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Abstract

The current paradigm of training deep neural net-
works for classification tasks includes minimiz-
ing the empirical risk, pushing the training loss
value towards zero even after the training clas-
sification error has vanished. In this terminal
phase of training, it has been observed that the
last-layer features collapse to their class-means
and these class-means converge to the vertices of
a simplex Equiangular Tight Frame (ETF). This
phenomenon is termed as Neural Collapse (NC).
However, this characterization only holds in class-
balanced datasets where every class has the same
number of training samples. When the training
dataset is class-imbalanced, some NC properties
will no longer hold true, for example, the geome-
try of class-means will skew away from the sim-
plex ETF. In this paper, we generalize NC to im-
balanced regime for cross-entropy loss under the
unconstrained ReLU features model. We demon-
strate that while the within-class features collapse
property still holds in this setting, the class-means
will converge to a structure consisting of orthogo-
nal vectors with lengths dependent on the number
of training samples. Furthermore, we find that
the classifier weights (i.e., the last-layer linear
classifier) are aligned to the scaled and centered
class-means, with scaling factors dependent on
the number of training samples of each class. This
generalizes NC in the class-balanced setting. We
empirically validate our results through experi-
ments on practical architectures and dataset.
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1. Introduction
Cross-entropy (CE) is undoubtedly one of the most popu-
lar loss functions used for training neural networks in the
current deep learning paradigm. However, some crucial
aspects of training networks using this loss function have
not been fully explored yet, for example: i) Is there any
unique pattern that the models learn when training deep
neural networks until convergence, i.e., to reach zero loss?,
ii) How do the learned network parameters vary across data
distribution, training instances, and model architecture?, iii)
What are the geometries of the representations and the clas-
sifier obtained from minimizing CE loss?. Understanding
these questions is crucial for studying the training and gen-
eralization properties of deep neural networks. For instance,
it has been a long-standing problem that training networks
using CE loss under a long-tailed distribution dataset causes
a significant drop in accuracy, especially for classes with a
scarce amount of training samples. An important observa-
tion for this phenomenon is that the classifier weight vector
of a more frequent class tends to have a larger norm, thus
biasing the decision boundary toward the less frequent class.
As a consequence, a smaller volume of the feature space
is allocated for the minority classes, which leads to a drop
in performance (Kim & Kim, 2020; Kang et al., 2019; Cao
et al., 2019; Ye et al., 2020; Liu et al., 2023; Kang et al.,
2020).

A noticeable progress in answering these questions is the
discovery of Neural Collapse phenomenon (Papyan et al.,
2020). Neural Collapse (NC) reveals a common pattern
of the learned last-layer features and the classifier weight
of deep neural networks across canonical datasets and ar-
chitectures. Specifically, NC consists of four properties
emerging in the terminal phase of training of training deep
neural networks for balanced datasets (i.e., every class has
the same number of training instances):

• (NC1) Variability collapse: features of the samples
within the same class converge to a unique vector (i.e.,
the class-mean), as training progresses.

• (NC2) Convergence to simplex ETF: the optimal
class-means have the same length and are equally and
maximally pairwise separated, i.e., they form a simplex
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Equiangular Tight Frame (ETF).

• (NC3) Convergence to self-duality: up to rescaling,
the class-means and classifiers converge on each other.

• (NC4) Simplification to nearest class-center: given
a feature, the classifier converges to choosing
whichever class has the nearest class-mean to it.

The intriguing empirical observation of Neural Collapse
has attracted many theoretical investigations, mostly un-
der a simplified unconstrained features model (UFM) (see
Section 3 for more details) and for class-balanced dataset,
demonstrating that NC properties occur at any global solu-
tion of the loss function. However, under class-imbalanced
dataset, it has been observed that deep neural networks ex-
hibit different geometric structures and some NC properties
are not satisfied anymore (Dang et al., 2023; Thrampoulidis
et al., 2022; Hong & Ling, 2023). The last-layer features
of samples within the same class still converge to their
class-means (NC1), but the class-means and the classifier
weights will no longer form a simplex ETF (NC2) (Fang
et al., 2021). In a more extreme case where the imbalance
level exceeds a certain threshold, the learned classifiers of
the minority classes collapse onto each other, becoming
indistinguishable from those of other classes (Fang et al.,
2021). This phenomenon, known as Minority Collapse, ex-
plains why the accuracy for these minority classes drops
significantly compared to the class-balanced setting.

While the Neural Collapse emergence at the optimal solution
in deep neural networks training using CE loss for balanced
dataset has been extensively studied (Lu & Steinerberger,
2020; Zhu et al., 2021), the corresponding characterization
for this loss function in imbalanced scenario has remained
limited. Under imbalanced regime, several theoretical works
have characterized Neural Collapse phenomenon for other
loss functions. In particular, (Dang et al., 2023) has demon-
strated the convergence geometry of the learned features
and learned classifier for the mean squared error (MSE)
loss. (Thrampoulidis et al., 2022) studies the support vector
machine (SVM) problem, whose global minima follows a
different geometry known as Simplex-Encoded-Labels In-
terpolation (SELI) and later (Behnia et al., 2023) extends it
to some other SVM parameterizations.

Comparison to concurrent work (Hong & Ling, 2023):
For CE loss, we acknowledge that the concurrent work
(Hong & Ling, 2023) is closely related to our work. They
investigate Neural Collapse for CE loss with UFM under
imbalanced setting. They prove the within-class features
collapse property (NC1) and demonstrate the network out-
put prediction vectors converge to a block structure where
each block corresponds to classes that have the same amount
of training samples. However, their analysis does not cover
the magnitude of prediction vectors and the magnitude of

each block within the structure. Consequently, it is not yet
possible to describe the geometry explicitly and quantify
how the structure changes under different imbalance levels.
Additionally, the geometry of the learned last-layer feature,
the classifier weight (NC2) and the relationship between
them (NC3) have not been examined in (Hong & Ling,
2023). As a result, the corresponding (NC2) and (NC3)
properties has not been characterized for this setting. More-
over, other considerations such as the norm, the norm ratio,
and angle between the classifier weights and features are
also not addressed.

On the other hand, in this paper, we study CE loss training
problem using UFM, but with a different setting, in which
the features have to be element-wise non-negative. This
setting is motivated by the current paradigm that features
are typically the outcome of some non-negative activation
function, like ReLU or sigmoid. In this setting, we study
the global solutions of CE training problem under UFM and
present a thorough analysis of the convergence geometry
of the last-layer features and classifier. We summarize our
contributions as follows:

• We explicitly characterize Neural Collapse for the last-
layer features and classifier weights in CE loss training
with non-negative features in class-imbalanced settings.
We prove that at optimality, NC1 still occurs, and the
optimal class-means form an orthogonal structure. We
derive the closed-form lengths of the features, in terms
of the number of training samples and other hyperpa-
rameters.

• We find that the classifier weight is aligned to a scaled
and centered version of the class-means, which gener-
alizes the properties NC2 and NC3 from the original
definition of Neural Collapse. Additionally, we de-
rive the norms, norm ratios and angles between these
classifier weights explicitly.

• We derive the exact threshold of the amount of training
samples for a class to collapse and become indistin-
guishable from other classes. Hence, the threshold for
Minority Collapse is also obtained in our analysis.

Notation: For a weight matrix W, we use wj to denote
its j-th row vector. ∥.∥F denotes the Frobenius norm of
a matrix and ∥.∥2 denotes L2-norm of a vector. ⊗ de-
notes the Kronecker product. The symbol “∝” denotes
proportional, i.e, equal up to a positive scalar. We also use
some common matrix notations: 1n is the all-ones vector,
diag{a1, . . . , aK} is a square diagonal matrix size K ×K
with diagonal entries a1, . . . , aK . We use [K] to denote the
index set {1, 2, . . . ,K}.
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2. Related Works
Neural Collapse on balanced dataset: A surge of theoret-
ical results for NC under balanced scenario has emerged
after the discovery of this phenomenon. Due to the highly
non-convexity of the problem of training deep networks,
theoretical works have proven the occurrence of NC for
different loss functions and architectures with a simplified
unconstrained features model (see Section 3 for more de-
tails) (Lu & Steinerberger, 2020; Zhu et al., 2021; Graf et al.,
2023; Zhou et al., 2022a;b; Tirer & Bruna, 2022; Dang et al.,
2023; Thrampoulidis et al., 2022; Behnia et al., 2023; Kini
et al., 2023). In particular, NC properties are proven to
occur at the optimal last-layer features and classifier across
different loss functions: cross-entropy (Lu & Steinerberger,
2020; Zhu et al., 2021), mean squared error (Zhou et al.,
2022a; Tirer & Bruna, 2022; Dang et al., 2023), supervised
contrastive loss (Graf et al., 2023) and also for focal loss
and label smoothing (Zhou et al., 2022b). Recent works
have spent efforts to extend the UFM to deeper architec-
tures to study the behavior of more layers after the ”un-
constrained features”. Specifically, (Tirer & Bruna, 2022)
extends UFM to account for one additional layer, from
one-layer linear classifier to two-layer linear classifier after
the ”unconstrained” features for MSE loss, and later the
work (Dang et al., 2023) extends the setting to a general
deep linear network for both MSE and CE losses. (Tirer &
Bruna, 2022) also extends UFM for MSE loss to a two-layer
case with ReLU activation. This setting is later extended
by (Súkenı́k et al., 2023) to the general deep UFM with
ReLU activation for the binary classification problem. For
multiclass classification problem with MSE loss, recent
extensions to account for additional layers in the analy-
sis with non-linearity are studied in (Tirer & Bruna, 2022;
Rangamani & Banburski-Fahey, 2022), or with batch nor-
malization (Ergen & Pilanci, 2020). However, these works
require strong assumptions on the global optimal solution or
the network architecture and capability for their theoretical
results to be hold. There are also efforts to mitigate the re-
striction of UFM, such as (Tirer et al., 2023) analyzes UFM
with an additional regularization term to force the features
to stay in the vicinity of a predefined feature matrix (e.g.,
intermediate features). Additionally, (Zhu et al., 2021; Zhou
et al., 2022a;b) prove the benign optimization landscape
for several loss functions under UFM, demonstrating that
critical points can only be global minima or strict saddle
points.

