion
models the basis for image editing approaches (Meng et al., 2021; Kawar et al., 2023), as well as
video generation models (Guo et al., 2023; Liang et al., 2023; Kodaira et al., 2023). For example,
ANIMATEDIFF (Guo et al., 2023) extends STABLEDIFFUSION by a so-called “motion module”,
enabling the denoising of entire video chunks based on temporal self-attention (Vaswani et al.,
2017). FREENOISE (Qiu et al., 2023) is a method based on pretrained video diffusion models (e.g.
ANIMATEDIFF (Guo et al., 2023)) for long video generation. This method carefully selects and
schedules the latent noise for every time step in order to improve temporal smoothness. However,
FREENOISE, according to their experiments section produces frames at under 3FPS on an NVIDIA
A100 GPU, which is not acceptable in the kinds of live streaming scenarios that we aim at (see
Section 1). FLOWVID (Liang et al., 2023) and RERENDER (Yang et al., 2023) produce frames at
even lower rates, albeit with acceptably smooth results.

Accelerating Diffusion Models. Some recent diffusion-based methods (Luo et al., 2023a;b; Song
et al., 2023; Kodaira et al., 2023) have prioritized low latency and/or high throughput: (Latent)
consistency models (LCMs) (Song et al., 2023; Luo et al., 2023a) have reduced the number of
denoising steps from 50 (the default in STABLEDIFFUSION) to as low as 4, leading to large speed ups
without too much loss in quality. This principle has even been combined with the use of low-rank
matrices for fine-tuning (Luo et al., 2023b), allowing further speedup. A work that very specifically
targets the streaming frame-by-frame translation setting is STREAMDIFFUSION (Kodaira et al., 2023):
Not only is this technique utilizing the aforementioned low-rank-adapted LCMs, but also it denoises
video frames in a “pipelined” manner for the streaming scenario, i.e. the batch of images to be
denoised can contain different levels of remaining noise, allowing new frames to be added to the
batch before previous frames in the batch have been completely denoised, which makes optimal use
of GPU parallelization. However, STREAMDIFFUSION renders videos frame-by-frame without any
temporal modeling, leading to significant temporal discontinuity, which our method avoids due to the
temporal correlations learned during training.

3 METHOD

Our method, LIVE2DIFF, takes as input a stream of video frames, along with a matching text prompt.
It produces a stream of output video frames, the spatial structure of which is similar to that of the
input frames, but the appearance/style of which conforms to a specified target style, captured by
DREAMBOOTH (Ruiz et al., 2023). To achieve this, we replace the bidirectional temporal attention
used in previous approaches by uni-directional attention (Section 3.2). This allows us to cache K
and V maps from previous frames, leading to increased throughput (Section 3.3). Furthermore we
accelerate generation by pipelined denoising, i.e. multiple time steps with different levels of residual
noise are denoised in parallel. By employing LCM-LORA(Luo et al., 2023b) we can drastically
reduce the number of necessary denoising steps, which also helps meet framerate criteria. We stabilize
the spatial structure of frames with lightweight depth injection.
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Figure 2: The training pipeline of LIVE2DIFF. During training, our model takes as inputs L

frames of noisy latents zf :f+L
t and depth conditioning yf :f+L, where f : f + L delimits the frame

interval in a video stream, t is the denoising timestep, ⊕ denotes point-wise addition. And we utilize
a uni-directional attention mask with warmup to simulate the behaviour of streaming data.

3.1 PRELIMINARIES

Diffusion Models. Diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021) aim at undoing the
so-called “forward process”, that iteratively adds Gaussian noise to the representation of a sample
from a distribution. To achieve this, STABLEDIFFUION (Rombach et al., 2022) trains a U-NET
(Ronneberger et al., 2015) to estimate the noise component of a noisy latent representation of any
given image. By repeatedly estimating remaining noise and removing (some of) this noise from the
latent code, a purely Gaussian noise vector can iteratively be denoised to obtain a clean sample as
follows: Given a noisy latent code zt, the U-Net parametrized by weights θ computes the estimated
noise ϵθ(zt, t, T (c)), where T (c) is the CLIP encoding (Radford et al., 2021) of a conditioning text
string c. The less noisy latent code zt−1 can then be approximated as

zt−1 ≈ λ · zt + µ · ϵθ(zt, t, T (c)) (1)

where λ, µ ∈ R are constants derived from the noise schedule of the forward process (Song et al.,
2020). The U-Net is trained by sampling images x from the training distribution, mapping them to
latent codes z0 = E(x) and then adding varying amounts of Gaussian noise to obtain zt, such that
the U-Net output can be supervised by L1 distance to the known noise. Like in STABLEDIFFUSION,
we use this as our main loss, but with x holding not single images, but chunks of consecutive video
frames.

