
Global-Local Graph Neural Networks for Node-Classification

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

The task of graph node-classification is often approached using a local Graph2

Neural Network (GNN), that learns only local information from the node input3

features and their adjacency. In this paper we propose to benefit from global and4

local information through the form of learning label- and node- features to improve5

node-classification accuracy. We therefore call our method Global-Local-GNN6

(GLGNN). To learn proper label features, for each label, we maximize the similarity7

between its features and nodes features that belong to the label, while maximizing8

the distance between nodes that do not belong to the considered label. We then use9

the learnt label features to predict the node-classification map. We demonstrate our10

GLGNN using GCN and GAT as GNN backbones, and show that our GLGNN11

approach improves baseline performance on the node-classification task.12

1 Introduction13

The field of Graph Neural Networks (GNNs) has gained large popularity in recent years [1–5] in a wide14

variety of fields and applications such as computer graphics and vision [5–9], Bioinformatics [10, 11],15

node-classification [3, 12, 13] and others. In the context of node-classification, most of the methods16

consider only nodal (i.e., local) information by performing local aggregations and 1× 1 convolutions,17

e.g., [3, 12–14]. In this paper we propose to incorporate label (i.e., global) information to improve18

the training of GNNs. In particular, we propose to learn a feature vector for each label (class) in the19

data, which is then used to determine the final prediction map and is mutually utilized with the learnt20

node features. Because our method is based on learning global features that scale as the number of21

labels in the dataset, our method does not add significant computational overhead compared to the22

the backbone GNNs. We show the generality of this approach by demonstrating it on GCN [3] and23

GAT [12] on a variety of node-classification datasets, both in semi- and fully-supervised settings. Our24

experiments reveal that our GLGNN approach is beneficial for all the considered datasets, and we25

also illustrate the learnt global features with respect to the node features for a qualitative assessment26

of our method. Our contributions are as follows:27

• We propose to learn label features to capture global information of the input graph.28

• We fuse label- and node- features to predict a node-classification map.29

• We demonstrate our method qualitatively by illustrating the learnt label features in Fig. 1 and30

quantitatively by demonstrating the benefit of using GLGNN approach on 6 real-world datasets.31

2 Related Work32

2.1 Graph Neural Networks33

Typically, graph neural networks (GNNs) are categorized into spectral [1] and spatial [3, 5, 15–17]34

types. While the former learns a global convolution kernel, it scales as the number nodes in the35

graph n and is of a higher computational complexity. To obtain local convolutions, spatial GNNs36

formulate a local-aggregation scheme is usually implemented using the Message-Passing Neural37

Network mechanism [17], where each node aggregates features (messages) from its neighbours,38

according to some policy. In this work we follow the latter, whilst adding a global mechanism by39

learning label features to improve accuracy on node-classification tasks.40

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.



Global-Local Graph Neural Networks for Node-Classification

2.2 Improved training of GNNs41

To improve accuracy performance, recent works introduce new training policies, objective functions42

and augmentations. A common trick for training on small datasets like Cora, Citeseer and Pubmed43

is the incorporation of Dropout [18] after every GNN layer, which has become a standard practice44

[3, 13, 14, 19]. Other methods suggest to randomly alternate the data rather than the GNN neural45

units. For example, DropEdge [20] and DropNode [21] randomly drop graph edges and nodes,46

respectively. In the work PairNorm [22], the authors propose a normalization layer that alleviate the47

over-smoothing phenomenon in GNNs [23]. Another approach is the Mixup technique that enriches48

the learning data, and has shown success in image classification [24, 25]. Following that, the work49

GraphMix [26] proposed an interpolation-based regularization method by parameter sharing of GNNs50

and point-wise convolutions.51

Other methods that consider the GNN training from an information and entropy point of view52

following the success of mutual information in CNNs [27]. For example, DGI [28] learns a global53

graph vector and considers its correspondence with local patch vectors. However, it does not consider54

label features as in our work. In the work InfoGraph [29] the authors learn a discriminative network55

for graph classification tasks, and in [30] a consistency-diversity augmentation is proposed via an56

entropy perspective for node and graph classification tasks.57

3 Notations58

We denote an undirected graph by the tuple G = (V, E) where V is a set of n nodes and E is a set of59

m edges, and by f (l) ∈ Rn×c the feature tensor of the nodes V with c channels at the l-th layer. The60

adjacency matrix is defined by A ∈ Rn×n, where Aij = 1 if there exists an edge (i, j) ∈ E and 061

otherwise, and the diagonal degree matrix is denoted D where Dii is the degree of the i-th node.62