Neural Collapse on imbalanced dataset: The work (Fang
et al., 2021) is likely the first to observe that for imbalanced
setting, the collapse of features within the same class NC1
is preserved, but the geometry skews away from the ETF.
They also present the ”Minority Collapse” phenomenon, in
which the minority classifiers collapse to the same vector
if the imbalance level is greater than some threshold. For

MSE loss, (Dang et al., 2023) has explicitly characterized
the geometry of the learned features and classifiers for im-
balanced setting. (Dang et al., 2023) showed that the NC1
still holds and the class-means converge to a General Or-
thonormal Frame (GOF), which consists of orthonormal
vectors but with different lengths. By applying non-negative
constraints for the normalized features to incorporate the
effect of ReLU activation, (Kini et al., 2023) finds the global
minimizers of supervised contrastive loss and proves that the
optimal features form an Orthogonal Frame (OF) with equal
length and orthogonal vectors, regardless of the imbalance
level. (Thrampoulidis et al., 2022) theoretically studies the
UFM-SVM problem, whose global minima follow a more
general geometry than the ETF, called ”SELI”. However,
this work also makes clear that the unregularized version of
CE loss only converges to KKT points of the SVM problem,
which are not necessarily global minima. The result for
UFM-SVM is later extended by the work (Behnia et al.,
2023) to consider several cross-entropy parameterizations.

Regarding CE loss, (Yang et al., 2022) studies the imbal-
anced setting but with fixed, unlearnable last-layer linear
classifiers as a simplex ETF. They prove that no matter
whether the data distribution is balanced or not among
classes, the features will converge to a simplex ETF in the
same direction as the fixed classifier. As mentioned in Sec-
tion 1, the work (Hong & Ling, 2023) is closely related to
our work and they study CE loss with UFM and the features
can have negative entries. They prove that at optimality, the
within-class features collapse (NC1) and the network output
prediction vectors converge to a block structure. However,
their analysis does not cover the magnitude of prediction
vectors and the ratio between each block within the structure
are not yet covered. Thus, it is not possible to describe the
geometry explicitly and quantify how the structure changes
under different imbalance levels. Additionally, the structure
of the learned last-layer feature, the classifier weight (NC2)
and the relation between them (NC3) have not been derived
in (Hong & Ling, 2023). As a result, the corresponding
(NC2) and (NC3) properties has not been characterized for
this setting.

3. Problem Setup
Training Neural Network with Cross-Entropy Loss: In
this work, we focus on neural network trained using the
cross-entropy (CE) loss function on an imbalanced dataset.
We consider the classification task with K classes. Let nk
denote the number of training samples in class k ∈ [K], and
N :=

∑K
k=1 nk, the total number of training samples. A

typical deep neural network classifier consists of a feature
mapping function h(x) and a linear classifier parameterized
as W. Specifically, a typical L-layer deep neural network
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can be expressed as follows:

ψW,θ(x) = WL σ(WL−1 . . . σ(W1x+ b1) + bL−1)︸ ︷︷ ︸
Feature h=h(x)

,

where each layer composes of an affine transformation pa-
rameterized by a weight matrix Wl and bias bl, followed
by a non-linear activation σ (e.g., ReLU(x) = max(x, 0)).
Here, θ := {Wl,bl}L−1

l=1 is the set of all learnable parame-
ters in the feature mapping. We denote the last layer linear
classifier as W := WL for convenience. Current paradigm
trains the network by minimizing the empirical risk over
all training samples {(xk,i,yk)}k,i where xk,i denoted the
i-th sample of class k and yk is the one-hot label vector for
class k:

min
W,θ

1

N

K∑
k=1

nk∑
i=1

L(ψW,θ(xk,i),yk) +
λW
2

∥W∥2F +
λθ
2
∥θ∥2,

where λW , λθ > 0 are the weight decay parameters and
L(ψ(xk,i),yk) is the loss function that measures the dif-
ference between the output ψ(xk,i) and the target yk. For
a vector z = [z1, z2, . . . , zK ] ∈ RK and a target one-hot
vector yk, CE loss is defined as:

LCE(z,yk) = − log

(
exp(zk)∑K

m=1 exp(zj)

)
(1)

Unconstrained Features Model (UFM) with non-negative
features: Due to the significant challenges of analyzing the
highly non-convex neural network training problem, recent
theoretical works study NC phenomenon using a simplified
model called unconstrained features model (UFM), or, layer-
peeled model (Fang et al., 2021). In particular, UFM peels
down the last-layer of the network and treats the last-layer
features hk,i = h(xk,i) ∈ Rd as free optimization variables
in order to capture the main characteristics of the last lay-
ers related to NC during training. This relaxation can be
justified by the well-known result that an overparameter-
ized deep neural network can approximate any continuous
function (Hornik et al., 1989; Hornik, 1991; Zhou, 2018;
Yarotsky, 2018).

In this work, we consider a slight variant of UFM, in which
the features are constrained to be non-negative, motivated
by the fact that features are usually the output of ReLU
activations in many common architectures. Formally, we
consider the following modified version of UFM trained
with CE loss with non-negative features:

min
W,H

1

N

K∑
k=1

nk∑
i=1

LCE(Whk,i,yk) +
λW
2

∥W∥2F (2)

+
λH
2

∥H∥2F , s.t. H ≥ 0, λW > 0, λH > 0,

where H := [h1,1, . . . ,h1,n1
,h2,1, . . . ,hK,nK

] ∈ Rd×N

and H ≥ 0 denotes entry-wise non-negativity. We note that
similar settings with ReLU features were previously consid-
ered in (Nguyen et al., 2022), where NC configuration was
derived for the label smoothing loss under balanced setting,
and in (Kini et al., 2023), which studied the convergence
geometry for supervised contrastive loss under imbalanced
setting. We denote this setting as UFM+, as (Kini et al.,
2023), to differentiate it from the original UFM.

By denoting W = [w1,w2, . . . ,wK ]⊤ ∈ RK×d be the
last-layer weight matrix, with wk ∈ Rd is the k-th row of
W, the CE loss can be written as:

LCE(Whk,i,yk) = − log

(
exp(w⊤

k hk,i)∑K
m=1 exp(w

⊤
mhk,i)

)
.

We also denote the class-mean of a class k ∈ [K]
as hk := n−1

k

∑nk

i=1 hk,i and the global-mean hG :=

N−1
∑K

k=1

∑nk

i=1 hk,i. The class-mean matrix is denoted
as H = [h1,h2, . . . ,hK ] ∈ Rd×K .

Neural Collapse for balanced dataset: With the notations
defined above, we recall the NC properties in the balanced
setting as follows:

• (NC1) Variability collapse:

hk,i = hk, ∀k ∈ [K], i ∈ [nk].

• (NC2) Convergence to simplex ETF:

(H− hG1
⊤
K)⊤(H− hG1

⊤
K) ∝ IK − 1

K
1K1⊤

K .

• (NC3) Convergence to self-duality:

W ∝ (H− hG1
⊤
K)⊤.

Orthogonal Frame and General Orthogonal Frame:
Some previous results, such as (Tirer & Bruna, 2022;
Nguyen et al., 2022), derive that under the balanced setting,
the optimal class-means {hk} form an orthogonal frame
(OF), i.e., H

⊤
H ∝ IK . By centering the OF structure with

its mean vector, we will receive a simplex ETF. Thus, this
structure still follows (NC2) property. For MSE loss un-
der class-imbalanced scenario, (Dang et al., 2023) proves
that the class-means {hk} form an orthogonal structure con-
sisting of pairwise orthogonal vectors but having different
lengths. They termed this structure as general orthogonal
frame (GOF). We will use this notation for our results in
Section 4.

SELI geometry: Simplex-Encoded-Labels Interpolation
(SELI) is the geometric structure of the optimal classifier,
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feature and the prediction matrix of the imbalanced SVM
training problem under UFM (Thrampoulidis et al., 2022).
In particular, the prediction matrix Z = WH ∈ RK×N

is proven to have its i-th column to be yi − 1
K1K for

all i ∈ [N ]. Then, if we denote the SVD of the matrix
Z = VΛU⊤, the classifier and feature matrices satisfy that
WW⊤ = VΛV⊤ and H⊤H = UΛU⊤. For UFM-CE
training problem but without regularization (λ = 0), (Ji
et al., 2021) showed that its gradient flow converges in di-
rection to a Karush-Kuhn-Tucker (KKT) point of the UFM-
SVM problem. Thus, SELI geometry is not necessarily the
global minima of the unregularized UFM-CE problem.

