Under review as a conference paper at ICLR 2026

A DESIGN CHOICES

In the following section, we investigate random token injection « in Table 4, the number of predic-
tion steps in Table 4, followed by the type of scheduling methods in Table 5, and token ordering
in Table 6. Each factor influences efficiency and accuracy, as discussed below.

Number of Steps We investigate in Table 4 the effect of the total number of steps {8, 16, 24, 32}
to predict the full images. On ImageNet, increasing the number of steps improves performance up
to step = 16, beyond which the benefits plateau. On the other hand, increasing the number of
steps to 24 leads to improved results on Cifarl0, suggesting that the step count should be scaled
proportionally to the total number of tokens to be predicted.

\ ImageNet Cifar10
Step « \FID50k¢ ISt \FIDIOki ISt

0.0 42.84 29.17 86.58 7.57
3 0.1 38.70 33.38 80.30 7.82
0.2 34.93 36.68 67.14 8.43
0.3 34.98 37.6 66.52 8.64
0.0 43.76 26.21 39.30 9.86
16 0.1 35.94 32.71 26.88 11.19
0.2 31.27 37.79 25.76 11.06
0.3 32.66 39.09 27.04 11.06
0.0 45.15 24.68 30.50 10.85
24 0.1 35.82 31.75 20.66 11.77
0.2 31.96 35.77 22.07 11.44
0.3 31.98 37.81 22.85 11.46
0.0 46.86 23.40 26.53 10.69
3 0.1 36.03 30.56 20.78 11.87
0.2 32.47 34.87 22.26 11.62
0.3 33.57 35.42 23.23 11.61

Table 4: ImageNet 256 / Cifar10: Ablation on the random token injection o and the number
prediction steps, without cfg. We show that enabling token fixing, i.e., a > 0, largely improves the
metrics, while 16 steps is a good trade-off between FID/IS and compute efficiency.

Influence of Scheduling Strategy To analyze the effect of different scheduling methods we mea-
sure performance across various configurations {square, arccos, linear, root, constant}, and show the
results in Table 5. Similarly to Chang et al. (2023) finding, we find out that the arccos scheduling
performs the best while concave scheduling performs worse.

Scheduler | FID50k| ISt

root 39.08 32.55
linear 31.29 38.02
cosine 31.45 36.11
square 31.27 37.79
arccos 29.68 40.28

Table 5: Ablation on scheduling methods @ = 0.2, Steps = 16. Results suggest that convex
schedulers, like arccos or square, perform the best.

Token Prediction Order We compare different token selection strategies
{Halton, Spiral, Raster Scan} in Table 6. We find that Halton ordering significantly outper-
forms raster scan and spiral selection in both metrics. This demonstrates the advantage of
structured, but detached, token sampling in guiding the prediction process more effectively. We

13

Under review as a conference paper at ICLR 2026

also compare the performance of ‘starting from the same token’ location versus ‘rolling out the
sequence’ (Halton+Roll). Specifically, we apply a circular shift to the sequence during both training
and testing, enabling the model to begin from any token location in the image. Our results indicate
that there is no significant boost in performance between those two strategies.

Sequence | FID50k| ISt

Halton 31.62 37.87
Halton + Roll 31.27 37.79
Raster Scan 43.60 34.29
Spiral 36.34 26.71

Table 6: Ablation on the sequence token ordering on ImageNet 256. Results show that predicting
tokens uniformly (Halton sequence) in the image yields better generation.

™ —e— a=0.0 80— *— Tiny Model
A\ —e— a=0.1 5 NN —s— Small Model
AN —e— a=02 N —e— Base Model
0 X S S = 2 .. Mo
S N a=0.3 S 6o —~——. Large Model
Q N : i o ~—~ —_—
7] N N ~ : D ~e _ i s
x 60 = . "o & » ~e.
S ~: \ ~. S N ———d,
5 SR A e N T~—, -
L s S B ¥ [el H
e ™ 30 ——.
\\.__. — | \\ 1 -
N » !
40
A i
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Epoch Epoch
(a) Ablation on the random token injection « (b) Ablation on model sizes
Step 8 - N *— root schedule
- Step 16 &N -s— linear schedule
Step 24 \\ —s— cosine schedule
0 RO S
S Step 32 5 \\ . —e=— arccos schedule
@ ! @ N\ square schedule
o i 60 o\ -
o o \ —_——
— = e -
[m] o R —— \\. i
o e

T

70 80 10 20 30 40 50 60 70 80
Epoch
(c) Ablation on prediction steps (d) Ablation on scheduling methods

Figure 7: ImageNet 256: FID10k evolution across model training on ImageNet-256, without cfg
and 410k iterations. The moment where learning rate decay was applied is showcased by the dash
grey line.

