
A Qualitative Evaluation on Camera Estimation

We collected images of the same object with various object poses and backgrounds, and visualized
their camera estimation in Figure 10. This was done with DeiT-T+3DTRL trained on ImageNet. We
observe 3DTRL estimates similar camera poses (clustered in the red-dashed circle) for similar object
poses regardless of different backgrounds. When given different object poses, 3DTRL estimates
cameras in scattered position and orientations. We notice that there is an outlier whose estimation is
also introduced in this cluster, owing to the model invariance to horizontal flipping which is used as
an augmentation during training. This visualization suggests that 3DTRL, when trained for the object
classification task, might be performing object-centric canonicalization of the input images.

Estimated CamerasInputs

Figure 10: Qualitative experiment on how 3DTRL reacts to similar and different poses of the same
object. Photos are taken by a regular smartphone. We use DeiT-T+3DTRL trained on ImageNet. The
estimated cameras from the similar poses (first row) are clustered as shown in the red-dashed circle,
while the other cameras from different poses (second row) are apart. We notice an outlier whose
estimation is also introduced in this cluster, owing to the model invariance to horizontal flipping
which is used as an augmentation during training.

We also present more qualitative visualizations of estimated camera positions (Figure 11) and
estimated 3D world locations of image patches (Figure 12). We find that the estimations approximately
reflect the ground truth or human perception which the model has no access to during training. These
estimations are not necessarily required to be perfectly aligned with ground truth, but the results show
that they are reasonable and sufficient for providing 3D information.

Figure 11: Visualization of image samples (left, with colored boundaries) and estimated camera
positions in a 3D space (right). The color of the boundary on each image corresponds to the estimated
camera from that image. Top: Images are from a video clip captured by an egocentric (eye-in-hand)
camera on a robot arm in Can environment, ordered by timestep from left to right. The estimated
camera positions approximately reflects the motion of the robot arm, which is moving towards right
and down. Bottom: Samples from ImageNet-1K. The estimated camera pose of the second image
(yellow boundary) is somehow at a head-up view, and the rest are at a top-down view. These estimated
cameras are approximately aligned with human perception.

15

!
"

#

Figure 12: Visualization of image patches at their estimated 3D world locations. The center of the
xy-plane (horizontal plane, at the bottom) is the origin of the 3D space. The vertical axis is z-axis.
The patches corresponds to object-of-interest usually have larger z values (corresponding to larger
pseudo-depth values), which are localized “farther” from the origin. Most of the background patches
have smaller z values that are at the “closer” to the xy-plane.

16

B Experiment on Perspective Augmentation

In this experiment, we investigate whether perspective augmentation applied to input images will help
the model to learn viewpoint-agnostic representations. We test with DeiT+3DTRL on multi-view
video alignment task. The training procedure is the same for all variants. Results are shown in
Table 6. From the results we show that naively adding perspective augmentation does not improve the
viewpoint-agnostic representation learning. Instead, it harms the performance compared to the DeiT
baseline, since the perspective augmentation is overly artificial compared to the real-world viewpoint
changes. Such augmentation does not contribute to viewpoint-agnostic representation learning.

Table 6: Comparison between 3DTRL and perspective augmentation on training data. Overall, per-
spective augmentation shows a negative effect on all the tasks, because the perspective augmentation
on image is not the real viewpoint change.

Model Pouring Pick MC Can Lift

DeiT 0.426 0.244 -0.115 0.789 0.716
DeiT + Perspective Augmentation 0.200 -0.249 -0.419 0.342 0.486
DeiT + 3DTRL 0.740 0.635 0.392 0.824 0.739

C Discussion on Pseudo-depth Estimation

Most of images from ImageNet have a simple scene (background), so it’s easier for the pseudo-depth
estimation to focus on objects. In examples shown in Figure 13, we show that the pseudo-depth is
also estimated for other foreground objects apart from the primary class object.

Label: StingrayLabel: Hammer

Figure 13: Examples of pseudo-depth estimation, applied to images with multiple types of objects.
We use red circles to highlight the locations of non-class objects. In the hammer input, depth is also
estimated on the other tool. In the first sample of stingray, three other fishes in the “foreground”
corresponds to a lower depth value. In the last sample of stingray, two humans are predicted with a
relative lower depth value, in between the stingray and the background.