4. Main Result: Global Structure of UFM+

Cross-Entropy Imbalanced
In this section, we characterize the global solution (W,H)
of the non-convex problem (2) and analyze its geometries.
We prove that irrespective of the label distribution, the
optimal features form an orthogonal structure in the non-
negative orthant while the classifiers align with the scaled-
and-centered features and spread across the entire feature
space with

∑K
k=1 wk = 0. For convenience, we define the

following constants for every class k ∈ [K]:

Mk := log

(K − 1)

 √
nk

N
√

K−1
K λWλH

− 1

 ,

Mk :=

{
Mk if Mk > 0
0 if Mk ≤ 0 or Mk is undefined

. (3)

Note that the inequality Mk = Mk > 0 is equivalent to
N√
nk

√
λWλH <

√
K−1
K and Mk = 0 when and only when

N√
nk

√
λWλH ≥

√
K−1
K . We state the our main result in

the following theorem.

Theorem 4.1 (Geometry of UFM+ Cross-Entropy Imbal-
anced minimizers). Suppose d ≥ K and N√

nk

√
λWλH <√

K−1
K ∀ k ∈ [K], then any global minimizer (W,H) of

the problem (2) obeys

(a) Within-class feature collapse:

∀ k ∈ [K], hk,i = hk,j , ∀ i ̸= j. (4)

(b) Class-mean orthogonality:

h⊤
k hl = 0, ∀ k ̸= l. (5)

(c) Class-mean norm:

∥hk∥2 =

√
K − 1

K

λW
λH

1

nk
Mk. (6)

(d) Relation between the classifier and class-means:

wk =

√
λH

λWK(K − 1)

(
K
√
nkhk −

K∑
m=1

√
nmhm

)
(7)

and
K∑

k=1

wk = 0.

(e) Prediction vector of class k-th sample:

z
(k)
k = (Whk)

(k) =
K − 1

K
Mk, (8)

z
(m)
k = (Whk)

(m) = − 1

K
Mk, ∀m ̸= k, (9)

and
K∑

m=1

z
(m)
k = 0.

If there is any k ∈ [K] such that N√
nk

√
λWλH ≥

√
K−1
K ,

then the k-th class-mean hk = 0 and all properties above
still hold.

We postpone the detailed proof until Section B in the Ap-
pendix. At a high level, our proof finds the lower bound
of the loss function and studies the conditions to achieve
the bound. We start by bounding the cross-entropy term
to move the logit zk = Whk out of the logarithm and
exponent, using arguments based on Cauchy-Schwartz
and Jensen inequalities. Next, the technical challenging
part is the realization of the alignment between wk and
K
√
nkhk−

∑K
m=1

√
nmhm to separate the weights and the

features from the logits z = Wh in the CE loss. The con-
stant coefficients go with each logit vector are also chosen
carefully to be able to sum all logit vectors altogether, with
a different amount from each class due to class-imbalance,
without violating the subsequent equal conditions. After the
separation of the weights and the features in logit terms, we
leverage zero gradient condition of critical points to further
simplify the loss function to have features as the remaining
optimization variables. Then we finish the bounding and
study the equal conditions.

We discuss the implications of Theorem 4.1 as following.

Optimal features form a General Orthogonal Frame:
As we observe from Equation (4) in Theorem 4.1, every
global solution exhibits the NC1, i.e., within-class features
collapse to their class-mean. Under the nonnegativity con-
straint, the optimal features form a general orthogonal frame
(GOF), which consists of pairwise orthogonal vectors but
with different lengths. The geometry of the optimal features
for UFM class-imbalanced training problem with MSE loss
is also a GOF (Dang et al., 2023), but the lengths are clearly
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different between two losses. For UFM+ imbalanced with
supervised contrastive loss and normalized features (i.e.,
∥h∥ = 1), it is observed that optimal H exhibits OF struc-
ture with equal length class-mean vectors, irrespective to
the imbalanced level (Kini et al., 2023).

Classifier converges to scaled-and-centered class-means:
The optimal classifier wk of problem (2) with CE loss does
not form an orthogonal structure as in the case of MSE loss
class-imbalance (Dang et al., 2023). Our results indicate
that class k’s classifier, wk, is aligned with the scaled and
centered class-mean hk, with scaling factor

√
nk, i.e., wk ∝

K
√
nkhk −

∑K
m=1

√
nmhm. We note that the propor-

tional ratio between wk and K
√
nkhk −

∑K
m=1

√
nmhm

is identical across k’s. This property generalizes the orig-
inal NC3 - Convergence to self-duality property, wk ∝
KhK −

∑K
m=1 hm in class-balanced setting. From Eqn.

(5), (6) and (7), we can readily derive the NC2 - Geom-
etry of the class-means and the classifiers in this setting.
We prove that the original NC2 property in class-balanced
setting is a special case of our result in Corrolary 4.2 below.

Logit matrix and Margin: Each column zk of the logit
matrix Z = WH is of a factor of the vector yk − 1

K1k, but
the factors are different among classes. Thus, the optimal
matrix Z = WH of the problem (2) is different from the
SELI geometry, i.e., the global structure of the UFM-SVM
imbalanced problem. This observation further confirms
Proposition 1 in (Thrampoulidis et al., 2022), which asserts
that SELI is not the optimal structure for the CE imbal-
anced problem for any finite regularization parameter λ > 0.
Furthermore, we find that the optimal classifier weight and
features of the problem (2) are also different from those of
SELI, for both finite (λ > 0) and vanishing regularization
levels (λ→ 0). See Appendix C for the details.

The margin for any data point xk,i from class k is:

qk,i(W,H) = w⊤
k hk,i −max

j ̸=k
w⊤

j hk,i =Mk. (10)

We derive the results of Theorem 4.1 in the special case of
balanced dataset as follows.

Corollary 4.2 (Balanced dataset as a special case). Under
balanced setting where n1 = n2 = . . . = nK , we have
from Eqn. (7) that W ∝ (H− hG1

⊤
K)⊤, and thus,

H
⊤
H ∝ IK ,

WW⊤ ∝ (H− hG1
⊤
K)⊤(H− hG1

⊤
K) ∝ IK − 1

K
1K1⊤

K ,

Z = WH ∝ (H− hG1
⊤
K)⊤H ∝ IK − 1

K
1K1⊤

K .

Proof. The results are directly obtained from Theorem 4.1
and by noting thatM1 =M2 = . . . =MK . When H forms

an OF, the center class-mean matrix H−hG1
⊤
K is a simplex

ETF. This follows from

(H− hG1
⊤
K)⊤(H− hG1

⊤
K)

= (IK − 1

K
1K1⊤

K)⊤H⊤H(IK − 1

K
1K1⊤

K)

∝ (IK − 1

K
1K1⊤

K)⊤IK(IK − 1

K
1K1⊤

K)

= IK − 1

K
1K1⊤

K .

The logit matrix Z also forms an ETF structure because

Z = WH ∝ (H− hG1
⊤
K)⊤H

= (IK − 1

K
1K1⊤

K)⊤H⊤H = IK − 1

K
1K1⊤

K .

We obtain the conclusion of Corollary 4.2.

For the special case where dataset is balanced, Theorem
4.1 recovers the ETF structure for classifier matrix W and
logit matrix Z. The optimal class-mean matrix forms an or-
thogonal frame since it is constrained to be on non-negative
orthant.

4.1. Classifier Norm and Angle

By expressing the geometry of the optimal solutions ex-
plicitly, Theorem 4.1 allows us to derive closed-form ex-
pressions for the norms and angles between any individual
classifiers and features. Under imbalanced regime, the k-th
class classifier wk ∝ K

√
nkhk −

∑K
m=1

√
nmhm, indicat-

ing that its norm is positively correlated with the number of
sample nk. We study the norm and angle of the classifier in
the following proposition.

Proposition 4.3 (Classifers norm and angle). Let α =
1

K
√

K(K−1)

√
λH

λW
. The optimal classifier {wk}Kk=1 of prob-

lem (2) obeys:

∥wk∥2 = α

(K − 1)2
√
nkMk +

∑
m̸=k

√
nmMm

 ,

w⊤
k wj = α

[
− (K − 1)

√
nkMk − (K − 1)

√
njMj

+
∑

m̸=k,j

√
nmMm

]
,∀ k ̸= j,

cos(wk,wj) =
w⊤

k wj

∥wk∥∥wj∥
.

