
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DESIGN CHOICES

In the following section, we investigate random token injection α in Table 4, the number of predic-
tion steps in Table 4, followed by the type of scheduling methods in Table 5, and token ordering
in Table 6. Each factor influences efficiency and accuracy, as discussed below.

Number of Steps We investigate in Table 4 the effect of the total number of steps {8, 16, 24, 32}
to predict the full images. On ImageNet, increasing the number of steps improves performance up
to step = 16, beyond which the benefits plateau. On the other hand, increasing the number of
steps to 24 leads to improved results on Cifar10, suggesting that the step count should be scaled
proportionally to the total number of tokens to be predicted.

ImageNet Cifar10
Step α FID50k↓ IS↑ FID10k↓ IS↑

8

0.0 42.84 29.17 86.58 7.57
0.1 38.70 33.38 80.30 7.82
0.2 34.93 36.68 67.14 8.43
0.3 34.98 37.6 66.52 8.64

16

0.0 43.76 26.21 39.30 9.86
0.1 35.94 32.71 26.88 11.19
0.2 31.27 37.79 25.76 11.06
0.3 32.66 39.09 27.04 11.06

24

0.0 45.15 24.68 30.50 10.85
0.1 35.82 31.75 20.66 11.77
0.2 31.96 35.77 22.07 11.44
0.3 31.98 37.81 22.85 11.46

32

0.0 46.86 23.40 26.53 10.69
0.1 36.03 30.56 20.78 11.87
0.2 32.47 34.87 22.26 11.62
0.3 33.57 35.42 23.23 11.61

Table 4: ImageNet 256 / Cifar10: Ablation on the random token injection α and the number
prediction steps, without cfg. We show that enabling token fixing, i.e., α > 0, largely improves the
metrics, while 16 steps is a good trade-off between FID/IS and compute efficiency.

Influence of Scheduling Strategy To analyze the effect of different scheduling methods we mea-
sure performance across various configurations {square, arccos, linear, root, constant}, and show the
results in Table 5. Similarly to Chang et al. (2023) finding, we find out that the arccos scheduling
performs the best while concave scheduling performs worse.

Scheduler FID50k↓ IS↑
root 39.08 32.55
linear 31.29 38.02
cosine 31.45 36.11
square 31.27 37.79
arccos 29.68 40.28

Table 5: Ablation on scheduling methods α = 0.2, Steps = 16. Results suggest that convex
schedulers, like arccos or square, perform the best.

Token Prediction Order We compare different token selection strategies
{Halton, Spiral, Raster Scan} in Table 6. We find that Halton ordering significantly outper-
forms raster scan and spiral selection in both metrics. This demonstrates the advantage of
structured, but detached, token sampling in guiding the prediction process more effectively. We

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

also compare the performance of ‘starting from the same token’ location versus ‘rolling out the
sequence’ (Halton+Roll). Specifically, we apply a circular shift to the sequence during both training
and testing, enabling the model to begin from any token location in the image. Our results indicate
that there is no significant boost in performance between those two strategies.

Sequence FID50k↓ IS↑
Halton 31.62 37.87
Halton + Roll 31.27 37.79
Raster Scan 43.60 34.29
Spiral 36.34 26.71

Table 6: Ablation on the sequence token ordering on ImageNet 256. Results show that predicting
tokens uniformly (Halton sequence) in the image yields better generation.

(a) Ablation on the random token injection α (b) Ablation on model sizes

(c) Ablation on prediction steps (d) Ablation on scheduling methods

Figure 7: ImageNet 256: FID10k evolution across model training on ImageNet-256, without cfg
and 410k iterations. The moment where learning rate decay was applied is showcased by the dash
grey line.

Summary of Findings: Our ablation study highlights key insights into the impact of different
hyper-parameters on model performance Figure 7. We find that using a moderate level of random
token injection (α = 0.2) drastically improves the performance. Setting the number of prediction
steps to between 16 and 32 provides an optimal trade-off between efficiency and quality. Addition-
ally, increasing the number of tokens following an arccos-based scheduling strategy outperforms
alternative approaches for guiding token prediction. Finally, leveraging the Halton sequence for the
token ordering leads to significantly enhanced image quality and therefore it serves as the baseline
method we compare to in the main paper.