Summary of Findings: Our ablation study highlights key insights into the impact of different
hyper-parameters on model performance Figure 7. We find that using a moderate level of random
token injection (o = 0.2) drastically improves the performance. Setting the number of prediction
steps to between 16 and 32 provides an optimal trade-off between efficiency and quality. Addition-
ally, increasing the number of tokens following an arccos-based scheduling strategy outperforms
alternative approaches for guiding token prediction. Finally, leveraging the Halton sequence for the
token ordering leads to significantly enhanced image quality and therefore it serves as the baseline
method we compare to in the main paper.

B SAMPLING PATTERN

An important aspect of our method is the order in which tokens are predicted. In the previous
section, we show that the Halton ordering outperforms alternative approaches. Figure 8 illustrates

14

Under review as a conference paper at ICLR 2026

these token sequences on a 16 x 16 grid. Notably, the Raster scan method immediately reveals its
limitations when applied to a 2D grid, as it enforces a rigid left-to-right, top-to-bottom structure.
In contrast, both the Random and Halton sequences achieve a more uniform distribution across the
grid, avoiding biases toward specific regions. Compared to random ordering, the Halton sequence is
more robust to gaps; for instance, in the random ordering example below, the 17th token is sampled
early, while its neighboring tokens are selected much later, leading to a less balanced and structured
prediction process.

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

208 209 210 211
24 25 26 27 w6 29 0 2 232 233 234 235 236 237 238 239

240 241 242 203 244 245 246 207 243 209 250 251 252 253 254 255

(c) Random Sequence in 2D (d) Halton Sequence in 2D

Figure 8: Visualization of different sequence orderings in 2D.

C HYPER-PARAMETERS

In Table 8, we provide the hyper-parameters used for training our class-to-image and class-to-video
models on CIFAR-10, ImageNet, UCF101 and NuScenes datasets. The training process differs
primarily in the number of steps and batch sizes, reflecting the scale of each dataset. A cosine
learning rate decay is applied only for the last 10% of the iterations and we use 2,500 warmup steps to
stabilize early training. We incorporate gradient clipping (norm = 1) to prevent exploding gradients
and classifier-free guidance (CFG) dropout of 0.1 for better sample diversity. The CIFAR-10 model
applies horizontal flip augmentation, while no data augmentation is used for ImageNet. Both models
are trained using bfloat16 precision for computational efficiency. These hyper-parameters were
chosen to ensure stable training while balancing efficiency and performance across different datasets.
Finally, we sweep our model size according to Table 7.

D INFERENCE SPEED ANALYSIS

Given the low number of sampling steps (< 32), our method is significantly faster than auto-
regressive models that rely on long sequences, which is inherited feature from Besnier et al. (2025).
For instance, even with optimizations such as KV-cache, models like LlamaGEN-XL require 576
steps and remain slower.

15

Under review as a conference paper at ICLR 2026

Model Parameters GFLOPs Heads Hidden Dim Width
BIGFix-Tiny 24M 4.0 6 384 6
BIGFix-Small 50M 9.0 8 512 8
BIGFix-Base 143M 25.0 12 768 12
BIGFix-Large 480M 83.0 16 1024 24
BIGFix-XLarge 693M 119.0 16 1152 28

Table 7: Transformer model configurations for 16 x 16 input size.

Condition Cifar10 ImageNet UCF101 NuScenes
Training steps 400k 1.5M 410k 410k
Batch size 128 256 256 8
Learning rate 1x107% 1x 1074 1x107% 2x 107
Weight decay 0.03 0.03 0.03 0.03
Optimizer AdamW AdamW AdamW AdamW
Momentum B1=0.9,68=0999 5 =09,6=0999 [=09,8=0.999 B =0.9,75=0.999
Lr scheduler Cosine Cosine Cosine Cosine
Warmup steps 2500 2500 2500 2500
Gradient clip norm 1 1 1 1
CFG dropout 0.1 0.1 0.1 0.1
dropout 0.1 0.1 0.1 0.1
Data aug. Horizontal Flip No No No
Precision bfl6 bfl6 bf16 bfl6

Table 8: Hyper-parameters used in the training of class-to-image and class-to-video models.

On an NVIDIA A100 GPU, our BIGFix-Large model generates a single image with classifier-free
guidance (CFG) in 0.25 seconds, making it 2.86x faster than LlamaGEN-XL optimized with vLLM.
To the best of our knowledge, masked image modeling (MIM) approaches do not exploit KV-cache
during sampling yet.