The fact that the weight norm is positively correlated with
the number of training instances has been studied in the lit-
erature (Kang et al., 2019; Huang et al., 2016; Kim & Kim,
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2020). Our result in Proposition 4.3 supports this observa-
tion. We proceed to derive the norm ratio of the classifier
weight and class-means and the angles of the classifiers
when we will have only two group of classes with equal
number of samples in each group.
Corollary 4.4 (Norm ratios). Suppose d ≥ K and (W,H)
is a global minimizer of problem (2). Then, for any i, j ∈
[K], we have

∥wi∥2

∥wj∥2
=

(K − 1)2
√
niMi +

∑
m̸=i

√
nmMm

(K − 1)2
√
njMj +

∑
m ̸=j

√
nmMm

∥hi∥2

∥hj∥2
=

√
nj
ni

Mi

Mj
(11)

As a consequence, if ni ≥ nj , ∥wi∥ ≥ ∥wj∥.

Proof. The results are direct consequences of Proposition
4.3.

For the norm of optimal features, one might expect it is
negatively correlated with the number of training samples
and the results for UFM-MSE and UFM-SVM training prob-
lem agree with this expectation (Dang et al., 2023; Thram-
poulidis et al., 2022). However, for CE loss, we find that this
statement is not always true because the function Mi/

√
ni

is not always a decreasing function with respect to ni.
Corollary 4.5 (Classifer angles). Assume the dataset has
KA majority classes with nA samples per class and KB

minority classes with nB samples per class, then we have

cos(wmajor,w
′
major) (12)

= 1−
K2√nAMA

K(K − 1)
√
nAMA −KB

√
nAMA +KB

√
nBMB

,

cos(wminor,w
′
minor) (13)

= 1−
K2√nBMB

K(K − 1)
√
nBMB −KA

√
nBMB +KA

√
nAMA

.

Consequently, we have:

cos(wmajor,w
′
major) < cos(wminor,w

′
minor).

Proof. The results are direct consequences of Proposition
4.3.

From Corollary 4.5, we deduce that the angle between clas-
sifier of major classes will form larger angles than those of
minor classes. This observation further explains the smaller
volume of feature space allocated for minority classes,
which is one of the main reasons for the drop in model
performance for these classes. Additionally, since Eqn. (12)
and (13) are true for any pair of classes within the same
category (i.e., major or minor), this means that classifiers of
classes with the same number of training instances have the
same pairwise angle.

4.2. Heavy Imbalances Cause Minority Collapse and
Complete Collapse

Data naturally exhibit imbalance in their class distribution.
Models trained on highly-skewed class distribution data
tends to be biased towards the majority classes, resulting
in poor performance on the minority classes (Huang et al.,
2016; Kang et al., 2019; Kim & Kim, 2020). Especially,
(Fang et al., 2021) observes that when the imbalance ratio
R := nmajor/nminor is larger than some threshold, the angle
between minority classifiers becomes zero, and these classi-
fiers have the same length. Consequently, these classifiers
become indistinguishable and the network would predict
the same probabilities for these minor classes. This phe-
nomenon is termed as Minority Collapse. From Theorem
4.1, we obtain the exact threshold of the Minority Collapse
occurrence for every class for training problem (2), in terms
of the number of training samples and hyperparameters.
Corollary 4.6 (Minority Collapse and Complete Collapse).
For any class k ∈ [K], if nk ≤ C(N,K, λW , λH) :=
N2 K

K−1λWλH , then at the optimal solution of problem
(2), hk = 0 and wk = wk′ for any k′ ∈ [K] such that
nk′ ≤ C(N,K, λW , λH).

(a) Minority Collapse: If the dataset has KA majority
classes with nA samples per class and KB minority
classes with nB samples per class, then Minority Col-
lapse happens if the imbalance ratio

R :=
nA
nB

≥ 1

KA

(
K − 1

NKλWλH
−KB

)
, (14)

with K = KA +KB and N = nAKA + nBKB .

(b) Complete Collapse: If

N2

nA
≥ K − 1

KλWλH
, (15)

then all classes collapse and the optimal solution is
trivial, i.e., (W,H) = (0,0).

Proof. The results are direct consequences of Theorem 4.1.

Corollary 4.6 implies that even the head classes will collapse
when the ratio N2/nA is large enough, i.e., the dataset has
a huge amount of samples or has too many classes. The
bound (15) suggests that we should lower the regularization
level to avoid this complete collapse phenomenon.

5. Experimental Results
5.1. Metric definition

We recall the notation hk := 1
n

∑n
i=1 hk,i, i.e., the class-

means of class k and hG := 1
Kn

∑K
k=1

∑n
i=1 hk,i is the fea-

ture global-mean. We calculate the within-class covariance

7
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matrix ΣW := 1
N

∑K
k=1

∑n
i=1(hk,i−hk)(hk,i−hk)

⊤ and
the between-class covariance matrix ΣB := 1

K

∑K
k=1(hk−

hG)(hk − hG)
⊤.

Feature collapse. Following previous works (Papyan et al.,
2020; Han et al., 2021; Zhu et al., 2021; Tirer & Bruna,
2022), we measure feature collapse using NC1 metric

NC1 :=
1

K
trace(ΣWΣ†

B),

where Σ†
B is the Moore-Penrose inverse of ΣB .

Relation between the classifier W and features H. To
verify the relation in Eqn. (7) in Theorem 4.1, we measure
the similarity between the learned classifier W and the
UFM+ structure described as follows

NC2− (W −H
⊤
) :=

∥∥∥∥ W

∥W∥F
−

WUFM+
(H)

∥WUFM+
(H)∥F

∥∥∥∥
F

,

where WUFM+
(H) =


K
√
n1h

⊤
1 −

∑K
m=1

√
nmh⊤

m

K
√
n2h

⊤
2 −

∑K
m=1

√
nmh⊤

m

. . .

K
√
nKh⊤

K −
∑K

m=1

√
nmh⊤

m

 .

Classifier and Class-means Gram matrix. We verify the
geometry of the classifier and class-means matrix as follows,

NC2− (WW⊤) :=

∥∥∥∥ WW⊤

∥WW⊤∥F
− WW⊤

UFM

∥WW⊤
UFM∥F

∥∥∥∥ ,
NC2− (H

⊤
H) :=

∥∥∥∥∥ H
⊤
H

∥H⊤
H∥F

− H
⊤
HUFM

∥H⊤
HUFM∥F

∥∥∥∥∥ ,
where WW⊤

UFM and H
⊤
HUFM are derived from Theorem

4.1 (see details in Appendix A).

Prediction matrix WH. To measure the similarity of the
learned Z = WH to the UFM+ structure described in
Theorem 4.1, we define NC3 metric as follows

NC3− (WH) :=

∥∥∥∥∥ WH

∥WH∥F
−

WHUFM+

∥WHUFM+
∥F

∥∥∥∥∥
F

,

where WHUFM+
are described in Appendix A.

5.2. Experiment details

To verify our theoretical results, we train networks that
mimic the UFM setting with ReLU features as in Eqn.(2).
In particular, we use a 6-layer multilayer perceptron (MLP)
model with ReLU activation, VGG11 (Simonyan & Zisser-
man, 2014), ResNet18 (He et al., 2016) as our three main
backbone feature extractors. We train these models on the
imbalanced subsets of 4 datasets: MNIST, FashionMNIST,
CIFAR10, and CIFAR100. Then we measure the evolution

(a) MLP

(b) VGG11

(c) ResNet18

Figure 1. NC metrics evolution for three models trained on imbal-
anced subset of CIFAR10 dataset with cross entropy loss.

of five NC metrics in Section 5.1 to study the geometry of
the last-layer features and the classifier. Due to space con-
sideration, we show the results for CIFAR10 and CIFAR100
below. The remaining experiments and the training details
can be found in Appendix A.

Image classification experiment on CIFAR10:
For this experiment, a subset of the CIFAR10
dataset with {1000, 1000, 2000, 2000, 3000, 3000,
4000, 4000, 5000, 5000} random samples per class is
utilized as training data. We train each backbone model
with Adam optimizer with batch size 256, the weight decay
is λW = 1 × 10−4. Feature decay λH is set to 1 × 10−5

for MLP and VGG11, and to 1 × 10−4 for ResNet18. In
Figure 1, we observe the convergence of NC metrics to
small values as training progresses, which corroborates our
theoretical prediction.

Image classification experiment on CIFAR100: We create
a random subset of the CIFAR100 dataset with 100 samples
per class for the first 20 classes, 200 samples per class for the
next 20 classes,..., 500 samples per class for the remaining
20 classes. Each backbone model is then trained with Adam
optimizer with batch size 256, the learning rate is 2× 10−4

8
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(a) MLP

(b) VGG11

(c) ResNet18

Figure 2. NC metrics evolution for three models trained on imbal-
anced subset of CIFAR100 dataset with cross entropy loss.

for VGG11, ResNet18 and 1×10−4 for MLP. Weight decay
λW and feature decay λH is set to 1× 10−4 and 1× 10−5,
respectively. Figure 2 empirically verifies Theorem 4.1 in
this setting with a large number of classes (K = 100).

Varying imbalance ratio: In this experiment, we validate
our theoretical predictions for multiple levels of data imbal-
ance. We train MLP and VGG models on random subsets of
the CIFAR10 and MNIST datasets with varying imbalance
ratios (R = 5, 10, 20, 50). Figures 3 and 7 demonstrate
the convergence of NC metrics for MNIST and CIFAR10
datasets, respectively.

Illustration of H⊤
H: We normalize the H

⊤
H matrix ob-

tained from the last epoch of the MLP model trained on the
CIFAR10 dataset. The orthogonal structure of the learned
features along with the theoretical prediction derived from
Theorem 4.1 are demonstrated in Figure 4.

