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Figure 5: Bayesian transfer learning pipeline. We (a) learn a prior by fitting a probability distri-
bution over feature extractor parameters to a pre-training posterior mode, (b) rescale the prior for a
downstream task, and (c) use the prior for Bayesian inference on downstream tasks.

A Computational Considerations

While our method requires a learned prior and a re-scaling coefficient, it actually adds very little
additional cost on top of standard fine-tuning routines. We now evaluate the costs of each of the
three stages of our pipeline: (i) inferring the posterior on the source task; (ii) re-scaling the posterior
to become an informative prior for the downstream task; (iii) using the informative prior in the
downstream task.

For (i), we note that we used SWAG because it has already been well-established as a tractable,
well-studied, and simple way to infer a non-diagonal posterior, and it can be used starting from a
pre-trained checkpoint [34]. We apply SWAG to a pre-trained checkpoint. We then do 50 iterations
of burn-in and 10 cycles of 200 iterations each for a total of 2050 iterations with a batch size of 128.
In total, inferring the posterior costs only around a quarter of an epoch of training on ImageNet, and
the computations in this step can be entirely avoided by users releasing pre-trained SWAG posteriors,
as we do for all of the tasks in our paper.

For (ii), we only need to tune a single re-scaling hyperparameter. When we perform MAP optimization
with our informative priors, tuning this scalar only adds 1

7 of the total runtime of transfer learning
(including tuning other hyperparameters such as learning rate). For example, full hyperparameter
tuning (including the re-scaling coefficient) and running MAP on the full Oxford Flowers-102 dataset
takes 20 hours in total, whereas hyperparameter tuning and running traditional SGD-based transfer
learning takes 17 hours in total on a machine with a single NVIDIA A100 GPU, which is a comparable
amount of hyperparameter tuning to other works and significantly less than others [32, 6]. We also
note that our tuning is done with a simple validation grid-search, exactly the same way as any other
hyperparameter tuning in standard transfer learning, and does not require any special expertise.

For (iii), we offer two options, (a) MAP optimization of the downstream posterior using the informa-
tive prior, and (b) full Bayesian inference with SGLD or SGHMC using the downstream posterior.
(a) costs the same as standard transfer learning both at train and test time, and we show it works
better than standard transfer learning. (b) Bayesian inference with our informative priors bears the
same cost as deep ensembles or as Bayesian inference with non-learning priors, which we compare
to in our work. A single chain of SGLD incurs the same cost as a single run of SGD, since the
gradient of the log prior density can be computed without automatic differentiation in the same
fashion as weight-decay, which we are replacing. We also compare multiple chains of SGLD with
deep ensembles, which require the same cost, and show that Bayesian inference with our learned
prior works significantly better.

B Classification

B.1 Implementation Details

Based on the evaluation protocols in the papers introducing the datasets, we report the top-one
accuracy for CIFAR-10 and CIFAR-100 and mean per-class accuracy for Oxford-IIIT Pets and
Oxford 102 Flowers. For Oxford 102 Flowers, we select hyperparameters based on the validation
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sets specified by the dataset creators. While tuning hyperparameters, we hold out a subset of the
training set for validation on the other datasets. After selecting the optimal hyperparameters from the
validation set, we retrain the model using the selected parameters on both the training and validation
images. Test results are reported.

We use ResNet-50 and ResNet-101 architectures [18] with supervised and SSL checkpoints [6, 48]
pre-trained on the ImageNet 1k dataset [9]. We use the same hyperparameters as in Chen et al. [6].

Learning the prior. In order to learn the prior, we use the SWAG algorithm [34] with cyclic
learning rate presented in Zhang et al. [53]. We use SGD with a Nesterov momentum parameter
of 0.9 for optimization. We select our initial learning rate from a logarithmic grid between 0.005
and 0.5 and evaluate 10000 iterations for each cycle. Other hyperparameters are from Chen et al.
[6], including data augmentation which comprises color augmentation, blurring, random crops, and
horizontal flips.

Downstream classification tasks. We train for 30, 000 steps with a batch size of 128 on CIFAR-10
and CIFAR-100, 16 for Oxford Flowers-102, and 32 for Oxford-IIIT Pets. We use SGD and SGHMC
with momentum parameter of 0.9. During fine-tuning, we perform random crops with resizing to
224 × 224 and horizontal flips. At test time, we resize the images to 256 pixels along the shorter
side and produce a 224× 224 center crop. In our study, we select the learning rate and weight decay
from a grid of 7 logarithmically spaced learning rates between 0.0001 and 0.1, and 7 logarithmically
spaced weight decay values between 1e−6 and 1e−2, as well as without weight decay. These weight
decay values are divided by the learning rate. For the SGHMC optimizer, we select the temperature
from a logarithmic grid of 8 values between 1e0 and 1e−8, and we use predictions from 5 different
chains for the final evaluation.