Let us also denote the adjacency and degree matrices with added self-edges by Ã and D̃, respectively.63

Using this notation, for example, the propagation operator from GCN [3] is obtained by P̃ =64

D̃− 1
2 ÃD̃− 1

2 , and its architecture is given by65

f (l+1) = ReLU(P̃f (l)K(l)), (1)

where K(l) is a 1× 1 convolution matrix.66

We consider the node-classification task with k labels. We denote the ground-truth labels by y ∈67

Rn×k and the node-classification prediction by applying SoftMax to the output of the network fout68

ŷ = SoftMax(fout) ∈ Rn×k. (2)

4 Method69

We now describe the local and global feature extraction mechanism and our objective functions.70

Local features. The local information is obtained by learning node features f ∈ Rn×d using some71

backbone denoted by GNN. In our experiments, we evaluate our method with GNN being a GCN72

[3] as in Eq. (1) or a GAT [12]. Note that our GLGNN approach does not assume a specific GNN73

backbone and thus can possibly be utilized with other GNNs.74

Global features. Our global information mechanism learns label features g ∈ Rk×d. Specifically,75

to obtain the global features we consider the concatenation of initial nodes-embedding f (0) and76

the last GNN layer node features f (L) denoted by
[
f (0) ⊕ f (L)

]
. We then perform a single 1 × 177

convolution denoted by Kg, followed by a ReLU activation, and feed it to a global MaxPool readout78

function to obtain a single vector s ∈ Rd. Formally:79

s = MaxPool
(
ReLU

(
Kg

[
f (0) ⊕ f (L)

]))
. (3)

Using the global vector s, we utilize k (the number of labels) multi-layer perceptrons (MLPs) that80

are implemented as an inverted bottleneck [31], and in particular resembles the squeeze-and-excite81

mechanism from [32]. Each MLP is comprised of the following:82

gi = Ks (ReLU (Kes)) , (4)

2



Global-Local Graph Neural Networks for Node-Classification

where Ke,Ks are an expanding (from d to e× d) and shrinking (from e× d to d) 1× 1 convolutions,83

and the expansion rate e is a hyper-parameter which is set e = 12 in our experiments. Note that this84

operation can be efficiently implemented using a grouped convolution to obtain g = [g0, . . . ,gk−1]85

in parallel. Also, because s is a vector, the computational overhead is rather low compared to the86

total complexity of the backbone GNN.87

Node-classification map. To obtain a node-classification prediction map, we consider matrix-vector88

product of the final GNN output f (L) ∈ Rn×d with each of the label features gi ∈ Rd in (4). More89

formally for each label we obtain the following node-label correspondence vector:90

zi = f (L) · gi ∈ Rn. (5)

By concatenating the k correspondence vectors and applying the SoftMax function, we obtain a91

node-classification map92

ŷ = SoftMax (z0 ⊕ . . .⊕ zk−1) ∈ Rn×k, (6)

which is the final output of our GLGNN.93

Objective functions. To train our GLGNN we propose to minimize the following objective function:94

95

L = LCE + αLGL, (7)

where LCE denotes the cross-entropy loss between ground-truth y and predicted node labels ŷ from96

Eq. (6). α is a positive hyper-parameter, and LGL denotes a global-local loss that considers the97

relationship between the label and node features by demanding the similarity of nodes that belong to98

a respective label while requiring the dis-similarity of node features that do not belong to that label99

and its features, as follows100

LGL =

k−1∑
l=0

∑
yi=l

∥gl − f
(L)
i ∥22 −

∑
yi ̸=l

min
(
∥gl − f

(L)
i ∥22, r

) , (8)

where min(·, ·) is a clamping function that returns the minimal values of its arguments, and r is a101

positive hyper-parameter. In our experiments we set r = 10.102

5 Experiments103

We now demonstrate GLGNN on semi- and fully-supervised node-classification. Our GLGNN104

consists of an embedding layer (1× 1 convolution), a series of GNN backbone layers and the label105

features MLPs as described in Sec. 4. As GNN backbones, we consider GCN [3] and GAT [12]. We106

elaborate on the specific architecture in Appendix A. We use the Adam [33] optimizer, and perform107

a grid-search to choose the hyper-parameters (see Appendix B for more information). Our code is108

implemented using PyTorch [34] and PyTorch-Geometric [35], trained on an Nvidia Titan RTX GPU.109