6. Concluding Remarks
In this work, we present a rigorous and explicit study of
Neural Collapse phenomenon in the setting of imbalanced
dataset using unconstrained non-negative features model

(a) MLP

(b) VGG11

Figure 3. NC metrics evolution of MLP and VGG11 backbone
trained on MNIST imbalanced subsets with cross entropy loss

Figure 4. H
⊤
H matrix extracted from the last epoch of the trained

MLP model.

and cross-entropy loss. In particular, we provide a closed-
form characterization of the last-layer features and classifier
weights learned by the network training. We find that while
the variability collapse property still holds, the geometry
of the learned features and learned classifier weights are
different from the original definition of Neural Collapse,
due to the class-imbalance of the training data. Specifically,
we prove that at optimality, the features form an orthogo-
nal structure while the classifier weights are aligned to the
scaled and centered class-means, which generalizes the orig-
inal definition of Neural Collapse in class-balanced settings.
Furthermore, with closed-form derivations of the solution,
we are able to quantify the norms and the angles between
the learned features and classifier weights across class dis-
tribution. As a limitation, we only study the convergence
geometries under the condition that the feature dimension
d is at least the number of classes K. The geometric struc-
ture of the features and classifier in the bottleneck situation
d < K is still unaddressed and we leave it for future work.
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Appendix for “Neural Collapse for Cross-entropy Class-Imbalanced Learning
with Unconstrained ReLU Features Model”

A. Additional Experiments and Network Training details
A.1. Metric definitions

We define the NC metrics used in our experiments to measure the discrepancy between the learned model and our derived
geometry for the last-layer features and classifier. We recall the notation hk := 1

n

∑n
i=1 hk,i, i.e., the class-means of class

k and hG := 1
Kn

∑K
k=1

∑n
i=1 hk,i is the feature global-mean. We calculate the within-class covariance matrix ΣW :=

1
N

∑K
k=1

∑n
i=1(hk,i −hk)(hk,i −hk)

⊤ and the between-class covariance matrix ΣB := 1
K

∑K
k=1(hk −hG)(hk −hG)

⊤.
The class-mean matrix is denoted as H. {Mk}Kk=1 are the constants defined in Eqn. (3) in our main paper.

Feature collapse:

NC1 :=
1

K
trace(ΣWΣ†

B),

where Σ†
B is the Moore-Penrose inverse of ΣB .

Relation between the classifier W and features H:

NC2− (W −H
⊤
) :=

∥∥∥∥ W

∥W∥F
−

WUFM+
(H)

∥WUFM+
(H)∥F

∥∥∥∥
F

,where WUFM+
(H) =


K
√
n1h

⊤
1 −

∑K
m=1

√
nmh⊤

m

K
√
n2h

⊤
2 −

∑K
m=1

√
nmh⊤

m

. . .

K
√
nKh⊤

K −
∑K

m=1

√
nmh⊤

m

 .

Classifier Gram matrix WW⊤:

NC2− (WW⊤) :=

∥∥∥∥ WW⊤

∥WW⊤∥F
− WW⊤

UFM

∥WW⊤
UFM∥F

∥∥∥∥ ,
where (WW⊤

UFM)kk = ∥wk∥2 = α

(K − 1)2
√
nkMk +

∑
m̸=k

√
nmMm

 ,

and (WW⊤
UFM)kj = w⊤

k wj = α

[
− (K − 1)

√
nkMk − (K − 1)

√
njMj +

∑
m̸=k,j

√
nmMm

]
,∀ k ̸= j.

The calculation of WW⊤
UFM is from the Proposition 4.3.

Class-mean Gram matrix H
⊤
H:

NC2− (H
⊤
H) :=

∥∥∥∥∥ H
⊤
H

∥H⊤
H∥F

− H
⊤
HUFM

∥H⊤
HUFM∥F

∥∥∥∥∥ ,
where (H

⊤
HUFM)kk = ∥hk∥2 =

√
K − 1

K

λW
λH

1

nk
Mk and (H

⊤
HUFM)kj = 0.

The calculation of H
⊤
HUFM is from Theorem 4.1.

Prediction matrix WH:

NC3−WH :=

∥∥∥∥ WH

∥WH∥F
−

WHUFM+

∥WHUFM+
∥F

∥∥∥∥
F

,where WHUFM+=


K−1
K M1

−1
K M2 ... −1

K MK
−1
K M1

K−1
K M2 ... −1

K MK

... ... ...
−1
K M1

−1
K M2 ... K−1

K MK

 .
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(a) MLP (b) VGG11

(c) ResNet18

Figure 5. NC metrics evolution for three models trained on imbalanced subset of MNIST dataset with cross entropy loss.

(a) MLP (b) VGG11

(c) ResNet18

Figure 6. NC metrics evolution for three models trained on imbalanced subset of FashionMNIST dataset with cross entropy loss.

(a) MLP (b) VGG11

Figure 7. NC metrics evolution of MLP and VGG11 backbone trained on CIFAR10 imbalanced subsets with cross entropy loss

13
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A.2. Network training details

Unless stated otherwise, all models in Section 5.2 are trained for 4000 epochs with Adam optimizer, we set the general
learning rate to 1× 10−3 with decay of 0.1 at 2000-th epoch. All MLP models share the same hidden dimension of 1024.

Image classification experiment on CIFAR10: For this experiment, a subset of the CIFAR10 dataset with
{1000, 1000, 2000, 2000, 3000, 3000, 4000, 4000, 5000, 5000} random samples per class is utilized as training data. We
train each backbone model with Adam optimizer with batch size 256, the weight decay is λW = 1× 10−4. Feature decay
λH is set to 1× 10−5 for MLP and VGG11, and to 1× 10−4 for ResNet18.

Image classification experiment on CIFAR100: We create a random subset of the CIFAR100 dataset with 100 samples
per class for the first 20 classes, 200 samples per class for the next 20 classes,..., 500 samples per class for the remaining
20 classes. Each backbone model is then trained with Adam optimizer with batch size 256, the learning rate is 2× 10−4

for VGG11, ResNet18 and 1× 10−4 for MLP. Weight decay λW and feature decay λH is set to 1× 10−4 and 1× 10−5,
respectively.

Image classification experiment on MNIST dataset: In this experiment, a randomly sampled subset of MNIST dataset
with the number of samples per class ∈ {100, 100, 200, 200, 300, 300, 400, 400, 500, 500} is utilized. Each backbone model
is trained with batch size 16. Feature decay rate is λH = 1× 10−5 and weight decay rate is λW = 1× 10−4. The results
are shown in Figure 5.

Image classification experiment on FashionMNIST dataset: Similar to MNIST experiment, we randomly sample a subset
of FashionMNIST dataset with {100, 100, 200, 200, 300, 300, 400, 400, 500, 500} samples per class. Each backbone model
is trained with batch size 16. Feature decay rate is λH = 1× 10−5 and weight decay rate is λW = 1× 10−4. The results
are shown in Figure 6.

Varying imbalance ratio: Each model is trained with a batch size of 32, weight decay λW of 1× 10−4, and feature decay
λH of 1× 10−5. The training data is randomly drawn from CIFAR10 and MNIST dataset with 5 majority classes with 500
samples per class, and the other 5 minority classes with 500/R (R = 5, 10, 20, 50) samples per class.

B. Proof of Theorem 4.1 and Proposition 4.3
Recall the training problem:

min
W,H

L0(W,H) :=
1

N

K∑
k=1

nk∑
i=1

LCE(Whk,i,yk) +
λW
2

∥W∥2F +
λH
2

∥H∥2F , (16)

where hk,i ≥ 0 ∀ k, i and:

LCE(z,yk) := − log

(
ezk∑K

m=1 e
zm

)
.

Denoting the class-mean of k-th class as hk = 1
nk

∑nk

i=1 hk,i, the m-th row vector of W as wm. We denote zk,i := Whk,i

and z(m) is the m-th component of vector z.

Step 1: We introduce a lower bound on the loss L0 by grouping the cross-entropy term and regularization term for features
within the same class.