B.2 Supervised Pre-Training

As mentioned above, we conduct additional experiments with priors learned on labeled data. Figures
7 and 6 contain downstream task performance comparisons for Resnet-50 and Resnet-101 models
with priors learned starting with torchvision checkpoints pre-trained on ImageNet 1k. These
figures compare our method to SGD transfer learning with pre-trained initializations and Bayesian
inference with non-learned Gaussian prior. Across both backbones, our method outperforms all
baselines for nearly every number of train samples and for all four datasets, where the Bayesian
inference model with a non-learned prior is always worse. (For full results see tables 2, 3, 4 and 5.

Model/# samples 10 100 1000 10000 50000
BNN Learned Prior 75.7 46.8 24.9 9.2 4.3
BNN Non-learned Prior 86.5 68.1 44.9 11.6 4.8
SGD Ensemble 78.7 57.2 31.6 10.9 5.2
SGD Transfer Init 81.9 62.1 36.5 11.6 4.4

Table 2: CIFAR-10 test error with torchvision Resnet-50 prior/initialization.

Model/# samples 10 100 1000 10000 50000
BNN Learned Prior 86.8 64.9 38.8 26.1 17.2
BNN Non-learned Prior 97.0 83.6 50.8 30.1 19.2
SGD Ensemble 93.3 74.6 43.1 26.4 17.4
SGD Transfer Init 94.9 71.8 42.7 26.9 17.8

Table 3: CIFAR-100 test error with torchvision Resnet-50 prior/initialization.

B.3 Self-Supervised Pre-Training

In this section, we present additional data from Figures 3 and 4 found in the main body. Tables 10,
11, 12 and 13 correspond to Figure 3, while Table 14 corresponds to Figure 4.
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Figure 6: Performance comparison. The test error of a ResNet-50 BNN equipped with supervised
pre-trained prior (red) is consistently lower than that of standard SGD-based transfer learning from
the same pre-trained checkpoint (purple), an equivalently sized ensemble of SGD-based transfer
learning models (orange), or BNN with a mean zero isotropic Gaussian prior (green). The x-axis
denotes the number of downstream training samples. Axes on a logarithmic scale.

Model/# samples 5 10 50 100 500 1000
BNN Learned Prior 90.5 88.0 77.2 52.8 20.4 8.5
BNN Non-learned Prior 97.1 94.3 88.7 71.0 35.0 10.7
SGD Ensemble 96.2 90.1 86.1 60.0 24.0 8.9
SGD Transfer Init 96.6 94.3 85.4 68.0 26.3 9.6

Table 4: Oxford-Flowers-102 test error with torchvision Resnet-50 prior/initialization.

B.4 Evaluating uncertainty

In Figure 8, we present the test negative log likelihood (NLL) for both the Bayesian methods and
SGD-based methods for 4 datasets (CIFAR-10, CIFAR-100, Oxford Flowers-102 and Oxford-IIIT
Pets). In general, we can see a similar trend for all the datasets where Bayesian transfer learning
outperforms all other methods. In Figure 9, we present the reliability diagrams for CIFAR-10 and
CIFAR-100 for ResNet-18. A perfectly calibrated network would express no difference between
accuracy and confidence, represented by a dashed black line. Under-confident predictions are those
below this line, whereas overconfident predictions are those above. We can see that Bayesian
inference with learned priors are the best calibrated among the methods we consider. The error bars
are computed on 5 runs, and the radius is one standard error.