We show that for all the considered tasks and datasets, our GLGNN offers a consistent improvement110

over the baseline methods, and besides the obtained accuracy we report the relative accuracy improve-111

ment compared to the baseline GCN and GAT methods. Also, we find that our GLGNN is competitive112

with recent state-of-the-art methods. We provide further datasets information in Appendix C.113

5.1 Semi-Supervised Node-Classification114

We consider Cora, Citeseer and Pubmed [36] datasets and their standard, public train-115

ing/validation/testing split as in [37], with 20 nodes per class for training. We follow the training116

and evaluation scheme of [13] and consider various GNN models like GCN, GAT, superGAT [38],117

APPNP [39], JKNet [40], GCNII [13], GRAND [41], PDE-GCN [42], pathGCN [43], EGNN[14]118

and superGAT [38]. We also consider other improved training techniques P-reg [44], GraphMix [26]119

and NASA [30]. We summarize the results in Tab. 1 and illustrate the learnt labels and nodes features120

in Fig. 1, revealing the clustering effect of learning label nodes.121

3



Global-Local Graph Neural Networks for Node-Classification

Table 1: Semi-supervised node-classification ac-
curacy (%).

Method Cora Citeseer Pubmed

GCN 81.1 70.8 79.0
GAT 83.1 70.8 78.5

APPNP 83.3 71.8 80.1
JKNET 81.1 69.8 78.1
GCNII 85.5 73.4 80.3
GRAND 84.7 73.6 81.0
PDE-GCN 84.3 75.6 80.6
pathGCN 85.8 75.8 82.7
EGNN 85.7 – 80.1
superGAT 84.3 72.6 81.7
GraphMix 84.0 74.7 81.1
P-reg 83.9 74.8 80.1
NASA 85.1 75.5 80.2

GLGCN (ours) 84.2(+3.8%) 73.3 (+3.5%) 81.5 (+3.1%)

GLGAT (ours) 84.5(+1.6%) 72.6(+2.5%) 81.2(+3.4%)

Nodes
Labels

Figure 1: tSNE embedding of learnt label- and
node-features of Cora.

Table 2: Fully-supervised node-classification
accuracy (%) on homophilic datasets.

Method Cora Citeseer Pubmed
Homophily 0.81 0.80 0.74

GCN 85.77 73.68 88.13
GAT 86.37 74.32 87.62

Geom-GCN 85.27 77.99 90.05
APPNP 87.87 76.53 89.40
JKNet (Drop) 87.46 75.96 89.45
GCNII 88.49 77.08 89.57
WRGAT 88.20 76.81 88.52
GCNII* 88.01 77.13 90.30
GGCN 87.95 77.14 89.15
H2GCN 87.87 77.11 89.49

GLGCN (ours) 88.47(+3.1%) 77.72 (+5.4%) 88.61 (+0.05%)

GLGAT (ours) 88.65(+2.6%) 77.37 (+4.1%) 88.74 (+0.1%)

Table 3: Fully-supervised node-classification
accuracy (%) on heterophilic datasets.

Method Corn. Texas Wisc.
Homophily 0.30 0.11 0.21

GCN 52.70 52.16 48.92
GAT 54.32 58.38 49.41

Geom-GCN 60.81 67.57 64.12
JKNet (Drop) 61.08 57.30 50.59
GCNII 74.86 69.46 74.12
GCNII* 76.49 77.84 81.57
GRAND 82.16 75.68 79.41
WRGAT 81.62 83.62 86.98
GGCN 85.68 84.86 86.86
H2GCN 82.70 84.86 87.65
GraphCON-GCN 84.30 85.40 87.80
GraphCON-GAT 83.20 82.20 85.70

GLGCN (ours) 74.86 (+42.0%) 70.27 (+34.7%) 65.29 (+33.4%)

GLGAT (ours) 75.67 (+39.3%) 70.01 (+19.9%) 65.88 (+33.3%)

5.2 Fully-Supervised Node-Classification122

To further validate the efficacy of our method, we employ fully-supervised node-classification on123

6 datasets, namely, Cora, Citeseer, Pubmed, Cornell, Texas and Wisconsin using the 10 random124

splits from [45] with train/validation/test split of 48%, 32%, 20% respectively, and report their125

average accuracy. In all experiments, we use 64 channels and perform a grid-search to determine126

the hyper-parameters. We compare our accuracy with methods like GCN, GAT, Geom-GCN [45],127

APPNP, JKNet [40], WRGAT [46], GCNII [13], DropEdge [20], H2GCN [47], GGCN [48] and128