14
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We have:

L0(W,H) =
1

N

K∑
k=1

nk∑
i=1

LCE(zk,i,yk) +
λW
2

∥W∥2F +
λH
2

∥H∥2F

=
1

N

K∑
k=1

 nk∑
i=1

log

∑K
m=1 exp

(
z
(m)
k,i

)
exp

(
z
(k)
k,i

)
+

λW
2

∥W∥2F +
λH
2

K∑
k=1

(
nk∑
i=1

∥hk,i∥2
)

=
1

N

K∑
k=1

 nk∑
i=1

log

1 +
∑
m ̸=k

exp
(
z
(m)
k,i − z

(k)
k,i

)+
λW
2

∥W∥2F +
λH
2

K∑
k=1

(
nk∑
i=1

∥hk,i∥2
)

≥ 1

N

K∑
k=1

 nk∑
i=1

log

1 + (K − 1) exp

∑
m̸=k

z
(m)
k,i − z

(k)
k,i

K − 1

+
λW
2

∥W∥2F +
λH
2

K∑
k=1

(
nk∑
i=1

∥hk,i∥2
)

=
1

N

K∑
k=1

(
nk∑
i=1

log

(
1 + (K − 1) exp

(∑K
m=1 z

(m)
k,i −Kz

(k)
k,i

K − 1

)))
+
λW
2

∥W∥2F +
λH
2

K∑
k=1

(
nk∑
i=1

∥hk,i∥2
)

≥ 1

N

K∑
k=1

nk log

(
1 + (K − 1) exp

(
1

nk

nk∑
i=1

∑K
m=1 z

(m)
k,i −Kz

(k)
k,i

K − 1

))
+
λW
2

∥W∥2F +
λH
2

K∑
k=1

 1

nk

∥∥∥∥∥
nk∑
i=1

hk,i

∥∥∥∥∥
2


=
1

N

K∑
k=1

nk log

(
1 + (K − 1) exp

(∑K
m=1 z

(m)
k −Kz

(k)
k

K − 1

))
+
λW
2

∥W∥2F +
λH
2

K∑
k=1

nk ∥hk∥2

=
1

N

K∑
k=1

nk log

(
1 + (K − 1) exp

(∑K
m=1 wmhk −Kwkhk

K − 1

))
+
λW
2

∥W∥2F +
λH
2

K∑
k=1

nk ∥hk∥2

:= L1(W,H)

where zk := 1
nk

∑nk

i=1 zk,i. We denote the function:

g(WH) :=
1

N

K∑
k=1

nk log

(
1 + (K − 1) exp

(∑K
m=1 wmhk −Kwkhk

K − 1

))
, (17)

thus, L1(W,H) = g(WH) + λW

2 ∥W∥2F + λH

2

∑K
k=1 nk ∥hk∥2.

The first inequality above follows from Jensen inequality that:

∑
m ̸=k

exp
(
z
(m)
k,i − z

(k)
k,i

)
≥ (K − 1) exp

∑
m ̸=k

z
(m)
k,i − z

(k)
k,i

K − 1

 , (18)

which become equality when and only when z
(m)
k,i = z

(l)
k,i ∀m, l ̸= k. The second inequality includes two inequalities as

following. The first one is

nk∑
i=1

log

(
1 + (K − 1) exp

(∑K
m=1 z

(m)
k,i −Kz

(k)
k,i

K − 1

))
≥ nk log

(
1 + (K − 1) exp

(
1

nk

nk∑
i=1

∑K
m=1 z

(m)
k,i −Kz

(k)
k,i

K − 1

))
,

(19)

where we use Jensen inequality since the function log(1 + (K − 1) exp(x)) is a convex function. The second sub-inequality
is that for any k ∈ [K],

∑nk

i=1 ∥hk,i∥2 ≥ 1
nk

∥
∑K

k=1 hk,i∥2, which achieves equality if and only if hk,i = hk,j ∀ i ̸= j.
This equality condition, hk,i = hk,j ∀ i ̸= j, also satisfies the equality condition of the inequality (19), hence we only need
to satisfy this property to achieve equality.
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Step 2: We further lower bound the log term of L1, the idea of this bound is inspired from Lemma D.5 in (Zhu et al., 2021)

For any k ∈ [K] and any tk > 0, we have:

log

(
1 + (K − 1) exp

(∑K
m=1 z

(m)
k −Kz

(k)
k

K − 1

))

= log

(
tk

1 + tk

1 + tk
tk

+
1

1 + tk
(1 + tk) (K − 1) exp

(∑K
m=1 z

(m)
k −Kz

(k)
k

K − 1

))

≥ 1

1 + tk
log

(
(1 + tk) (K − 1) exp

(∑K
m=1 z

(m)
k −Kz

(k)
k

K − 1

))
+

tk
1 + tk

log

(
1 + tk
tk

)

=
1

1 + tk

∑K
m=1 z

(m)
k −Kz

(k)
k

K − 1
+

1

1 + tk
log ((1 + tk) (K − 1)) +

tk
1 + tk

log

(
1 + tk
tk

)
=

√
nk

1 + tk︸ ︷︷ ︸
c1,k

√
1

nk

∑K
m=1 z

(m)
k −Kz

(k)
k

K − 1
+

1

1 + tk
log ((1 + tk) (K − 1)) +

tk
1 + tk

log

(
1 + tk
tk

)
︸ ︷︷ ︸

c2,k

=
c1,k
K − 1

∑K
m=1 z

(m)
k −Kz

(k)
k√

nk
+ c2,k,

(20)

where the inequality above is from the concavity of the log(x) function, i.e., log(tx+ (1− t)y) ≥ t log(x) + (1− t) log(y)
for any x, y and t ∈ [0, 1]. The inequality becomes an equality if any only if:

1 + tk
tk

= (1 + tk) (K − 1) exp

(∑K
m=1 z

(m)
k −Kz

(k)
k

K − 1

)
or tk = 0, or tk = +∞.

However, when tk = 0 or tk = +∞, the equality is trivial. Therefore, we have:

tk =

[
(K − 1) exp

(∑K
m=1 z

(m)
k −Kz

(k)
k

K − 1

)]−1

.

To summary, at this step, we have that for any k ∈ [K] and any tk > 0:

log

(
1 + (K − 1) exp

(∑K
m=1 z

(m)
k −Kz

(k)
k

K − 1

))
≥ c1,k
K − 1

∑K
m=1 z

(m)
k −Kz

(k)
k√

nk
+ c2,k, (21)

where c1,k =
√
nk/(1 + tk) and c2,k = 1

1+tk
log ((1 + tk) (K − 1)) + tk

1+tk
log
(

1+tk
tk

)
. The inequality becomes an

equality when:

tk =

[
(K − 1) exp

(∑K
m=1 z

(m)
k −Kz

(k)
k

K − 1

)]−1

. (22)

Step 3: We apply the result from Step 2 and choose the same c1,k for all classes to lower bound g(WH) w.r.t. the L2-norm
of the class-mean ∥hk∥2 := xk.

By using the inequality (21) for zk,i = Whk,i and choosing the same scalar c1 := c1,1 = . . . = c1,k (recall that c1,k can be
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chosen arbitrarily), we have:

K − 1

c1

[
g(WH)−

K∑
k=1

nk
N
c2,k

]

=
K − 1

c1

[
1

N

K∑
k=1

nk log

(
1 + (K − 1) exp

(∑K
m=1 wmhk −Kwkhk

K − 1

))
−

K∑
k=1

nk
N
c2,k

]

≥ 1

N

K∑
k=1

nk

√
1

nk

[
K∑

m=1

wmhk −Kwkhk

]

=
1

N

K∑
m=1

wm

(
K∑

k=1

√
nkhk −K

√
nmhm

)
.

(23)

We know that from the Cauchy-Schwarz inequality for inner product that for any u,v ∈ RK and any c3 > 0,

u⊤v ≥ −c3
2
∥u∥22 −

1

2c3
∥v∥22.

The equality holds when c3u = −v. Therefore, by applying this inequality for each term
wm

(∑K
k=1

√
nkhk −K

√
nmhm

)
, we have:

N(K − 1)

c1

[
g(WH)−

K∑
k=1

nk
N
c2,k

]

≥− c3
2

K∑
m=1

∥wm∥22 −
1

2c3

K∑
m=1

∥∥∥∥∥
K∑

k=1

√
nkhk −K

√
nmhm

∥∥∥∥∥
2

2

=− c3
2
∥W∥2F − 1

2c3

K∑
m=1

∥ĥm∥22,

(24)

where we denote ĥm :=
∑K

k=1

√
nkhk −K

√
nmhm,∀m ∈ [K], and the above inequality becomes an equality if and only

if:

c3wm = −
K∑

k=1

√
nkhk +K

√
nmhm, ∀m ∈ [K] (25)

We further have:

K∑
m=1

∥ĥm∥2 =

K∑
m=1

∥∥∥∥∥
K∑

k=1

√
nkhk −K

√
nmhm

∥∥∥∥∥
2

=

K∑
m=1

∥∥∥∥∥
K∑

k=1

√
nkhk

∥∥∥∥∥
2

+K2 ∥
√
nmhm∥2 − 2K

〈
K∑

k=1

√
nkhk,

√
nmhm

〉
= K2

K∑
m=1

∥
√
nmhm∥2 +K

∥∥∥∥∥
K∑

k=1

√
nkhk

∥∥∥∥∥
2

− 2K

〈
K∑

k=1

√
nkhk,

K∑
m=1

√
nmhm

〉

= K2
K∑

m=1

∥
√
nmhm∥2 −K

∥∥∥∥∥
K∑

k=1

√
nkhk

∥∥∥∥∥
2

(26)
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We lower bound the second term of Eqn. (26) as following:

∥∥∥∥∥
K∑

k=1

√
nkhk

∥∥∥∥∥
2

=

K∑
k=1

∥
√
nkhk∥2 +

∑
k,l,k ̸=l

⟨
√
nkhk,

√
nlhl⟩

≥
K∑

k=1

∥
√
nkhk∥2 , (27)

where we use the non-negativity of the features and the equality happens iff ⟨hk,hl⟩ = 0,∀ k ̸= l.