C Semantic Segmentation

C.1 Implementation Details

For our semantic segmentation evaluations, we use the DeepLabv3+ [4] model with ResNet-50 and
ResNet-101 backbone architectures. We train our models using Pascal VOC 2012 and Cityscapes
trainsets and evaluate on their val sets. We utilize the same hyperparameters employed in Chen et al.
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Model/# samples 5 10 50 100 500 1000 3000
BNN Learned Prior 98.2 84.0 64.7 49.3 32.0 24.6 17.6
BNN Non-learned Prior 93.4 93.2 78.1 62.7 45.4 38.6 25.2
SGD Ensemble 96.6 86.3 72.1 55.0 37.9 26.6 19.3
SGD Transfer Init 94.5 89.9 75.4 61.1 36.1 25.9 18.6

Table 5: Oxford-IIIT Pets test error with torchvision Resnet-50 prior/initialization.
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Figure 7: Performance comparison. The test error of a ResNet-101 BNN equipped with supervised
pre-trained prior (red) is consistently lower than that of standard SGD-based transfer learning from
the same pre-trained checkpoint (purple), or BNN with a mean zero isotropic Gaussian prior (green).
The x-axis denotes the number of downstream training samples. Axes on a logarithmic scale.

[4] with a few modifications: our learning rate schedule is the poly policy [3] with initial value 0.01
for Pascal VOC 2012 and 0.1 for Cityscapes, our crop size is 513× 513 for Pascal VOC 2012 and
768× 768 for Cityscapes. Our output stride is 16 for both training and evaluating, and we perform
random scale data augmentation during training. In our SGD and SGLD optimization, we employ
Nesterov momentum, and we set the momentum coefficient to 0.9. We use batches of 16 images and
weight decay with a coefficient of 10−4. In addition, for the SGLD optimizer, the temperature is set
to 2× 10−8. We train all models for 30k iterations.

C.2 MAP Estimation

We also compare MAP estimates (SGD) on the loss induced by our learned priors to the baseline with
only weight decay. Table 15 and 16 contain the results using ResNet-50 and ResNet-101 backbones,
respectively. On both architectures and both datasets, learned priors boost performance on these
experiments without using Bayesian inference at all.

D Alternative Methods for Re-Scaling the Prior

As discussed previously, we tune a coefficient to re-scale our learned prior by maximizing the
validation log-likelihood over a grid of coefficient values. Our objective in this section is to examine
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Model/# samples 10 100 1000 10000 50000
BNN Learned Prior 73.9 43.9 20.4 7.2 3.7
BNN Non-learned Prior 82.1 68.7 36.3 16.4 4.1
SGD Transfer Init 78.6 56.8 30.8 8.9 4.3

Table 6: CIFAR-10 test error with torchvision Resnet-101 prior/initialization.

Model/# samples 10 100 1000 10000 50000
BNN Learned Prior 81.2 61.9 35.1 23.5 16.8
BNN Non-learned Prior 93.5 79.6 58.8 32.0 20.2
SGD Transfer Init 94.4 71.1 44.2 25.9 17.0

Table 7: CIFAR-100 test error with torchvision Resnet-101 prior/initialization.
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Figure 8: Predictive likelihood. The horizontal axis denotes the number of downstream CIFAR-10
training samples on a logarithmic scale. All experiments performed with ResNet-50 backbone.

three alternative methods for tuning coefficients to re-scale the prior. First, we consider maximizing
the Laplace approximation to the marginal likelihood, which does not require holding out validation
data [22]. Marginal likelihood maximization can be performed online together with MAP estimation
in deep learning. Specifically, we try tuning a single coefficient and also per-layer coefficients for
re-scaling the prior’s covariance matrix in this fashion. A third alternative is to instead tune two
coefficients: one for the diagonal component of the covariance matrix, and one for the low-rank
component. We use a grid-search in this case to tune the two coefficients. Table 17 contains the
results for these three different methods as well as the method advocated in the main body of our
draft using the SimCLR Resnet-50 backbone and SGHMC for downstream fine-tuning. We observe
that on most datasets, tuning a single covariance re-scaling hyperparameter using marginal likelihood
does not improve the results reported in the paper. Using different coefficients for each layer results
in slight improvements on some datasets. On CIFAR-10, Oxford Flowers-102, and Oxford-IIIT
Pets, test errors decreased by 0.03%− 0.08%. Finally, on most datasets, re-scaling the diagonal and
low-rank components of the covariance matrix independently results in slightly better performance.
For example, the test errors on CIFAR-100, Oxford Flowers-102, and Oxford-IIIT Pets decrease
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Model/# samples 5 10 50 100 500 1000
BNN Learned Prior 88.0 81.0 74.6 50.7 18.9 7.1
BNN Non-learned Prior 96.0 92.8 88.6 75.1 41.1 21.7
SGD Transfer Init 95.0 90.2 80.8 59.2 22.3 8.6

Table 8: Oxford-Flowers-102 test error with torchvision Resnet-101 prior/initialization.