B SAMPLING PATTERN

An important aspect of our method is the order in which tokens are predicted. In the previous
section, we show that the Halton ordering outperforms alternative approaches. Figure 8 illustrates

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

these token sequences on a 16 × 16 grid. Notably, the Raster scan method immediately reveals its
limitations when applied to a 2D grid, as it enforces a rigid left-to-right, top-to-bottom structure.
In contrast, both the Random and Halton sequences achieve a more uniform distribution across the
grid, avoiding biases toward specific regions. Compared to random ordering, the Halton sequence is
more robust to gaps; for instance, in the random ordering example below, the 17th token is sampled
early, while its neighboring tokens are selected much later, leading to a less balanced and structured
prediction process.

(a) Raster Scan in 2D (b) Spiral Sequence in 2D

(c) Random Sequence in 2D (d) Halton Sequence in 2D

Figure 8: Visualization of different sequence orderings in 2D.

C HYPER-PARAMETERS

In Table 8, we provide the hyper-parameters used for training our class-to-image and class-to-video
models on CIFAR-10, ImageNet, UCF101 and NuScenes datasets. The training process differs
primarily in the number of steps and batch sizes, reflecting the scale of each dataset. A cosine
learning rate decay is applied only for the last 10% of the iterations and we use 2,500 warmup steps to
stabilize early training. We incorporate gradient clipping (norm = 1) to prevent exploding gradients
and classifier-free guidance (CFG) dropout of 0.1 for better sample diversity. The CIFAR-10 model
applies horizontal flip augmentation, while no data augmentation is used for ImageNet. Both models
are trained using bfloat16 precision for computational efficiency. These hyper-parameters were
chosen to ensure stable training while balancing efficiency and performance across different datasets.
Finally, we sweep our model size according to Table 7.

D INFERENCE SPEED ANALYSIS

Given the low number of sampling steps (≤ 32), our method is significantly faster than auto-
regressive models that rely on long sequences, which is inherited feature from Besnier et al. (2025).
For instance, even with optimizations such as KV-cache, models like LlamaGEN-XL require 576
steps and remain slower.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Model Parameters GFLOPs Heads Hidden Dim Width
BIGFix-Tiny 24M 4.0 6 384 6
BIGFix-Small 50M 9.0 8 512 8
BIGFix-Base 143M 25.0 12 768 12
BIGFix-Large 480M 83.0 16 1024 24
BIGFix-XLarge 693M 119.0 16 1152 28

Table 7: Transformer model configurations for 16× 16 input size.

Condition Cifar10 ImageNet UCF101 NuScenes
Training steps 400k 1.5M 410k 410k

Batch size 128 256 256 8
Learning rate 1× 10−4 1× 10−4 1× 10−4 2× 10−4

Weight decay 0.03 0.03 0.03 0.03
Optimizer AdamW AdamW AdamW AdamW

Momentum β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
Lr scheduler Cosine Cosine Cosine Cosine

Warmup steps 2500 2500 2500 2500
Gradient clip norm 1 1 1 1

CFG dropout 0.1 0.1 0.1 0.1
dropout 0.1 0.1 0.1 0.1

Data aug. Horizontal Flip No No No
Precision bf16 bf16 bf16 bf16

Table 8: Hyper-parameters used in the training of class-to-image and class-to-video models.

On an NVIDIA A100 GPU, our BIGFix-Large model generates a single image with classifier-free
guidance (CFG) in 0.25 seconds, making it 2.86× faster than LlamaGEN-XL optimized with vLLM.
To the best of our knowledge, masked image modeling (MIM) approaches do not exploit KV-cache
during sampling yet.

E VIDEO SYNTHESIS

To test our method beyond image synthesis, we explore class-to-video on UCF101 (Soomro et al.,
2012) dataset and img-to-video on NuScenes (Caesar et al., 2020). As demonstrated previously in
Table 1, introducing self-correction substantially improves the quality of generated video samples,
mirroring the results of our image synthesis experiments.