Thus, we have:

K∑
m=1

∥ĥm∥2 ≤ K(K − 1)

K∑
k=1

nk∥hk∥2, (28)

the equality happens iff ⟨hk,hl⟩ = 0,∀ k ̸= l.

Now, let xk := ∥hk∥2, at critical points of L1, from Lemma B.1 , we have:

∥W∥2F =
λH
λW

K∑
k=1

nkxk. (29)

Hence:

N(K − 1)

c1

[
g(WH)−

K∑
k=1

nk
N
c2,k

]
≥ −c3

2

λH
λW

(
K∑

k=1

nkxk

)
− K(K − 1)

2c3

(
K∑

k=1

nkxk

)
(30)

We will choose c3 in advance to let the inequality (30) hold. From the equality conditions (25) and (28), we can choose c3
as follows:

c3wm = −
K∑

k=1

√
nkhk +K

√
njhm, ∀m ∈ [K]

⇒ c23 =

∑K
k=1 ∥ĥk∥2∑K
k=1 ∥wk∥2

=
K(K − 1)

(∑K
k=1 nkxk

)
λH

λW

(∑K
k=1 nkxk

) =
λW
λH

K(K − 1) (31)

In summary, from (30), we have the lower bound of g(WH):

g(WH) ≥ −c1
N

√
λH
λW

K

K − 1

(
K∑

k=1

nkxk

)
+

K∑
k=1

nk
N
c2,k, (32)

for any c1 > 0. The equality conditions of (32) is derived at Lemma B.2.

Step 4: Now, we use the lower bound of g(WH) above into the bounding of the loss L1(W,H) and use the equality
conditions from Lemma B.2 to finish the bounding process.
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Recall that xk = ∥hk∥2, we have at critical points of L1:

L1(W,H) = g(WH) +
λW
2

∥W∥2F +
λH
2

K∑
k=1

nk ∥hk∥2

≥ −c1
N

√
λH
λW

K

K − 1

(
K∑

k=1

nkxk

)
+

K∑
k=1

nk
N
c2,k + λH

K∑
k=1

nkxk

:= ξ(c1, x1, . . . , xK),

for any c1 > 0 (c2,k can be calculated from c1). From Lemma B.2, we know that the inequality L1(W,H) ≥
ξ(c1, x1, . . . , xk) becomes an equality if and only if:

h⊤
k hl = 0, ∀ k ̸= l

wm =

√
1

K(K − 1)

√
λH
λW

(
K
√
nmhm −

K∑
k=1

√
nkhk

)
, ∀m ∈ [K]

tk =
1

K − 1
exp

(√
K

K − 1

√
λH
λW

√
nk∥hk∥2

)
,

c1 =

√
nk

1 + 1
K−1 exp

(√
K

K−1

√
λH

λW

√
nk∥hk∥2

) =

√
nl

1 + 1
K−1 exp

(√
K

K−1

√
λH

λW

√
nl∥hl∥2

) , ∀ k ̸= l

Next, we will lower bound ξ(c1, x1, . . . , xK) under these equality conditions for arbitrary values of x1, . . . , xK , as following:

ξ(c1, x1, . . . , xK)

=
−c1
N

√
λH
λW

K

K − 1

(
K∑

k=1

nkxk

)
+

K∑
k=1

nk
N
c2,k + λH

K∑
k=1

nkxk

= −
K∑

k=1

1

N

√
λH
λW

K

K − 1

nk
√
nkxk

1 + tk
+

K∑
k=1

nk
N

(
1

1 + tk
log((K − 1)(1 + tk)) +

tk
1 + tk

log

(
1 + tk
tk

))
+ λH

K∑
k=1

nkxk.

Due to the separation of the xk’s, we can minimize them individually. Consider the following function, for any k ∈ [K]:

g(x) = − 1

N

√
λH
λW

K

K − 1

nk
√
nkx

1 + t
+
nk
N

(
1

1 + t
log((K − 1)(1 + t)) +

t

1 + t
log

(
1 + t

t

))
+ λHnkx, x ≥ 0

(33)

where t = 1
K−1 exp

(√
K

K−1

√
λH

λW

√
nkx

)
.

We note that:

1

1 + t
log((K − 1)(1 + t)) +

t

1 + t
log

(
1 + t

t

)
=

1

1 + t
log((K − 1)(1 + t))− 1

1 + t
log

(
1 + t

t

)
+ log

(
1 + t

t

)
=

1

1 + t
log((K − 1)t) + log

(
1 + t

t

)

=

√
λH

λW

K
K−1nkx

1 + t
+ log

(
1 + t

t

)
.
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Hence:

g(x) =
nk
N

log

(
1 + (K − 1) exp

(
−
√

K

K − 1

√
λH
λW

√
nkx

))
+ λHnkx

g′(x) = −nk
N

√
K

K−1

√
λH

λW

√
nk

1 + 1
K−1 exp

(√
K

K−1

√
λH

λW

√
nkx

) + λHnk (34)

g′(x) = 0 ⇒ c1 =

√
nk

1 + 1
K−1 exp

(√
K

K−1

√
λH

λW

√
nkx

) = N

√
K − 1

K
λWλH , (35)

⇒ x∗ =

√
K − 1

K

λW
λH

1

nk

log(K − 1) + log

 √
nk

N
√

K−1
K λWλH

− 1

 . (36)

Since x = ∥h∥2 ≥ 0, we have that x∗ > 0 if (K − 1)

( √
nk

N
√

K−1
K λWλH

− 1

)
> 1 or equivalently, N√

nk

√
λWλH <

√
K−1
K .

Otherwise, if N√
nk

√
λWλH ≥

√
K−1
K , we have g′(x) > 0 ∀x > 0 and thus, x∗ = 0.

In conclusion, we have:

L1(W,H) = ξ(c1, x1, . . . , xK) ≥
K∑

k=1

g(x∗k) = const

For any (W,H) that the equality conditions at Lemma B.2 do not hold, we have that L1(W,H) >

ξ
(
c1 = N

√
K−1
K λWλH , x1, . . . , xK

)
and:

ξ

(
c1 = N

√
K − 1

K
λWλH , x1, . . . , xK

)

=
−c1
N

√
λH
λW

K

K − 1

(
K∑

k=1

nkxk

)
+

K∑
k=1

nk
N
c2,k + λH

(
K∑

k=1

nkxk

)

=

K∑
k=1

nk
N
c2,k

=

K∑
k=1

nk
N

(
1

1 + tk
log((K − 1)tk) + log

(
1 + tk
tk

))
(with tk =

√
nk/c1 − 1)

=

K∑
k=1

g(x∗k),

hence, (W,H) is not optimal.

Step 5: We finish the proof since L0(W,H) ≥ L1(W,H) ≥ const and we study the equality conditions.

In conclusion, by summarizing all equality conditions, we have that any optimal (W∗,H∗) of the original training problem
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obey the following:

i) ∀ k ∈ [K],hk,i = hk,j ∀ i ̸= j

ii) h⊤
k hl = 0 ∀ k ̸= l

iii) wk =

√
1

K(K − 1)

√
λH
λW

(
K
√
nkhk −

K∑
m=1

√
nmhm

)
, ∀k ∈ [K]

and
K∑

k=1

wk = 0

iv) ∥hk∥2 =

√
K − 1

K

λW
λH

1

nk
log

(K − 1)

 √
nk

N
√

K−1
K λWλH

− 1


v) For m ̸= k, z

(m)
k = (Whk)

(m) = − 1

K
log

(K − 1)

 √
nk

N
√

K−1
K λWλH

− 1

 ,

z
(k)
k = (Whk)

(k) =
K − 1

K
log

(K − 1)

 √
nk

N
√

K−1
K λWλH

− 1


We proceed to deduce the results of Proposition 4.3:

∥wk∥2 =
1

K(K − 1)

λH
λW

∥∥∥∥∥∥(K − 1)
√
nkhk −

∑
m ̸=k

√
nmhm

∥∥∥∥∥∥
2

=
1

K(K − 1)

λH
λW

(K − 1)2nk∥hk∥2 +
∑
m ̸=k

nm∥hm∥2


=
1

K
√
K(K − 1)

√
λH
λW

(K − 1)2
√
nkMk +

∑
m̸=k

√
nmMm

 ,

w⊤
k wj =

1

K(K − 1)

λH
λW

〈
(K − 1)

√
nkhk −

∑
m ̸=k

√
nmhm, (K − 1)

√
njhj −

∑
m̸=j

√
nmhm

〉

=
1

K(K − 1)

λH
λW

(
− (K − 1)nk∥hk∥2 − (K − 1)nj∥hj∥2 +

∑
m̸=k,j

nm∥hm∥2
)

=
1

K
√
K(K − 1)

√
λH
λW

[
− (K − 1)

√
nkMk − (K − 1)

√
njMj +

∑
m ̸=k,j

√
nmMm

]
, k ̸= j

B.1. Supporting lemmas

Remark: Although our training problem is a constrained optimization problem, the constraints hk,i ≥ 0 are affine functions,
it is clear that strong duality holds with dual variables equal 0’s. Then, the solutions of the primal problem and the optimal
dual variables will satisfy KKT conditions and hence, we have ∇HL1 = 0 at optimal.
Lemma B.1. Any critical points (W,H) of L1(W,H) satisfy:

∥W∥2F =
λH
λW

K∑
k=1

nk∥hk∥2 (37)

Proof of Lemma B.1. Recall that L1(W,H) = g(WH) + λW

2 ∥W∥2F + λH

2

∑K
k=1 nk ∥hk∥2. We have:

∇WL1(W,H) = ∇Z=WH g(WH)H⊤ + λWW = 0,
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∇HL1(W,H) = W⊤∇Z=WH g(WH) + λH
[
n1h1 n2h2 . . . nKhK

]
= 0.