D More Ablation Studies

D.1 How many 3DTRLs should be used?

We explore the possibility of using multiple 3DTRLs in a Transformer backbone. This usage is
essentially estimating 3D information from different levels of features, and injecting such information
back into the backbone. We test several DeiT-T variants using multiple 3DTRLs on CIFAR-10 and
results are shown in Table 7. We find that using multiple 3DTRLs further increases the performance
in general compared to using only one 3DTRL. This shows the extra capacity from multiple 3DTRLs
benefits representation learning. Specifically, we demonstrate that inserting 3DTRLs at layer 4, 6,

17

and 8 yields the best result among all the strategies we explore. This experiment empirically shows
multiple 3DTRLs potentially benefit the model.

Table 7: CIFAR-10 Performance when using multiple 3DTRLs based on DeiT-T.
3DTRL Location(s) N/A (DeiT baseline) 4 4, 6, 8 4, 4, 4 2, 4, 6, 8
CIFAR-10 74.1 78.8 79.5 79.3 79.1

D.2 Regularization effect of 3DTRL

Mixup [67] and CutMix [66] are commonly used image augmentation methods in training image
models, which mixes two images to create an augmented image for training input. Such technique
along with other augmentations provides diverse image samples so that the image model is regularized
and avoids overfitting. We hypothesise that Mixup & CutMix could potentially damage structures in
original image, which may cause inaccurate depth estimation in 3DTRL, thus hamper the training
procedure. Therefore, we conduct an experiment on ImageNet-1K of disabling Mixup & CutMix.
We train baseline DeiT and DeiT+3DTRL from scratch, and compare the results in both original
validation set and perturbed set. In Table 8, we find that both baseline and our method increases
validation scores after disabling Mixup & CutMix, and 3DTRL still outperforms the baseline by
0.2%. However, when tested on view-perturbed set, the baseline model shows a great performance
drop (-6.8%) which is much larger than 3DTRL (-1.6%).

Table 8: ImageNet-1K and ImageNet-1K-Perturbed results when Mixup & Cutmix are disabled.
Model ImageNet-1K ImageNet-1K-Perturbed
DeiT-T 73.4 61.3
DeiT-T + Mixup & CutMix Disabled 74.2 54.5

DeiT-T+3DTRL 73.6 64.6
DeiT-T+3DTRL + Mixup & CutMix Disabled 74.4 63.0

D.3 Camera parameter estimation in video model

We implemented and evaluated two different strategies for the camera parameter estimation g(·) in
3DTRL for videos. These two strategies are: (a) Divided-Temporal (DT) and (b) Joint-Temporal (JT)
estimation introduced below. In (a) DT strategy, we estimate one set of camera parameters [R|t]t
per input frame (St) in a dissociated manner, and thus estimate a total of T camera matrices for the
entire video. In (b) JT strategy, we estimate only one camera from all frames S = {S1, . . . , ST }.
The camera is shared across all spatial-temporal tokens associated with the latent 3D space. The
underlying hypothesis is that the camera pose and location do not change during the video clip.
JT could be helpful to properly constrain the model for scenarios where camera movement is not
required, but it is not generalizable to scenarios where the subject of interest quite often moves within
the field-of-view.

By default, we used DT strategy in all experiments presented in the main paper. In Table 9, we show
a comparison of DT and JT strategies in different scenarios. Note that 3DTRL implemented with JT
strategy under-performs the baseline TimeSformer on Smarthome (in most of the CV2 experiments)
dataset. We find that the JT strategy adoption for video models is particularly effective when there
is a large availability of training data, for example on NTU dataset. However, these results with JT
strategy are inconsistent across different datasets and also less substantial w.r.t. the results with our
default DT strategy. This shows the requirement of estimating camera matrix per frame rather than a
global camera matrix for video representation tasks.

E Limitations

We find that 3DTRL suffers when estimating small objects in the scene, or estimating objects in a
complex scene, due to the coarse scale (in 16x16 image patches) from the backbone Transformer. One

18

Table 9: Comparison of DT and JT strategies in 3DTRL for action recognition task.