GraphCON [49]. We distinguish between homophilic and heterophilic datasets, and report the results129

of the former in Tab. 2, and of the latter in Tab. 3, where we also report the homophily score of each130

dataset (adapted from [45]). We see an improvement across all benchmarks and types of datasets131

compared to the baseline methods of GCN and GAT and competitive results on homophilic datasets132

with recent state-of-the-art methods.133

6 Conclusion134

In this paper we propose GLGNN, a method to leverage global information for semi- and fully-135

supervised node-classification. By learning and fusing global label features and local node features,136

we show that it is possible to cluster the nodes in a way that enables improved classification accuracy137

and demonstrate that our method outperforms baseline models by a significant margin. Future138

research directions include the evaluation of this method on graph classification datasets and exploring139

additional possible methods of global label information extraction and incorporation.140

4



Global-Local Graph Neural Networks for Node-Classification

References141

[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally142

connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013. 1143

[2] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks144

on graphs with fast localized spectral filtering. In Advances in neural information processing145

systems, pages 3844–3852, 2016.146

[3] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional147

networks. arXiv preprint arXiv:1609.02907, 2016. 1, 2, 3, 8148

[4] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.149

Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34150

(4):18–42, 2017.151

[5] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and152

Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model153

cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,154

pages 5115–5124, 2017. 1155

[6] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. Learning shape156

correspondence with anisotropic convolutional neural networks. 05 2016.157

[7] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M158

Solomon. Dynamic graph cnn for learning on point clouds. arXiv preprint arXiv:1801.07829,159

2018.160

[8] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or.161

Meshcnn: a network with an edge. ACM Transactions on Graphics (TOG), 38(4):90, 2019.162

[9] Moshe Eliasof and Eran Treister. Diffgcn: Graph convolutional networks via differential163

operators and algebraic multigrid pooling. 34th Conference on Neural Information Processing164

Systems (NeurIPS 2020), Vancouver, Canada., 2020. 1165

[10] Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M. Kim.166

Fast and flexible protein design using deep graph neural networks. Cell Systems, 11(4):402167

– 411.e4, 2020. ISSN 2405-4712. doi: https://doi.org/10.1016/j.cels.2020.08.016. URL168

http://www.sciencedirect.com/science/article/pii/S2405471220303276. 1169

[11] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-170

neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.171

Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.172

1173

[12] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua174

Bengio. Graph Attention Networks. International Conference on Learning Representations,175

2018. URL https://openreview.net/forum?id=rJXMpikCZ. 1, 2, 3, 8176

[13] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep177

graph convolutional networks. In Hal Daumé III and Aarti Singh, editors, Proceedings of the178

37th International Conference on Machine Learning, volume 119 of Proceedings of Machine179

Learning Research, pages 1725–1735. PMLR, 13–18 Jul 2020. URL http://proceedings.180

mlr.press/v119/chen20v.html. 1, 2, 3, 4181

[14] Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu.182

Dirichlet energy constrained learning for deep graph neural networks. Advances in Neural183

Information Processing Systems, 34, 2021. 1, 2, 3184

[15] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional185

neural networks on graphs. In Proceedings of the IEEE conference on computer vision and186

pattern recognition, pages 3693–3702, 2017. 1187

[16] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic con-188

volutional neural networks on riemannian manifolds. In Proceedings of the IEEE international189

conference on computer vision workshops, pages 37–45, 2015.190

[17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural191

message passing for quantum chemistry. In Proceedings of the 34th International Conference192

on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017. 1193

5

http://www.sciencedirect.com/science/article/pii/S2405471220303276
https://openreview.net/forum?id=rJXMpikCZ
http://proceedings.mlr.press/v119/chen20v.html
http://proceedings.mlr.press/v119/chen20v.html
http://proceedings.mlr.press/v119/chen20v.html


Global-Local Graph Neural Networks for Node-Classification

[18] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.194

Dropout: a simple way to prevent neural networks from overfitting. The journal of machine195

learning research, 15(1):1929–1958, 2014. 2196

[19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural197

networks? In International Conference on Learning Representations, 2019. URL https:198

//openreview.net/forum?id=ryGs6iA5Km. 2199

[20] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep200

graph convolutional networks on node classification. In International Conference on Learning201

Representations, 2020. URL https://openreview.net/forum?id=Hkx1qkrKPr. 2, 4202

[21] Tien Huu Do, Duc Minh Nguyen, Giannis Bekoulis, Adrian Munteanu, and Nikos Deligiannis.203