Bidirectional Attention in Video Generation. Several video diffusion models (Guo et al., 2023;
Blattmann et al., 2023b; Wang et al., 2023b; Chen et al., 2024) use bidirectional temporal self-
attention layers to improve temporal smoothness of the output, essentially encouraging the model to
learn temporal correlations. A temporal self-attention layer computes its output as

fout := softmax

(
QK⊤
√
C

)
· V (2)

where Q := WQ · fin, K := WK · fin, and V := WV · fin are linear projections of the input
featuresfin and C is the number of feature channels. Absolute position encoding (i.e., sinusoidal
position encoding) to fin before computing Eq. (2), to give the layer access to the temporal position of
each feature vector. Once trained, the temporal self-attention module struggles to generate satisfactory
results for frames that differ from the ones seen during training. Since previous works use such
temporal attention layers without masking (Vaswani et al., 2017), fout can thus base its information
about a particular frame on frames before and after that frame. Exploiting temporal correlations
in this bidirectional way helps produce temporally smooth output, but is counter-productive for
the streaming setting, as a prefix of fout will often need to be computed before the full fin is even
available.

This bidirectional temporal attention design conflicts with two key requirements for streaming data
inference: 1) the model must be able to handle frames of varying lengths, and 2) earlier frames
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Figure 3: The X-T slice shows how the pixel values at the same X-coordinate change over time T.
The position of the horizontal lines in the video corresponds to the X-coordinate positions visualized
in the X-T slice. The color of each line represents the time in the X-T plot. Red dashed boxes denote
regions suffering from flickering and structural inconsistency, while blue boxes indicate areas where
these issues are resolved. Flickering and gradual change in the background region can be observed in
(b), (c) and (d), which use the first three attention modes illustrated in Fig. 1 respectively. In case (e),
with the last attention mode from Fig. 1 (see also Section 3.2, background flickering is reduced. The
depth conditioning in (f) improves structure consistency further.

should not rely on information from later frames. To address these issues, some methods attempt to
process video chunk by chunk (see Fig. 1 (a)) but this approach often results in abrupt transitions
between chunks (Fig. 3 (b)). FREENOISE (Qiu et al., 2023) addresses the abrupt transition problem
by introducing overlap between chunks and fusing the feature representations fout of the overlapping
frames (see Fig. 1 (c)). However, this causes the overlapping frames to depend on information from
later chunks, making it unsuitable for streaming input

3.2 UNI-DIRECTIONAL TEMPORAL SELF-ATTENTION WITH WARMUP

To turn bi-directional attention, as shown in Fig. 1 (a), in which each frame inside a chunk can be
based on information from all other time steps in the chunk, into uni-directional attention, where
each frame can only depend on earlier frames, we use masked attention (Vaswani et al., 2017; Jiang
et al., 2023). Fig. 1 (c) presents a solution using the uni-directional attention mask commonly used in
LLM(Touvron et al., 2023a;b; Vaswani et al., 2017; Jiang et al., 2024). However, as shown in red
dashed box in Fig. 3 (d), the spatial structure of the first frame’s output is inconsistent with the input,
and the character identity differs from subsequent frames. Flickering in the background region can
be observed in the X-T slice as well. We believe that the reason for this attention mode being less
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Figure 4: Temporal attention during LIVE2DIFF inference stage. During inference, we first
input Lw frames and apply bidirectional temporal attention, caching the K/V in KV -cache. For the
subsequent streaming frames, we compute the temporal attention using the cached tokens and add the
K/V to cache. If the number of cached tokens exceeds L− 1, we remove the earliest non-warmup
cache from KV -cache.

effective for video transfer than for LLMs is rooted in the fact that in LLMs, attention operations
rely on user prompts as initial tokens for uni-directional attention, while in video transfer such initial
tokens first need to be generated by the model.

Based on this observation, we propose the attention mask shown in Fig. 1 (d). For the initial Lw

frames, we apply bidirectional attention to ensure video quality and stability during the warmup
phase. For the following frames, we switch to a next-frame-prediction-based uni-directional attention,
allowing the model to effectively handle streaming data. In training stage, as shown in Fig. 2, such
attention mask is applied to all temporal attention modules. The results are shown in Fig. 3 (e). After
trained with our attention mask, the flickering issue in the red dashed region has been resolved.