Method Strategy Smarthome (CV2) Smarthome (CS) NTU (CV)

Acc mPA Acc mPA Acc

TimeSformer [3] - 59.4 27.5 75.7 56.1 86.4
+ 3DTRL DT 62.9 (+3.5) 34.0 (+6.5) 76.1 (+0.4) 57.0 (+0.9) 87.9 (+1.5)
+ 3DTRL JT 58.6 (-0.8) 30.9 (+3.4) 76.2 (+0.5) 57.2 (+1.1) 87.9 (+1.5)

Kinetics-400 pre-trained

TimeSformer [3] - 69.3 37.5 77.2 57.7 87.7
+ 3DTRL w/o K400 DT 69.5 (+0.2) 39.2 (+1.7) 77.5 (+0.3) 58.9 (+1.2) 88.8 (+1.1)
+ 3DTRL w/ K400 DT 71.9 (+2.6) 41.7 (+4.2) 77.8 (+0.6) 61.0 (+2.3) 88.6 (+0.9)
+ 3DTRL w/o K400 JT 66.6 (-2.7) 35.0 (-2.5) 77.0 (-0.2) 58.6 (+0.9) 88.6 (+0.9)
+ 3DTRL w/ K400 JT 68.2 (-0.9) 37.1 (-0.4) 77.0 (-0.2) 59.9 (+2.2) 87.7 (+0.0)

possible solution is to decrease the patch size or enlarge the input size in the backbone Transformer,
but in practice it is computationally infeasible as Attention complexity grows quadratically. Similar
problem occurs when 3DTRL is applied on Transformers having hierarchical architectures like
Swin Transformer [36], where we find our improvement is minor compared to DeiT. In hierarchical
architectures, image patches are merged after one stage so the resolution of the pseudo-depth map
decreases quadratically. To solve this issue, we recommend to place 3DTRL at the location before
any patch merging in such hierarchical Transformers.

F Implementation Details

3DTRL is easily inserted in Transformers. The components of 3DTRL are implemented by several
MLPs and required geometric transformations in between. We keep the hidden dimension size in
MLPs the same as the embedding dimensionality of Transformer backbone, Tiny=192, Small=384,
Base=768 in specific. We provide PyTorch-style pseudo-code about inserting 3DTRL in Transformer
(Algorithm 1) and about details of 3DTRL (Algorithm 2). We use image Transformer for example
and omit operations on CLS token for simplicity. Full implementation including video model is
provided in supplementary files.

Algorithm 1: PyTorch-style pseudo-code for using 3DTRL in Transformer
Use 3DTRL with Transformer backbone

Class Transformer_with_3DTRL:

def __init__(self, config):

Initialize a Transformer backbone and 3DTRL

self.backbone = Transformer(config)

self.3dtrl = 3DTRL(config)

Before which Transformer layer we insert 3DTRL

self.3dtrl_location = config.3dtrl_location

def forward(self, tokens):

for i, block in enumerate(self.backbone.blocks):

Tokens go through 3DTRL at desired insert location

if i == self.3dtrl_location:

tokens = self.3dtrl(tokens)

Tokens go through backbone layers

tokens = block(tokens)

return tokens

19

Algorithm 2: PyTorch-style pseudo-code for 3DTRL
Class 3DTRL:

Make a 3DTRL

def __init__(self, config):

2D coordinates on image plane

self.u, self.v = make_2d_coordinates()

Depth estimator

self.depth_estimator = nn.Sequential(

nn.Linear(config.embed_dim, config.embed_dim),

nn.ReLU(),

nn.Linear(config.embed_dim, 1))

Camera parameter estimator, including a stem and two heads

self.camera_estimator_stem = nn.Sequential(

nn.Linear(config.embed_dim, config.embed_dim),

nn.ReLU(),

nn.Linear(config.embed_dim, config.embed_dim),

nn.ReLU(),

nn.Linear(config.embed_dim, 32),

nn.ReLU(),

nn.Linear(32, 32))

Heads for rotation and translation matrices.

self.rotation_head = nn.Linear(32, 3)

self.translation_head = nn.Linear(32, 3)

3D positional embedding layer

self.3d_pos_embedding = nn.Sequential(

nn.Linear(3, config.embed_dim),

nn.ReLU(),

nn.Linear(config.embed_dim, config.embed_dim))

def forward(self, tokens):

Depth estimation

depth = self.depth_estimator(tokens)

camera_centered_coords = uvd_to_xyz(self.u, self.v, depth)