E VIDEO SYNTHESIS

To test our method beyond image synthesis, we explore class-to-video on UCF101 (Soomro et al.,
2012) dataset and img-to-video on NuScenes (Caesar et al., 2020). As demonstrated previously in
Table 1, introducing self-correction substantially improves the quality of generated video samples,
mirroring the results of our image synthesis experiments.

In Table 9, we compare BIGFix-Large against state-of-the-art video generation models on UCF101.
Despite using a smaller model (480M parameters) and fewer training steps (32), our approach
achieves a competitive FVD of 242.16. Performance is limited by our reliance on the open-weight
OmniTokenizer, which yields a higher rFVD (42) compared to closed-source tokenizers used by
MAGVIT (tFVD 25) and MAGVIT2 (tFVD 8.62). This highlights that while our framework is
efficient, generative quality remains constrained by tokenization quality and scale. These results
demonstrate the potential of BIGFix but indicate that further improvements would require larger
models or more advanced tokenizers.

Model #Para. Train (steps) Steps FVD]
MAGVIT Yu et al. (2023)} 306M - 12 76
MAGVIT2 (Yu et al., 2024)F 307M - 24 58
LARP (Wang et al., 2025)T 632M - 1024 57
OmniTokenizer (Wang et al., 2024a) 650M 4M 1280 191.14
OmniTokenizer (Wang et al., 2024a) 227M 4M 1280 313.14
BIGFix-Large 480M 410k 32 242.16

Table 9: UCF101 results. f use closed source tokenizer.

16

Under review as a conference paper at ICLR 2026

In Table 10, we report results on the NuScenes dataset. Despite using a relatively small model
(BIGFix-Large, 480M parameters) and limited training time (15 hours), our method achieves a com-
petitive FVD of 290.5. Compared to much larger models, such as GenAD (2.7B parameters, FVD
184.0) or Vista (2.5B parameters, FVD 89.4), BIGFix demonstrates strong efficiency and highlights
the potential for scaling to larger models and longer training to achieve a lower FVD.

Model #Para. Train (h) Steps FVD
GenAD (Zheng et al., 2024)% 2.7B 2 kh - 184.0
Vista (Gao et al., 2024)1 2.5B 1.7 kh 100 89.4
DriveDreamer (Wang et al., 2024b)} 1.45B 15h - 452.0
WoVoGen (Lu et al., 2024) - 15h - 417.7
Drive-WM (Wang et al., 2024¢)} 1.45B 15h 50 122.7
BIGFix-Large 480M 15h 32+8 290.5

Table 10: NuScenes results. { use pre-trained weight from SD (Rombach et al., 2022). I Zero-shot
FID.

F ADDITIONAL QUALITATIVE RESULTS

In Figure 9, Figure 10, Figure 11, Figure 12, and Figure 13, we present qualitative results from
BIGFix-Large. Without any cherry-picking, but with classifier-free guidance (CFG), we demon-
strate that our model is capable of generating realistic and diverse images. Maintaining intricate
details on both the objects and the background, using only 24 steps.

G LIMITATIONS

Like other auto-regressive approaches, BIGFix requires a fixed token unmasking schedule defined at
training and maintained at inference, which limits flexibility during prediction. While not an inherent
limitation of the method, our experiments were restricted to models below 1 billion parameters to
keep computational costs manageable. Extending BIGFix to large-scale image and video generation
remains future work.

17

Under review as a conference paper at ICLR 2026

(a) Tree frog 031 (b) Chicken 008

Figure 9: Random samples from our BIGFix-Large model.
a=0.2,cfg = 4.0 and 24 steps.

18

Under review as a conference paper at ICLR 2026

(a) LadyBug 301 (b) Macaw 88

Figure 10: Random samples from our BIGFix-Large model.
a=0.2,cfg = 4.0 and 24 steps.

19

Under review as a conference paper at ICLR 2026

(a) Axolotl 29 (b) Bald Eagle 22

Figure 11: Random samples from our BIGFix-Large model.
a=0.2,cfg = 4.0 and 24 steps.

20

Under review as a conference paper at ICLR 2026

(a) Rock crab 119 (b) Great white shark 002

Figure 12: Random samples from our BIGFix-Large model.
a=0.2,cfg = 4.0 and 24 steps.

21

Under review as a conference paper at ICLR 2026

(a) Bobsleigh 450 (b) Norwegian Elkhound 174

Figure 13: Random samples from our BIGFix-Large model.
a=0.2,cfg = 4.0 and 24 steps.

22

	Design Choices
	Sampling pattern
	Hyper-parameters
	Inference Speed Analysis
	Video Synthesis
	Additional qualitative results
	Limitations