3.3 HIGH EFFICIENCY INFERENCE PIPELINE

In inference stage, similar to SDEDIT (Meng et al., 2021), we add a certain amount of Gaussian
noise to the input frame(s), and denoise the noisy input to clean one with target style. We introduce
KV -cache and pipelined denoising to establish a highly efficient inference pipeline in our method.

KV -cache. As described in Section 3.2 our warmup-based temporal self-attention makes sure that
when we compute the attention for a certain frame, the attention for all previous frames has already
been computed. This means that those parts of the matrices K and V in Eq. (2) that concern the
previous frames do not need to be computed again, but can be retrieved from a cache.

Fig. 4 illustrates the behaviour of in our KV -cache for the simple case Lw = 4. In the first step,
we feed Lw frames into the U-Net and denoise them completely, with bidirectional attention as
introduced in Section 3.2. This gives us the K and V matrices highlighted in orange in Fig. 4. They
are cached and used for all future frames for temporal consistency. In the second step, the Lw + 1
(blue) frame arrives. We calculate temporal attention with cached warmup tokens and add the K and
V of blue frame to KV -cache. The behavior in the third step is similar to that of the second step,
with the only difference being that we utilize both the cached K and V pairs from the second frame
and those from the warmup frames to compute the temporal attention. When video frames beyond
the training context window arrive, we discard the cached frames that are not part of the warmup
frames and are furthest from the current video frame. For instance, at Lw + 6 in Fig. 4, we discard
the caches for Lw + 1 and Lw + 2, and perform temporal attention using the remaining cache with a
length of context window L.

Note that the diffusion U-Net has multiple temporal attention layers, and that the U-Net needs to be
applied T times in order to fully denoise a frame. This means that for every combination of layer and
denoising step, we keep a separate KV -cache.
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Pipelined denoising. Similarly to STREAMDIFFUSION (Kodaira et al., 2023), we denoise frames in
a pipelined manner, i.e. as soon as the next input frame becomes available, we add it to the batch
of frames to be denoised, even though it may contain a much higher amount of noise than previous
frames in the batch that have already undergone multiple denoising steps. This way we utilize our
GPU capacity most efficiently, increasing throughput.

3.4 CONDITIONAL MODULE WITH STRUCTURE PRIOR

To facilitate the preservation of spatial structure we use an additional depth input: We use MIDAS
(Ranftl et al., 2022; 2021) for frame-wise depth estimation. The depth frames are then encoded by
STABLEDIFFUSION’s encoder E , with the results being fed into a lightweight convolutional module
Econd (see Fig. 2). Finally, we add the output of the conditional module to the first convolution layer
and pass it through the U-Net. We found this explicit structural prior to help the transferred video
maintain better structural consistency with the source video. Evidence can be found in Fig. 3 and
Section 4.

3.5 TRAINING

To train our model we use data collected from Shutterstock (Shutterstock, 2024), resized to resolution
256× 256. We choose L = 16 and Lw = 8. We train our model as follows: We initialize the weights
of our temporal self-attention modules with the weights from ANIMATEDIFF and fine-tune them for
3000 iterations using our uni-directional attention (Section 3.2). Then we add Econd (Section 3.4),
with the last layer initialized with zeros (Zhang et al., 2023a) and train all weights jointly for 6000
iterations. We use the Adam (Kingma & Ba, 2014) optimizer with a learning rate of 1e− 4 and train
on batches of 4 samples per GPU, on 8 GPUs. Accumulation of 32 gradients leads to an effective
batch size of 1024.

4 RESULTS

4.1 EVALUATION SETUP

Dataset. We evaluate on the DAVIS-2017 (Pont-Tuset et al., 2017) dataset, which contains 90
object-centric videos. We resize all frames to 512× 768 via bilinear interpolation and use COGVLM
(Wang et al., 2023c) to caption the middle frame of each video clip. To specify the target style, we
add the corresponding trigger words of DreamBooth and LoRA as suffix.