Graph convolutional neural networks with node transition probability-based message passing204

and dropnode regularization. Expert Systems with Applications, 174:114711, 2021. 2205

[22] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International206

Conference on Learning Representations, 2020. URL https://openreview.net/forum?207

id=rkecl1rtwB. 2208

[23] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the209

over-smoothing problem for graph neural networks from the topological view. Proceedings210

of the AAAI Conference on Artificial Intelligence, 34:3438–3445, 04 2020. doi: 10.1609/aaai.211

v34i04.5747. 2212

[24] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond213

empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017. 2214

[25] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-215

Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states.216

In International Conference on Machine Learning, pages 6438–6447. PMLR, 2019. 2217

[26] Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, and Jian218

Tang. Graphmix: Improved training of gnns for semi-supervised learning. In Proceedings of219

the AAAI Conference on Artificial Intelligence, volume 35, pages 10024–10032, 2021. 2, 3220

[27] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,221

Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information222

estimation and maximization. In International Conference on Learning Representations, 2019.223

URL https://openreview.net/forum?id=Bklr3j0cKX. 2224

[28] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon225

Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.226

URL https://openreview.net/forum?id=rklz9iAcKQ. 2227

[29] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and228

semi-supervised graph-level representation learning via mutual information maximization. arXiv229

preprint arXiv:1908.01000, 2019. 2230

[30] Deyu Bo, BinBin Hu, Xiao Wang, Zhiqiang Zhang, Chuan Shi, and Jun Zhou. Regularizing231

graph neural networks via consistency-diversity graph augmentations. In Proceedings of the232

AAAI Conference on Artificial Intelligence, volume 36, pages 3913–3921, 2022. 2, 3233

[31] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.234

MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference235

on Computer Vision and Pattern Recognition, pages 4510–4520, 2018. 2236

[32] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,237

Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3.238

In Proceedings of the IEEE/CVF international conference on computer vision, pages 1314–1324,239

2019. 2240

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint241

arXiv:1412.6980, 2014. 3242

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,243

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas244

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,245

6

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=Bklr3j0cKX
https://openreview.net/forum?id=rklz9iAcKQ


Global-Local Graph Neural Networks for Node-Classification

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-246

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-247

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,248

pages 8024–8035. Curran Associates, Inc., 2019. 3249

[35] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.250

In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. 3251

[36] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-252

Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008. 3253

[37] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning254

with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,255

2016. 3256

[38] Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design257

with self-supervision. In International Conference on Learning Representations, 2020. 3258

[39] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural259

networks with personalized pagerank for classification on graphs. In International Conference on260

Learning Representations, 2019. URL https://openreview.net/forum?id=H1gL-2A9Ym.261

3262

[40] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and263

Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In264

Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on265

Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 5453–5462.266

PMLR, 10–15 Jul 2018. URL http://proceedings.mlr.press/v80/xu18c.html. 3, 4267

[41] Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan Webb, Emanuele Rossi,268

and Michael M Bronstein. Grand: Graph neural diffusion. arXiv preprint arXiv:2106.10934,269

2021. 3270

[42] Moshe Eliasof, Eldad Haber, and Eran Treister. PDE-GCN: Novel architectures for graph271

neural networks motivated by partial differential equations. Advances in Neural Information272

Processing Systems, 34:3836–3849, 2021. 3273

[43] Moshe Eliasof, Eldad Haber, and Eran Treister. pathgcn: Learning general graph spatial274

operators from paths. In International Conference on Machine Learning, pages 5878–5891.275

PMLR, 2022. 3276

[44] Han Yang, Kaili Ma, and James Cheng. Rethinking graph regularization for graph neural277

networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages278

4573–4581, 2021. 3279

[45] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-280

metric graph convolutional networks. In International Conference on Learning Representations,281

2020. URL https://openreview.net/forum?id=S1e2agrFvS. 4282

[46] Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. Breaking the limit283

of graph neural networks by improving the assortativity of graphs with local mixing patterns.284

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,285

2021. 4286

[47] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-287

yond homophily in graph neural networks: Current limitations and effective designs. Advances288

in Neural Information Processing Systems, 33:7793–7804, 2020. 4289

[48] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of290

the same coin: Heterophily and oversmoothing in graph convolutional neural networks. arXiv291

preprint arXiv:2102.06462, 2021. 4292

[49] T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael293

Bronstein. Graph-coupled oscillator networks. In International Conference on Machine294