In Table 9, we compare BIGFix-Large against state-of-the-art video generation models on UCF101.
Despite using a smaller model (480M parameters) and fewer training steps (32), our approach
achieves a competitive FVD of 242.16. Performance is limited by our reliance on the open-weight
OmniTokenizer, which yields a higher rFVD (42) compared to closed-source tokenizers used by
MAGVIT (rFVD 25) and MAGVIT2 (rFVD 8.62). This highlights that while our framework is
efficient, generative quality remains constrained by tokenization quality and scale. These results
demonstrate the potential of BIGFix but indicate that further improvements would require larger
models or more advanced tokenizers.

Model #Para. Train (steps) Steps FVD↓
MAGVIT Yu et al. (2023)† 306M - 12 76
MAGVIT2 (Yu et al., 2024)† 307M - 24 58
LARP (Wang et al., 2025)† 632M - 1024 57
OmniTokenizer (Wang et al., 2024a) 650M 4M 1280 191.14
OmniTokenizer (Wang et al., 2024a) 227M 4M 1280 313.14
BIGFix-Large 480M 410k 32 242.16

Table 9: UCF101 results. † use closed source tokenizer.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In Table 10, we report results on the NuScenes dataset. Despite using a relatively small model
(BIGFix-Large, 480M parameters) and limited training time (15 hours), our method achieves a com-
petitive FVD of 290.5. Compared to much larger models, such as GenAD (2.7B parameters, FVD
184.0) or Vista (2.5B parameters, FVD 89.4), BIGFix demonstrates strong efficiency and highlights
the potential for scaling to larger models and longer training to achieve a lower FVD.

Model #Para. Train (h) Steps FVD
GenAD (Zheng et al., 2024)‡ 2.7B 2 kh – 184.0
Vista (Gao et al., 2024)‡ 2.5B 1.7 kh 100 89.4

DriveDreamer (Wang et al., 2024b)† 1.45B 15 h – 452.0
WoVoGen (Lu et al., 2024) - 15 h – 417.7
Drive-WM (Wang et al., 2024c)† 1.45B 15 h 50 122.7
BIGFix-Large 480M 15 h 32+8 290.5

Table 10: NuScenes results. † use pre-trained weight from SD (Rombach et al., 2022). ‡ Zero-shot
FID.

F ADDITIONAL QUALITATIVE RESULTS

In Figure 9, Figure 10, Figure 11, Figure 12, and Figure 13, we present qualitative results from
BIGFix-Large. Without any cherry-picking, but with classifier-free guidance (CFG), we demon-
strate that our model is capable of generating realistic and diverse images. Maintaining intricate
details on both the objects and the background, using only 24 steps.

G LIMITATIONS

Like other auto-regressive approaches, BIGFix requires a fixed token unmasking schedule defined at
training and maintained at inference, which limits flexibility during prediction. While not an inherent
limitation of the method, our experiments were restricted to models below 1 billion parameters to
keep computational costs manageable. Extending BIGFix to large-scale image and video generation
remains future work.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Tree frog 031 (b) Chicken 008

Figure 9: Random samples from our BIGFix-Large model.
α = 0.2, cfg = 4.0 and 24 steps.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) LadyBug 301 (b) Macaw 88

Figure 10: Random samples from our BIGFix-Large model.
α = 0.2, cfg = 4.0 and 24 steps.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Axolotl 29 (b) Bald Eagle 22

Figure 11: Random samples from our BIGFix-Large model.
α = 0.2, cfg = 4.0 and 24 steps.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Rock crab 119 (b) Great white shark 002

Figure 12: Random samples from our BIGFix-Large model.
α = 0.2, cfg = 4.0 and 24 steps.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Bobsleigh 450 (b) Norwegian Elkhound 174

Figure 13: Random samples from our BIGFix-Large model.
α = 0.2, cfg = 4.0 and 24 steps.

22


	Design Choices
	Sampling pattern
	Hyper-parameters
	Inference Speed Analysis
	Video Synthesis
	Additional qualitative results
	Limitations