Metrics. We evaluate three aspects of the generated videos: structure consistency (Output frames
should have similar spatial structure as input frames), temporal smoothness (no sudden jumps in the
motion) and inference latency. We measure structure consistency as the mean squared difference
between the depth maps estimated (Ranftl et al., 2021) for the input and output frames. As in previous
work (Wu et al., 2023; Khachatryan et al., 2023; Guo et al., 2023) we measure temporal smoothness
by CLIP score (Radford et al., 2021), i.e. by the cosine similarity of the CLIP embeddings of pairs
of adjacent frames. In addition we compute the so-called “warp error” (Lai et al., 2018) for pairs
of adjacent frames, i.e. we compute the optical flow (Teed & Deng, 2020) between the frames and
then warp the predecessor frame accordingly, to compute a weighted MSE between the warping
result and the successor. We also conduct a user study to evaluate structure consistency and temporal
smoothness: Each participant is given triplets of videos (original input video, result from our method,
result from a random different method) and is asked to identify the result with the best quality. Then
we calculate the rate of our method winning compared to other methods. A higher win-rate indicates
that users perceive our method to be better in the corresponding evaluation direction. Please refers to
supplementary for detailed information. We measure inference speed as the total amount of time it
takes each method to process an input stream of 100 frames at resolution 512× 512, on a consumer
GPU (NVIDIA RTX 4090).

4.2 COMPARISONS

We compare our method to three previous works, all based on STABLEDIFFUSION(Rombach
et al., 2022) and compatible with DREAMBOOTH (Ruiz et al., 2023) and LORA (Hu et al., 2021):
STREAMDIFFUSION (Kodaira et al., 2023) applies SDEDIT on a frame-by-frame basis. The same
noise vector is used for all the frames, to improve consistency and smoothness. To achieve interactive
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framerates, STREAMDIFFUSION uses LCM-LORA(Luo et al., 2023b) and TINY-VAE(Bohan, 2023),
with the latent consistency model scheduling (Luo et al., 2023a). We apply the same acceleration
techniques in our method. RERENDER(Yang et al., 2023) first inverts input key frames into noisy
latent codes. During denoising, temporal coherence and spatial structure stabilization are achieved
by using cross-frame attention, flow-based warping and CONTROLNET (Zhang et al., 2023a). We
select all frames as key frames for the purposes of our evaluation, but otherwise use the default
settings. FREENOISE (Qiu et al., 2023) does not natively support an input video as conditioning,
but by adding a sufficient amount of noise to the input, similar to our method and SDEDIT, we can
nevertheless use it for our video-to-video translation task. The amount of noise we add is equivalent
to half of the entire denoising process. FREENOISE uses a technique called window-based attention
fusion, that (similar to bidirectional temporal attention) leads to frames incorporating information
from future frames. This actually makes it unsuitable for the streaming setting, which we mitigate
by giving FREENOISE access to all frames, not expecting to receive the first output frames after we
have given the last input frames. In this sense we are giving FREENOISE a considerable advantage.
Qualitative Comparison. Fig. 5 compares outputs of all methods: While part (a) shows two
consecutive output frames, part (b) shows frames that are further apart. STREAMDIFFUSION(Kodaira
et al., 2023) exhibits strong flickering in the background (red box in (a)). When foreground and
background are difficult to distinguish (box and shelf in (a), dog and table in (b)), works other than
ours struggle to produce satisfactory results: STREAMDIFFUSION generates inconsistent results with
low quality. RERENDER generates strong artifacts in the first frame (see (a)) and propagates them
to later frames. FREENOISE fails to adhere to the input frame and generates elements unrelated
to prompt and input. In contrast, our method leverages depth information to ensure the structural
accuracy of the generated results (e.g. the box in Fig. 5 (a)) and maintains consistency over longer
duration (dog in Fig. 5 (b)).

Quantitative Comparison. In Table 1 we evaluate structure consistency and temporal smoothness:
While our method outperforms the others in structure consistency, we observe that FREENOISE
achieves a better CLIP score and warp error for temporal smoothness. This is not surprising, as
the way that time steps are correlated in FREENOISE allows information to flow bidirectionally
along the temporal axis, which, unlike for all other methods, required FREENOISE to be given
access to all frames at once (see first paragraph of Section 4.2). This is an unfair advantage to
FREENOISE, violating some assumptions of the streaming scenario, as it allows FREENOISE to
correlate its output frames to input frames that would likely not be available at the time the output
frame needs to be produced. In our user study, all our win rates are way above 50% for both
structural consistency and temporal smoothness, confirming that our results are the most convincing.
STREAMDIFFUSION(Kodaira et al., 2023) scores second-best in structure consistency, likely because
it applies only a moderate amount of noise to its input, but this limits its ability to conform with
the target style (see also Fig. 5). Table 1 also compares inference latencies, i.e. the average time
that goes by between receiving an input frame and producing the corresponding output frame. As
is to be expected for a method that first consumes all the frames before producing any output,
FREENOISE has by far the largest latency, which makes it unusable for the live streaming scenario.
Only STREAMDIFFUSION has a better latency than our method, which we attribute to it making a
different tradeoff between performance and quality. This is confirmed by the MSE, CLIP scores,
warp error, and the user study results, that consistently indicate higher output quality for our method.