Camera estimation

interm_rep = self.camera_estimator_stem(tokens)

rot, trans = self.rotation_head(interm_rep),

self.translation_head(interm_rep)

rot = make_rotation_matrix(rot)

Transformation from camera-centered to world space

world_coords = transform(camera_centered_coords, rot, trans)

Convert world coordinates to 3D positional embeddings

3d_pos_embed = self.3d_pos_embedding(world_coords)

Generate output tokens

return tokens + 3d_pos_embed

20

G Settings for Image Classification

Datasets For the task of image classification, we provide a thorough evaluation on three popular
image datasets: CIFAR-10 [34], CIFAR-100 [34], and ImageNet [15]. CIFAR-10/100 consists of 50k
training and 10k test images, and ImageNet has 1.3M training and 50k validation images.

Training Configurations We follow the configurations introduced in DeiT [59]. We provide a
copy of configurations here in Table 10 (CIFAR) and Table 11 (ImageNet-1K) for reference. We use
4 NVIDIA Tesla V100s to train models with Tiny, Small and Base backbones on ImageNet-1K for
⇠22 hours, ⇠3 days and ⇠5 days respectively.

Table 10: CIFAR Training Settings
Input Size 32⇥32
Patch Size 2⇥2
Batch Size 128

Optimizer AdamW
Optimizer Epsilon 1.0e-06
Momentum �1, �2 = 0.9, 0.999
layer-wise lr decay 0.75
Weight Decay 0.05
Gradient Clip None

Learning Rate Schedule Cosine
Learning Rate 1e-3
Warmup LR 1.0e-6
Min LR 1e-6
Epochs 50
Warmup Epochs 5
Decay Rate 0.988
drop path 0.1

Exponential Moving Average (EMA) True
EMA Decay 0.9999

Random Resize & Crop Scale and Ratio (0.08, 1.0), (0.67, 1.5)
Random Flip Horizontal 0.5; Vertical 0.0
Color Jittering None
Auto-agumentation rand-m15-n2-mstd1.0-inc1
Mixup True
Cutmix True
Mixup, Cutmix Probability 0.8, 1.0
Mixup Mode Batch
Label Smoothing 0.1

H Settings for Video Alignment

Datasets We provide the statistics of 5 datasets used for video alignment in Table 12. In general,
datasets with fewer training videos, more/diverse viewpoints, and longer videos are harder for
alignment. We will also provide the copy of used/converted dataset upon publish.

Training Configurations The training setting for video alignment is listed in Table 13. The setting
is the same for all datasets and all methods for fair comparison. GPU hours required for training vary
across datasets, depending on the size of datasets and early stopping (convergence). Approximately
we use 24 hours in total to fully train on all 5 datasets using an NVIDIA RTX A5000.

21

Table 11: ImageNet-1K Training Settings [59]
Input Size 224⇥224
Crop Ratio 0.9
Batch Size 512

Optimizer AdamW
Optimizer Epsilon 1.0e-06
Momentum 0.9
Weight Decay 0.3
Gradient Clip 1.0

Learning Rate Schedule Cosine
Learning Rate 1.5e-3
Warmup LR 1.0e-6
Min LR 1.0e-5
Epochs 300
Decay Epochs 1.0
Warmup Epochs 15
Cooldown Epochs 10
Patience Epochs 10
Decay Rate 0.988

Exponential Moving Average (EMA) True
EMA Decay 0.99992

Random Resize & Crop Scale and Ratio (0.08, 1.0), (0.67, 1.5)
Random Flip Horizontal 0.5; Vertical 0.0
Color Jittering 0.4
Auto-agumentation rand-m15-n2-mstd1.0-inc1
Mixup True
Cutmix True
Mixup, Cutmix Probability 0.5, 0.5
Mixup Mode Batch
Label Smoothing 0.1

Table 12: Statistics of multi-view datasets used for video alignment.

Dataset # Training/Validation/Test Videos # Viewpoints Average Frames/Video
Pouring 45 / 10 / 14 2 266
MC 4 / 2 / 2 9 66
Pick 10 / 5 / 5 10 60
Can 200 / 50 / 50 5 38
Lift 200 / 50 / 50 5 20

Table 13: Training Settings for Video Alignment
Positive Window of TCN Loss 3 frames in MC, Pick, Pouring; 2 frames in Can and Lift
Learning Rate 1e-6
Batch Size 1
Optimizer Adam
Gradient Clip 10.0
Early Stopping 10 epochs
Random Seed 42
Augmentations No

22

I Settings for Video Representation Learning

Datasets Our dataset choices are based on multi-camera setups in order to provide cross-view
evaluation. Therefore, we evaluate the effectiveness of 3DTRLon two multi-view datasets Toyota
Smarthome [12] and NTU-RGB+D [50]. We also use Kinetics-400 [32] for pre-training the video
backbone before plugging-in 3DTRL.