Model/# samples 5 10 50 100 500 1000 3000
BNN Learned Prior 96.1 82.4 62.9 48.6 30.3 23.9 17.2
BNN Non-learned Prior 96.4 91.1 78.6 67.7 56.9 38.2 26.2
SGD Transfer Init 94.0 88.6 74.3 59.2 35.5 25.0 18.1

Table 9: Oxford-IIIT Pets test error with torchvision Resnet-101 prior/initialization.
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Figure 9: Reliability diagrams - Bayesian transfer learning is capable of significantly improving
calibration over standard transfer training (SGD Transfer Init) as well as non-learned prior BNN.
Error bars are computed over 5 runs.

by 0.03% − 0.11%. We note that these alternative methods bear an additional computational and
implementational cost.

E Limitations

Limitations. Bayesian model averaging provides particularly compelling results, especially in terms
of calibration and data efficiency, but does incur some additional computational cost. On the other
hand, our SGLD based sampling procedures outperform deep ensembles, which have comparable
computational costs. Moreover, our informative priors with MAP optimization still provide a clear
performance boost over standard transfer learning, with negligible overhead. In terms of applications,
we have limited our considerations to vision settings, for a focused exposition.

Directions for future research. Pre-training has been particularly transformative in natural language
processing, where informative priors could be used to great effect. More broadly studying loss-surface
alignment between tasks could also be informative for understanding how to build models that provide
good domain generalization and robustness to spurious correlations.
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Model/# samples 10 100 1000 10000 50000
BNN Learned Prior 73.8± 3.2 43.1± 3.1 21.6± 1.6 7.8± 0.5 4.0± 0.1
SGD Learned Prior 75.9± 2.1 49.3± 1.9 26.8± 1.1 8.9± 0.3 4.2± 0.1
BNN LP Single-Chain 74.0± 2.7 48.4± 2.8 25.4± 1.3 8.3± 0.5 4.2± 0.2
BNN LP Laplace 86.9± 3.1 66.4± 2.2 37.1± 2.1 11.2± 0.6 4.6± 0.2
BNN Non-learned Prior 86.1± 3.9 68.0± 3.8 44.9± 1.7 11.6± 0.6 4.4± 0.1
SGD Ensemble 81.3± 2.2 57.0± 3.1 32.3± 1.4 9.4± 0.5 4.6± 0.1
SGD Transfer Init 83.6± 1.8 61.0± 2.1 36.8± 1.0 10.9± 0.4 4.4± 0.1

Table 10: CIFAR-10 test error with SimCLR (SSL) Resnet-50 prior/initialization.

Model/# samples 10 100 1000 10000 50000
BNN Learned Prior 81.9± 3.7 63.8± 2.4 37.3± 1.2 24.2± 0.7 16.4± 0.4
SGD Learned Prior 90.9± 2.8 69.7± 1.9 41.1± 1.1 26.3± 0.5 17.3± 0.4
BNN LP Laplace 90.1± 3.1 73.6± 2.5 42.8± 1.9 27.9± 1.2 18.1± 0.8
BNN LP Single-Chain 84.4± 3.8 69.6± 2.1 38.2± 2. 25.1± 0.7 16.8± 0.5
BNN Non-learned Prior 97.0± 3.9 84.0± 2.8 50.8± 1.8 28.9± 0.8 18.8± 0.6
SGD Ensemble 89.2± 2.0 70.9± 1.7 44.0± 1.2 26.6± 0.7 17.2± 0.4
SGD Transfer Init 93.0± 2.2 73.2± 1.8 45.5± 0.9 27.8± 0.6 17.9± 0.3

Table 11: CIFAR-100 test error with SimCLR (SSL) Resnet-50 prior/initialization.

Model/# samples 5 10 50 100 500 1000
BNN Learned Prior 89.8± 3.1 80.3± 1.7 67.3± 1.8 48.9± 1.4 19.7± 0.7 7.8± 0.2
SGD Learned Prior 90.2± 2.0 81.0± 1.3 67.0± 1.1 49.9± 1.1 20.6± 0.6 8.2± 0.1
BNN LP Laplace 97.4± 2.3 93.1± 2.1 89.9± 1.4 69.8± 1.4 32.1± 0.8 11.9± 0.2
BNN LP Single-Chain 90.3± 2.8 80.8± 1.8 67.4± 1.1 49.5± 1.7 20.1± 0.9 8.1± 0.2
BNN Non-learned Prior 97.1± 2.7 94.3± 2.0 88.7± 2.1 71.0± 2.0 35.0± 0.9 10.9± 0.3
SGD Ensemble 93.8± 2.0 91.2± 1.6 84.3± 1.2 56.8± 1.0 21.9± 0.3 8.5± 0.2
SGD Transfer Init 96.0± 1.8 93.0± 1.8 82.0± 1.3 66.0± 1.1 24.1± 0.6 8.7± 0.1

Table 12: Oxford-Flowers-102 test error with SimCLR (SSL) Resnet-50 prior/initialization.