4.3 ABLATION STUDY

We include quality and quantity results of model with different setting in Fig. 6 and Table 2. We
employ a noise strength of 0.5 for more apparent comparison. The model (a), which uses uni-
directional attention (see Fig. 1 (c)) fails to be consistent with the input from the first frame. Columns
(b), (c) and (d) are trained with our uni-directional attention with warmup (red square of Fig. 1 (d)).
But the model in (b) fills the warmup area with further predecessor frames instead of initial frames
(see also Fig. 4). This does improve the output for the first frame (as the predecessor frames happen
to be initial), but leads to deviation from the spatial structure of the input in later frames. In column
(c) we do use the warmup area properly, but omit the depth prior. The identity of the subject is now
maintained better, but several details in the background, such as the highlighted table region are still
inconsistent with the input. Only our full method (column (d)) maintains consistency beyond initial
frames. Table 2 confirms these findings: Without the depth prior, configurations A, B and C fail
to be structurally consistent with the input. And with further predecessor frames instead of initial
frames in the warmup area at inference time, configuration B does not achieve as much temporal
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(a) Two men are in a store, with one man 
pushing a cart loaded…., <zaum, elysiumchar>

(b) The puppy is stepping onto the scale, 
seemingly curious …, <cartoon style>
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Figure 5: We compare the output quality of our method to a number of previous approaches: (a)
shows temporally adjacent frames, while (b) shows frames temporally further apart. While our
method preserves the spatial structure of the input well, producing the desired output styles, previous
methods tend to change even the semantic content of the frames. See more discussions in Section 4.2

The woman in the colorful shirt is walking towards the table, <cartoon style>

Fr
am
e 
1

Fr
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24

(a) Single Direction MaskInput (b) wo warmup cache, 
wo depth

(c) w warmup cache, 
wo depth

(d) w warmup cahe, 
w depth (ours)

Figure 6: In this ablation study, model (a) was trained with an attention mask like in Fig. 1 (c).
Models (b) and (c) were trained with the attention masks like in Fig. 1 (d), but in (b) we filled the
warmup slots (see Fig. 4) with further close-by predecessor frames instead of initial frames of the
stream. Only (d), our full method, uses the depth prior. The models mostly agree on Frame 1, but
all ablated versions deviate from the spatial structure of the input for later frames. More analysis in
Section 4.3.
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Method
Structure Consistency Temporal Smoothness Latency ↓
Depth Ours CLIP Warp Ours

↓ MSE ↓ ↓ Win Rate ↑ ↑ Score ↑ ↓ Error ↓ ↓ Win Rate ↑
StreamDiffusion 1.72 86.55% 94.35 0.1994 91.81% 0.03s (±0.01)
Rerender 5.50 73.89% 95.05 0.1327 56.67% 7.72s (±0.18)
FreeNoise 1.94 97.70% 96.49 0.0809 94.83% 58.67s (±0.08)
Ours 1.12 - 95.77 0.0967 - 0.06s (±0.02)

Table 1: To compare our method to previous work, we averaged scores over 90 sequences from the
DAVIS-2017 Pont-Tuset et al. (2017) dataset. Our method scores highest in Depth MSE and second
in terms of temporal smoothness. However, because FREENOISE is actually unable to produce output
frames before having seen a number of future input frames, we had to give it an unfair advantage by
having it consume all input frames before producing its first output frame, leading to extreme latency
and explaining why it can achieve better temporal smoothness than all other methods. More details
of the metrics in Section 4.1. Our user study win rates confirm that our method produces the best
quality for both aspects (i.e. all win rates over 50%). Only STREAMDIFFUSION, which puts more
emphasis on speed than on output quality (see also Fig. 5) can beat our method in terms of latency.

Setting Structure Consistency Temporal Smoothness

Train
with warmup

Inference
with warmup

Use
depth Depth MSE ↓ CLIP Score ↑ Warp error ↓

A × × × 2.29 95.43 0.0968
B ✓ × × 2.39 95.28 0.1125
C ✓ ✓ × 2.22 95.80 0.0966
D ✓ ✓ ✓ 1.67 95.78 0.0768

Table 2: Ablation study of the model design. Our full method (D) achieves the optimal in both
structure consistency and temporal smoothness warp error. As is to be expected, training with warmup,
but filling the warmup area with immediate predecessor frames at test time (B) makes quality worse,
but using the warmup area correctly (C) does lead to slight improvements over no warmup at all. The
depth prior leads to a strong improvement again (D).

consistency as the others. We also found that removing the warmup cache from configuration D
will decrease the temporal smoothness CLIP score by 0.09. The depth prior seems to improve both
structure consistency and temporal smoothness a lot, although the temporal CLIP score fails to show
that in Table 2. We interpret this failure as a consequence of the content of subsequent frames being
usually very similar, such that the CLIP embeddings can be similar despite certain abrupt changes,
for example in the background, being present.