Toyota-Smarthome (Smarthome) is a recent ADL dataset recorded in an apartment where 18 older
subjects carry out tasks of daily living during a day. The dataset contains 16.1k video clips, 7 different
camera views and 31 complex activities performed in a natural way without strong prior instructions.
For evaluation on this dataset, we follow cross-subject (CS) and cross-view (CV2) protocols proposed
in [12]. We ignore protocol CV1 due to limited training samples.

NTU RGB+D (NTU) is acquired with a Kinect v2 camera and consists of 56880 video samples with
60 activity classes. The activities were performed by 40 subjects and recorded from 80 viewpoints.
For each frame, the dataset provides RGB, depth and a 25-joint skeleton of each subject in the frame.
For evaluation, we follow the two protocols proposed in [50]: cross-subject (CS) and cross-view
(CV).

Kinetics-400 (K400) is a large-scale dataset with 240k training, 20k validation and 35k testing videos
in 400 human action categories. However, this dataset do not posses the viewpoint challenges, we
are addressing in this paper. So, we use this dataset only for pre-training purpose as used by earlier
studies.

Training Configurations We use clips of size 8⇥ 224⇥ 224⇥ 3, with frames sampled at a rate of
1/32. We use a ViT-B encoder with patch size 16⇥ 16. The training setting for action recognition
on both datasets follow the configurations provided in [3]. We train all the video models on 4 RTX
8000 GPUs with a batch size of 4 per GPU for 15 epochs. A gradient accumulation is performed to
have an effective batch size of 64. Similar to [3], we train our video models with SGD optimiser with
0.9 momentum and 1e� 4 weight decay. During inference, we sample one and 10 temporal clips
from the entire video on NTU and Smarthome datasets respectively. We use 3 spatial crops (top-left,
center, bottom-right) from each temporal clip and obtain the final prediction by averaging the scores
for all the crops.

J More Pseudo-depth Estimation Visualization

Figure 14 gives examples of more pseudo-depth maps.

23

Figure 14: More examples of pseudo-depth maps.

24

K Pseudo-depth Map Visualization over Training Epochs

Figure 15 gives examples of pseudo-depth estimation over Training Epochs. We note that the results
are from training 3DTRL with IN-1K. We find that the estimation varies significantly from epoch 10
to epoch 40 (higher foreground-background correctness, less missing parts of objects), but changes
only a bit from epoch 40 to epoch 200 and finally to epoch 300 (mostly scales). This observation is
also coherent with our quantitative evaluation in Section 4.3.1. Thus, the pseudo-depth estimation
learns promptly, however the model convergence takes longer time since we are optimizing for a
downstream task (eg. classification).

10

300

200

40

#Epoch

Figure 15: Pseudo-depth maps over training epochs.

25

	Introduction
	Background: Pinhole Camera Model
	3D Token Representation Layer (3DTRL)
	Overview
	3D Estimation of the Input Tokens
	Incorporating 3D Positional Information in Transformers
	3DTRL in Video Models

	Experiments
	Image Classification
	Multi-view Video Alignment
	Quantitative Evaluations on Recovering 3D information
	3D Estimation Evaluation
	Camera Estimation Evaluation

	Qualitative Evaluations
	3DTRL on More Transformer Architectures
	Ablation Studies
	3DTRL for Video Representation Learning

	Related Work
	Conclusion
	Qualitative Evaluation on Camera Estimation
	Experiment on Perspective Augmentation
	Discussion on Pseudo-depth Estimation
	More Ablation Studies
	How many 3DTRLs should be used?
	Regularization effect of 3DTRL
	Camera parameter estimation in video model

	Limitations
	Implementation Details
	Settings for Image Classification
	Settings for Video Alignment
	Settings for Video Representation Learning
	More Pseudo-depth Estimation Visualization
	Pseudo-depth Map Visualization over Training Epochs