Learning, pages 18888–18909. PMLR, 2022. 4295

[50] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward296

neural networks. In Proceedings of the thirteenth international conference on artificial intel-297

ligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.298

8299

7

https://openreview.net/forum?id=H1gL-2A9Ym
http://proceedings.mlr.press/v80/xu18c.html
https://openreview.net/forum?id=S1e2agrFvS


Global-Local Graph Neural Networks for Node-Classification

A Architecture300

We now elaborate on the specific architecture used in our experiments in Sec. 5. Our network301

architecture consists of an opening (embedding) layer (1 × 1 convolution), a sequence of GNN302

backbones layers (see details below for specific aggregation rules for GCN and GAT), and a series of303

1× 1 convolutions to learn the global labels features. We have a single type of architecture, based on304

the scheme of GCN [3] for node-classification. The difference between our GLGCN and GLGAT305

is the backbone of the GNN. We specify the node feature extraction architecture in Tab. 4, and the306

label feature extraction architecture in Tab. 5. In what follows, we denote by cin and k the input and307

output channels, respectively, and c denotes the number of features in hidden layers. We initialize the308

embedding and label features related layers with the Glorot [50] initialization, and K(l) from Eq. (1)309

is initialized with an identity matrix of shape c× c. We denote the number of GNN layers by L, and310

the dropout probability by p.311

The GCN [3] backbone is given by:312

f (l+1) = ReLU(P̃f (l)K(l)). (9)
as described in Eq. (1) in the main text313

GAT. The GAT [12] backbone defines the propagation operator:314

α
(l)
ij =

exp
(
LeakyReLU

(
a(l)

⊤
[K̃(l)f

(l)
i ⊕ K̃(l)f

(l)
j ]

))∑
p∈Ni

exp
(
LeakyReLU

(
a(l)⊤ [K̃(l)f

(l)
i ⊕ K̃(l)f

(l)
p ]

)) , (10)

where a(l) ∈ R2c and K̃(l) ∈ Rc×c are trainable parameters and ⊕ denotes channel-wise concatena-315

tion and the neighbourhood of the i-th node is denoted by Ni = {j|(i, j) ∈ E}.316

By gathering all α(l)
ij for every edge (i, j) ∈ E into a propagation matrix S ∈ Rn×n we obtain the317

GAT architecture:318

f (l+1) = ReLU(S(l)f (l)K(l)). (11)

Table 4: The architecture used for node features extraction.

Input size Layer Output size

n× cin Dropout(p) n× cin
n× cin 1× 1 Convolution n× c
n× c ReLU n× c
n× c L× GNN backbone n× c

Table 5: The architecture used for label features extraction. The input of this architecture is the
output of Tab. 4

Input size Layer Output size

n× c MaxPool 1× c
1× c k × 1× 1 Convolutions k × 12 · c
k × 12 · c ReLU k × 12 · c
k × 12 · c k × 1× 1 Convolutions k × c

B Hyper-parameters319

We perform a grid-search to determine the hyper-parameters values. In Tab. 6 we specify each hyper320

parameter and the range of values that we considered.321

C Datasets322

The statistics of the datasets used in our experiments are provided in Tab. 7.323

8



Global-Local Graph Neural Networks for Node-Classification

Table 6: Hyper-parameters and considered range for grid-search. LR and WD denote the learning
rate and weight decay of embedding and label feature extraction layers. LRGNN and WDGNN denote
the learning rate and weight decay of the GNN layers. α is the balancing coefficient from Eq. (7).

Hyper-parameter Values range

LR [1e-1, 1e-2, 1e-3, 1e-4]
LRGNN [1e-1, 1e-2, 1e-3, 1e-4]
WD [1e-3, 1e-4, 1e-5, 0]
WDGNN [1e-3, 1e-4, 1e-5, 0]
α [1e+2, 1e+1,1, 1e-1,1e-2]
p [0.5,0.6,0.7]

Table 7: Datasets statistics.

Dataset Classes Nodes Edges Features

Cora 7 2,708 5,429 1,433
Citeseer 6 3,327 4,732 3,703
Pubmed 3 19,717 44,338 500
Cornell 5 183 295 1,703
Texas 5 183 309 1,703
Wisconsin 5 251 499 1,703

9


	1 Introduction
	2 Related Work
	2.1 Graph Neural Networks
	2.2 Improved training of GNNs

	3 Notations
	4 Method
	5 Experiments
	5.1 Semi-Supervised Node-Classification
	5.2 Fully-Supervised Node-Classification

	6 Conclusion
	A Architecture
	B Hyper-parameters
	C Datasets