As reported in Table 3, omitting our KV -cache leads to our method having to re-compute the K and
V maps of previous frames multiple times, which dramatically increases the per-frame latency to a
degree that is not acceptable in streaming use cases.

5 CONCLUSION

Method Latency ↓
wo KV -cache 20.43 (±0.068)
Ours 0.06s (±0.002)

Table 3: Removing the KV -cache from
our method drastically increases latency.

We have presented LIVE2DIFF, a method to translate
video streams to a desired target style at interactive framer-
ates. Based on our novel unidirectional attention approach,
that allows us to reduce computational cost by means of
our KV -cache, we are able to not only meet the criterion
of sufficient framerate, but also outperform previous ap-
proaches in terms of consistency with the input video and
temporal smoothness. We have thus demonstrated that the
unidirectional temporal attention mode, that is an important component of state of the art LLMs, can
beneficially be used for the editing of videos as well. A method like ours could be of great use in a
number of video streaming use cases, such as in the recent trend of “Virtual YouTubers”, in which
online content producers control stylized virtual avatars and interact with their audience in a live
stream.
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w/o Warmup, 
w/o Depth

w/ Warmup, 
w/o Depth

w/ warmup, 
w/ depthInput w/o Warmup, 

w/o Depth
w/ Warmup, 
w/o Depth

w/ warmup, 
w/ depthInput

Figure 7: We show a detailed ablation study of our warmup mechanism on two different sequences:
Orange boxes denote region with background blurriness without our warmup design, and red boxes
denote bad structure consistency region fixed by depth condition. Warmup and depth both play crucial
role in our model.

A APPENDIX

A.1 ABLATION ON SELECTION OF NUMBER OF WARMUP FRAMES

Warmup Frames CLIP Score (↑) Depth MSE (↓)
4 95.63 2.25
8 95.80 2.22

Table 4: Ablation study of selection of warmup frames numbers.

We ablate the selection warmup frames in Table 4. We experimented with training the model using
fewer warm-up frames (without the depth condition), and the results are shown in the table above.
Therefore, we ultimately chose 8 (half of the full attention window) as the length for the warm-up
frames.

A.2 MORE ABLATION ON EFFECT OF WARMUP MECHANISM

In Figure Fig. 7, we further analyze the effectiveness of the warmup b bmechanism through additional
visualization results. The yellow and red boxes mark background and foreground areas that become
blurry if warmup is not used. By utilizing the warmup mechanism, the background blur issue can be
mitigated, demonstrating the effectiveness of our design.

A.3 COMPARISON WITH MORE BASELINE METHODS

We also add more comparisons about FateZero(Qi et al., 2023) and TokenFlow(Geyer et al., 2023)
on the DAVIS dataset, as shown in the above table. Compared with our method, those methods
achieve better temporal smoothness and worse structure consistency. Both those methods contain
bidirectional interaction between all input frames (e.g., spatial-temporal self-attention with middle
frame in FateZero(Qi et al., 2023) and tokenflow propagation in TokenFlow(Geyer et al., 2023)), and
the inference latency of those methods are unacceptable for streaming data.
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Methods CLIP Score (↑) Depth MSE (↓) Latency (↓)
FateZero 96.09 2.04 8.73s

TokenFlow 97.55 2.39 5.93s
Ours 95.77 1.12 0.07s

Table 5: Comparison with more baseline methods.

Depth Input Frame Output Frame

Figure 8: We present two example sequences for which the depth estimation gives bad results (red
boxes). We find our method to be quite robust to such imperfections (see blue boxes).

A.4 ROBUSTNESS TO STRUCTURE PRIOR

We add more visualization results about impact of structure prior. Fig. 8 shows few failure cases
of depth estimation (red boxes). Nevertheless our method still maintains especially the structure
of the hand (see second sequence). This demonstrates that our method is robust to imperfect depth
estimation and is not drawing all of its information just from the depth estimate.

A.5 IMPLEMENTATION DETAILS OF OUR INFERENCE PIPELINE

In this section, we provide the implementation of our temporal self-attention module with KV -cache.
We also describe how we apply streaming inference.