Model/# samples 5 10 50 100 500 1000 3000
BNN Learned Prior 89.4± 2.6 80.9± 1.9 62.0± 1.8 47.3± 1.6 30.7± 1.1 21.4± 0.9 17.1± 0.7
SGD Learned Prior 91.7± 1.9 84.7± 1.7 66.1± 1.9 51.2± 1.3 34.1± 0.8 23.9± 0.6 18.2± 0.6
BNN LP Laplace 94.1± 3.2 91.1± 2.7 75.9± 2.7 60.8± 1.7 40.1± 1.4 26.8± 1.4 21.3± 0.3
BNN LP Single-Chain 91.0± 2.7 84.9± 2.5 65.2± 2.9 49.4± 1.9 31.9± 1.8 23.7± 1.6 18.1± 0.6
BNN Non-learned Prior 93.4± 2.9 93.2± 2.1 78.1± 2.2 62.7± 2.1 45.4± 1.1 38.6± 1.1 25.2± 0.8
SGD Ensemble 92.2± 2.1 88.1± 1.4 68.3± 2.1 55.7± 1.5 35.0± 1.2 24.5± 1.0 18.1± 0.5
SGD Transfer Init 94.9± 2.1 88.5± 1.6 72.0± 1.3 55.7± 1.1 36.3± 1.0 25.0± 0.7 18.9± 0.3

Table 13: Oxford-IIIT Pets test error with SimCLR (SSL) Resnet-50 prior/initialization.

Model/# samples 10 100 1000 10000 50000
BNN Learned Prior 81.8± 2.0 59.9± 1.7 43.0± 1.3 18.7± 0.8 8.8± 0.4
SGD Learned Prior 81.6± 1.4 63.9± 1.5 48.0± 1.2 20.1± 0.8 9.8± 0.3
BNN Non-learned Prior 86.9± 2.3 78.5± 1.8 59.0± 1.3 32.0± 1.0 11.3± 0.4
SGD Transfer Init 83.1± 1.6 69.0± 1.3 52.0± 1.1 21.3± 0.6 10.3± 0.2

Table 14: Classification error with self-supervised pre-learning - CIFAR-10.1

Table 15: MAP estimation for semantic segmentation (ResNet-50 backbone). Comparing the
performance (Mean-IoU) of SGD with learned priors (both torchvision supervised and SimCLR
SSL) to a non-learned prior (weight decay with torchvision initialization) over DeepLabv3+ back-
bone parameters for downstream segmentation with SGD rather than Bayesian inference. Evaluations
are conducted on val sets.

Dataset
Non-Learned
Prior MAP

Supervised
Prior MAP

SSL Prior
MAP

PASCAL VOC 2012 73.17 73.27 73.48
Cityscapes 75.52 75.57 76.15
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Table 16: MAP estimation for semantic segmentation (ResNet-101 backbone). Comparing the
performance (Mean-IoU) of SGD with torchvision learned priors to a non-learned prior (weight
decay with torchvision initialization) over DeepLabv3+ backbone parameters for downstream
segmentation with SGD rather than Bayesian inference. Evaluations are conducted on val sets.

Dataset
Non-Learned
Prior MAP

Supervised
Prior MAP

PASCAL VOC 2012 75.53 75.89
Cityscapes 77.04 77.27

Table 17: Alternative methods for prior re-scaling (SimCLR ResNet-50 backbone) - test error
corresponding to different methods for re-scaling the prior.

Dataset CIFAR-100 CIFAR-10 Oxford Flowers-102 Oxford-IIIT Pets
Single Coefficient - Grid Search 17.14 4.02 7.85 17.12

Single Coefficient - Marginal Likelihood 17.13 4.02 7.87 17.06
Per-Layer - Marginal Likelihood 17.14 3.99 7.79 17.05

Separate Scales for Low-Rank and Diagonal 17.11 4.01 7.81 17.03
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