From 0 = W⊤∇WL1(W,H)−∇HL1(W,H)H⊤, we have:

λWW⊤W = λH
[
n1h1 n2h2 . . . nKhK

]
H⊤

Hence, by taking the trace of both sides, we have ∥W∥2F = λH

λW

∑K
k=1 nk∥hk∥2.

Lemma B.2. The lower bound (32) is attained for any critical points (W,H) if and only if the following hold:

h⊤
k hl = 0, ∀ k ̸= l (38)

wm =

√
1

K(K − 1)

√
λH
λW

(
K
√
nmhm −

K∑
k=1

√
nkhk

)
, ∀m ∈ [K] (39)

tk =
1

K − 1
exp

(√
K

K − 1

√
λH
λW

√
nk∥hk∥2

)
(40)

c1 =

√
nk

1 + 1
K−1 exp

(√
K

K−1

√
λH

λW

√
nk∥hk∥2

) =

√
nl

1 + 1
K−1 exp

(√
K

K−1

√
λH

λW

√
nl∥hl∥2

) , ∀ k ̸= l (41)

Proof of Lemma B.2. From the proof above, we see that if we want to achieve the lower bound (30), we need that:

h⊤
k hl = 0 ∀ k, l ∈ [K], k ̸= l,

to achieve equality for the inequality (28).

We further need the following to obey (25):

c3wm = −

(
K∑

k=1

√
nkhk −K

√
nmhm

)
, ∀k ∈ [K] with c3 =

√
λW
λH

K(K − 1)

⇒wm =

√
1

K(K − 1)

√
λH
λW

(
K
√
nmhm −

K∑
k=1

√
nkhk

)
, ∀k ∈ [K].

Thus:
K∑

k=1

wk = 0 (42)

Next, we need the inequality (24) to hold. Equivalently, this means that the equality condition (22) need to hold. Indeed, for
a given k ∈ [K] and any m ̸= k:

z
(m)
k = wmhk

=

√
1

K(K − 1)

√
λH
λW

(
K
√
nmhm −

K∑
l=1

√
nlhl

)
hk

= −

√
1

K(K − 1)

√
λH
λW

√
nk∥hk∥2

⇒ z
(m)
k = z

(l)
k ∀m, l ̸= k (43)

We further have, for any k ∈ [K]:

K∑
m=1

z
(m)
k =

(
K∑

m=1

wm

)
hk = 0,
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Kz
(k)
k = Kwkhk = K

√
1

K(K − 1)

√
λH
λW

(
K
√
nkhk −

K∑
m=1

√
nmhm

)
hk

=
√
K(K − 1)

√
λH
λW

√
nk∥hk∥2

⇒ tk =

[
(K − 1) exp

(∑K
m=1 z

(m)
k −Kz

(k)
k

K − 1

)]−1

=
1

K − 1
exp

(√
K

K − 1

√
λH
λW

√
nk∥hk∥2

)
(44)

Since the scalar c1 is chosen to be the same for all k ∈ [K], we have:

c1 =

√
nk

1 + tk
=

√
nk

1 + 1
K−1 exp

(√
K

K−1

√
λH

λW

√
nk∥hk∥2

) , ∀ k ∈ [K] (45)

C. Comparison with SELI geometry
In this section, we make a comparison between our geometry derived in Theorem 4.1, which is the convergence geometry of
the UFM Cross-entropy class-imbalance problem with ReLU features, and SELI (Thrampoulidis et al., 2022), the geometry
of the UFM SVM class-imbalance problem. Our conclusion is that both the classifier and features of our geometry are
different from those of SELI, for both finite (λ > 0) and vanishing regularization level (λ→ 0).

First, we have a useful result that used for subsequent analysis in the vanishing regularization scenario:

Lemma C.1. Let {Mi}Ki=1 be the constants that we have defined in Eqn. (3) in our main paper. We have:

lim
λW ,λH→0

Mi

Mj
= 1

Proof. This property can be easily proved using L’Hôpital’s rule.

Let H is the class-mean matrix. For the prediction matrix, we have from Theorem 4.1, point (e):

Z = WH =


(1− 1/K)M1 −M2/K . . . −MK/K

−M1/K (1− 1/K)M2 . . . −MK/K
...

...
. . .

...
−M1/K −M2/K . . . (1− 1/K)MK



⇒ lim
λW ,λH→0

Z

∥Z∥F
∝


1− 1/K −1/K . . . −1/K
−1/K 1− 1/K . . . −1/K

...
...

. . .
...

−1/K −1/K . . . 1− 1/K

 .

Hence, (i) the prediction matrix with finite λ’s is different from SELI’s prediction matrix due to the multiplication Mk at
each column, (ii) in limiting case where the λ’s converge to 0, our prediction matrix converges to the ETF matrix. SELI
structure, after grouping the identical columns of the SEL matrix (see Definition 2 in (Thrampoulidis et al., 2022)), is also
an ETF. It is proven in (Thrampoulidis et al., 2022) that the matrix WH follows SEL matrix and since the features of the
same class converge to their class-mean, we have Z = WH follows ETF structure.

To derive the classifier and class-means Gram matrices, i.e., WW⊤ and H
⊤
H, we consider the same setting (R, 1/2) as

(Thrampoulidis et al., 2022) for easier comparison with results derived for SELI at page 24 and 25 in (Thrampoulidis et al.,
2022). Specifically, the setting has total K classes, with K/2 classes are majority class with nA samples per class, the other
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K/2 classes are minority with nB samples per class. The imbalance ratio nA

nB
is R.

For the matrix WW⊤, using the results in the Proposition 4.3, we have:

WW⊤ ∝

√RMAIK/2 − 1
K

(
3
2

√
RMA − 1

2MB

)
1K/21

⊤
K/2 − 1

2K (
√
RMA +MB)1K/21

⊤
K/2

− 1
2K (

√
RMA +MB)1K/21

⊤
K/2 MBIK/2 − 1

K

(
3
2MB − 1

2

√
RMA

)
1K/21

⊤
K/2


⇒ lim

λW ,λH→0

WW⊤

∥WW⊤∥F
∝

√RIK/2 − 1
K

(
3
2

√
R− 1

2

)
1K/21

⊤
K/2 − 1

2K (
√
R+ 1)1K/21

⊤
K/2

− 1
2K (

√
R+ 1)1K/21

⊤
K/2 IK/2 − 1

K

(
3
2 − 1

2

√
R
)
1K/21

⊤
K/2

 ,
which has the similar block structure as the Gram matrix WW⊤ in (Thrampoulidis et al., 2022), but the elements are all
different with SELI in both finite λ’s and vanishing λ’s cases (see page 24 in (Thrampoulidis et al., 2022) for the SELI
closed-form WW⊤).

The ”centering” considered in (Thrampoulidis et al., 2022) is equivalent to centering the class-mean matrix H, which is
H− hG1

⊤
K with hG = 1

K

∑K
i=1 hi. Regarding the ”centering” class-mean matrix, we have:

(H− hG1
⊤
K)⊤(H− hG1

⊤
K) = (IK − 1

K
1K1⊤

K)⊤H
⊤
H(IK − 1

K
1K1⊤

K).

From our Theorem 4.1, we have: H
⊤
H ∝ diag

(
MA√
nA
, . . . , MA√

nA
, MB√

nB
, . . . , MB√

nB

)
.

Thus,

(H− hG1
⊤
K)⊤(H− hG1

⊤
K) ∝MA√

R
IK/2 − 1

K

(
3
2
MA√
R
− 1

2MB

)
1K/21

⊤
K/2 − 1

2K

(
MA√
R
+MB

)
1K/21

⊤
K/2

− 1
2K

(
MA√
R
+MB

)
1K/21

⊤
K/2 MBIK/2 − 1

K

(
3
2MB − 1

2
MA√
R

)
1K/21

⊤
K/2


⇒ lim

λW ,λH→0

(H− hG1
⊤
K)⊤(H− hG1

⊤
K)

∥(H− hG1⊤
K)⊤(H− hG1⊤

K)∥F
∝ 1√

R
IK/2 − 1

K

(
3

2
√
R
− 1

2

)
1K/21

⊤
K/2 − 1

2K

(
1√
R
+ 1
)
1K/21

⊤
K/2

− 1
2K

(
1√
R
+ 1
)
1K/21

⊤
K/2 IK/2 − 1

K

(
3
2 − 1

2
√
R

)
1K/21

⊤
K/2

 ,
which again has the similar block structure as the matrix H⊤H in (Thrampoulidis et al., 2022), but the elements are
all different with SELI in both finite λ’s and vanishing λ’s cases (see page 25 of (Thrampoulidis et al., 2022) for SELI
closed-form H⊤H).
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