KV -cache. In model initialization, we pre-compute the shape of the KV -cache for each temporal
self-attention module. For temporal attention with max window size L, and input feature size
H ×W × C, for T denoising steps, the shape of the KV -cache should be (T,H ×W,L,C), see
Listing 1.

Listing 1: KV -cache sizing
def set_cache(T, H, W, L, C):

k_cache = zeros(T, H * W, L, C)
v_cache = zeros(T, H * W, L, C)
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register_buffer("k_cache", k_cache)
register_buffer("v_cache", v_cache)

Previous video diffusion modelsGuo et al. (2023); Chen et al. (2024); Wang et al. (2023b) apply
absolute positional encoding PE, which is added to the input features before the mapping layers
to_q, to_k, to_v, which can be formulated as

Q = to_q(PE+ feat)

K = to_k(PE+ feat)

V = to_v(PE+ feat)

We thus cannot directly cache K, V since they contain positional information. Instead, we pre-compute
to_q(PE), to_k(PE), to_v(PE) (see Listing 2), and cache only to_k(feat), to_v(feat).

Listing 2: We precompute to_k(PE), to_v(PE).
def prepare_pe_buffer():

pe_full = pos_encoder.pe
q_pe = F.linear(pe_full, to_q.weight)
k_pe = F.linear(pe_full, to_k.weight)
v_pe = F.linear(pe_full, to_v.weight)

register_buffer("q_pe", q_pe)
register_buffer("k_pe", k_pe)
register_buffer("v_pe", v_pe)

In the warmup stage, we use bi-directional attention over all warmup frames, and cache their K/V,
see Listing 3.

Listing 3: Warmup frames are processed with bi-directional attention.
def temporal_self_attn_warmup(feat, timestep):

"""
feat: [HW, L, C_in]
"""
q = to_q(feat) # [HW, L, C]
k = to_k(feat) # [HW, L, C]
v = to_v(feat) # [HW, L, C]

# cache warmup frames before positional encoding
k_cache[timestep, :, :warmup_size] = k
v_cache[timestep, :, :warmup_size] = v

pe_idx = list(range(k.shape[1]))

pe_q = q_pe[:, pe_idx]
pe_k = k_pe[:, pe_idx]
pe_v = v_pe[:, pe_idx]

q_full = q + pe_q
k_full = k + pe_k
v_full = v + pe_v

# do not use attention mask
feat = scaled_dot_product_attention(

q_full,
key_full,
value_full,
attention_mask=None)

feat = to_out(feat)
return feat

During streaming inference we process up to T samples with different noise levels at once. For each
frame we write to and read from the KV -cache corresponding to its noise level, and add the mapped
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positional information. At the beginning of the stream, the length of context window is incrementally
approaching the max window size L. We pass an attention mask to specify which token should take
part in attention. For details see Listings 4 and 5.

Listing 4: Our implementation of streaming inference uses the uni-directional attention approach, see
Fig. 1 (d).
def temporal_self_attn_streaming(feat, attn_mask):

"""
feat: [THW, L, C_in]
attn_mask: [T, L], 0 for attention, -inf for no attention
"""
q_layer = rearrange(q_layer, "(nhw) f c -> n hw f c", n=T)
k_layer = rearrange(k_layer, "(nhw) f c -> n hw f c", n=T)
v_layer = rearrange(v_layer, "(nhw) f c -> n hw f c", n=T)

# handle prev frames, roll back
k_cache[:, :, warmup_size:] = k_cache[:, :, warmup_size:] \

.roll(shifts=-1, dims=2)
v_cache[:, :, warmup_size:] = v_cache[:, :, warmup_size:] \

.roll(shifts=-1, dims=2)
# write curr frame
k_cache[:, :, -1:] = k_layer
v_cache[:, :, -1:] = v_layer

k_full = k_cache
v_full = v_cache

# attn_mask:
# [[0, 0, 0, 0, -inf, -inf, 0, 0],
# [0, 0, 0, 0, -inf, -inf, -inf, 0]]
# then pe for each element shoule be
# [[0, 1, 2, 3, 3, 3, 4, 5],
# [0, 1, 2, 3, 3, 3, 3, 4]]
kv_idx = (attn_mask == 0).cumsum(dim=1) - 1 # [T, L]
q_idx = kv_idx[:, -q_layer.shape[2]:] # [T, 1]

# [n, window_size, c]
pe_k = concatenate([

k_pe.index_select(1, kv_idx[idx])
for idx in range(T)], dim=0)

pe_v = concatenate([
v_pe.index_select(1, kv_idx[idx])
for idx in range(T)], dim=0)

pe_q = concatenate([
q_pe.index_select(1, q_idx[idx])
for idx in range(T)], dim=0)

q_layer = q_layer + pe_q.unsqueeze(1)
k_full = k_full + pe_k.unsqueeze(1)
v_full = v_full + pe_v.unsqueeze(1)

q_layer = rearrange(q_layer, "n hw f c -> (n hw) f c")
k_full = rearrange(k_full, "n hw f c -> (n hw) f c")
v_full = rearrange(v_full, "n hw f c -> (n hw) f c")

attn_mask_ = attn_mask[:, None, None, :].repeat(
1, h * w, q_layer.shape[1], 1)

attn_mask_ = rearrange(attn_mask_, "n hw Q KV -> (n hw) Q KV")
attn_mask_ = attn_mask_.repeat_interleave(heads, dim=0)

feat = scaled_dot_product_attention(
q_full,
key_full,
value_full,
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attention_mask=attention_mask_)

feat = to_out(feat)
return feat

Listing 5: During inference we process T frames simultaneously to make full use of GPU paralleliza-
tion.
def streaming_v2v(frame):

"""
frame: [1, 3, H, W]
"""
latent = vae.encode(frame)
depth_latent = vae.encode(depth_detector(frame))
noisy_latent = add_noise(latent) # add noise based on SDEdit
if prev_latent is None:

prev_latent = randn([T-1, ch, h, w])
if attn_mask is None:

attn_mask = zeros(T, L)
attn_mask[:, :warmup_size] = 1
attn_mask[0, -1] = 1 # curr frame participate attention
attn_mask.masked_fill_(attn_mask == 0, float("-inf"))

latent_batch = concatenate([noisy_latent, prev_latent])
noise_pred = UNet(latent_batch, depth_latent,

t, text_embedding, attn_mask)
denoised_latent = scheduler.step(noise_pred, latent_batch, t)

out_latent = denoised_latent[-1]
prev_latent = denoised_latent[1:]

out_frame = vae.decode(out_latent)
return out_frame

Models Trigger Words
Flat-2D Animerge 1 cartoon style

zaum 2 zaum, elysiumchar
vangogh 3 Starry Night by Van Gogh, lvngvncnt

Table 6: Community models used for evaluation. Each model captures a different target style.

A.6 EVALUATION

Models for evaluation. We use three Dreambooth and LoRA settings for evaluation, the model
name and trigger words are shown in Table 6. For the evaluation, we use the trigger word as the
prefix of our prompt.

User study. Our user study involved 31 participants. The video clips were the same as those used in
the quantitative evaluation. Fig. 9 illustrates the user interface of our user study system: Participants
are shown the input video as reference, as well as an output from our method and an output from one
random baseline method. They are asked to select the output with better temporal smoothness and
structure consistency to the input. For each baseline method, we compute the win rate of our method
as

ours_win_rate = 1− baseline_voted
baseline_shown

(3)

1https://civitai.com/models/35960/flat2danimerge
2https://civitai.com/models/16048/or-disco-elysium-style-lora
3https://civitai.com/models/91/van-gogh-diffusion

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 9: In our user study, the participant is given triplets of videos: The “Reference” is the input
video, that videos 1 and 2 should be structurally consistent with, in addition to being temporally
smooth. For each of these two aspects the user chooses which of the two videos fulfills this aspect
best.

Data captioning. We caption the DAVIS dataset with CogVLMWang et al. (2023c), which is a
state-of-the-art visual language model. For each video clip, we feed the middle frame together with
the following prompt:

Please caption the given image. The caption should focus on the main object in image and
describe the motion of the object.

A.7 APPLICATION

Fig. 10 shows another application of our method, demonstrating its potential in virtual-liver cases.
We transfer the input videos to different styles at 10 - 15 FPS on an NVIDIA RTX 4090.
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Figure 10: Our method translates an input video stream (black boundaries) into an output video
stream (blue boundaries) that conforms to a desired target style. Each prompt is composed of the
caption obtained for the input video (see Appendix A.6 followed by target style.

20


	Introduction
	Related Work
	Method
	Preliminaries
	Uni-directional Temporal Self-Attention with Warmup
	High Efficiency Inference Pipeline
	Conditional Module with Structure Prior
	Training

	Results
	Evaluation Setup
	Comparisons
	Ablation Study

	Conclusion
	Appendix
	Ablation on selection of number of warmup frames
	More ablation on effect of warmup mechanism
	Comparison with more baseline methods
	Robustness to Structure Prior
	Implementation details of our inference pipeline
	Evaluation
	Application


