Appendix

Table of Contents
|A" Proof of Proposition [2.1| 16
[B" Relation with Other Multi-Task Learning Frameworks| 20
[C Centralized Expectation Maximization| 22
ID Detailed Algorithms| 25
ID.1T Client-Server Algorithm| 25
ID.2 " Fully Decentralized Algorithm| 27
[E_Details on the Fully Decentralized Setfing| 29
[F Federated Surrogate Optimization| 30
|E.T Reminder on Basic (Centralized) Surrogate Optimization|. 30
IE2 Novel Federated Version|. 30
|E.3 Illustration: Analyzing pFedMe with Federated Surrogate Optimization| 31
|G Convergence Proofs| 32
|G.1 Client-Server Setting] 32
|G.2 Fully Decentralized Setting| 45
IG.3 Supporting Lemmas|o 59
[H Distributed Surrogate Optimization with Black-Box Solver]| 63
[H.I SupportingLemmas| 64
[H2 Proof of TheoremMHIT - -+« « o 67
IH3 Proofof TheoremIH.Il 68
[T Details on Experimental Setup| 69
IL1 Datasetsand Models|. oo oo 69
I.2 " Implementation Details| 70
J_Additional Experimental Results| 71
J.1 ~ Fully Decentralized Federated Expectation-Maximization| 71
J.2 Comparison with MOCHA|o 71
.3 Generalization to Unseen Clientsl 71
J.4 FedEMand Clustering| 72
J.5 Effect of M in Time-Constrained Setting| 72
J.6 Additional Results under Client Sampling|. 74
U7 Convergence Plots| 74

15

A Proof of Proposition 2.1]

For h € H and (x,y) € X x Y, let p;, (y|x) denote the conditional probability distribution of y given
x under model h, i.e.,

pi (yl) £ e xexp { = 1(h (x)) (12)
where
chw>é—kg{éafxp{—zamw,w}dﬂ. (13)

We also remind that the entropy of a probability distribution g over) is given by

H(q)é—/eyq(y)-logq(y)d% (14)

and that the Kullback-Leibler divergence between two probability distributions ¢; and g2 over) is
given by

A q1 (y)
KL = -1 dy. 15
(@1llg2) Awm@ op 2 ay (15)

Proposition Let I(-,-) be the mean squared error loss, the logistic loss or the cross-entropy loss,
and © and 11 be a solution of the following optimization problem:

inimi E E —1 ©
mlrél,IIIIllzetNDT(x,y)N'Dt,[ngt(X’y| 77Tt)]a @D

where D is any distribution with support T. Under Assumptions[I} 2] and[B] the predictors

M
hi = fmhs, , VET (&)

m=1

minimize B ,yp, [[(hi(x), y)] and thus solve Problem (T)).

Proof. We prove the result for each of the three possible cases of the loss function. We verify that ¢,
does not depend on h in each of the three cases, then we use Lemma to conclude.

Mean Squared Error Loss This is the case of a regression problem where) = R? for some
d > 0.Forx,y € X x Yand h € H, we have

2
_mw—w}7 16)

1
Pn (y|x) = w 'GXP{ B

and

cn (x) = —log ((27r)d> (17)

Logistic Loss This is the case of a binary classification problem where) = {0,1}. For x,y €
X x Yand h € H, we have

pu(ylx) = (h(x))” - (1= h (x))"7", (18)

and
cp(x) =0 (19)

Cross-entropy loss This is the case of a classification problem where Y = [L] for some L > 1.
Forx,y € X x Y and h € H, we have

L
pu (ylx) = T (h () =0, (20)

=1

and
cn (x) =0 (2D

16

Conclusion For ¢t € T, consider a predictor h; minimizing Ex ,)p, [[(h:(x),y)]. Using
LemmalA.3] for (x,y) € X x Y, we have
M
Ph; (y|X) = Z Ttm * Dm (y\X, ém) . (22)
m=1

We multiply both sides of this equality by y and we integrate over y €)). Note that in all three cases
we have

vxeX, [gm0 dy=hx). (23)
yey
It follows that
M
h’: = Z 7%tmhém, VteT. (24)
m=1
O

Supporting Lemmas

Lemma A.1. Suppose that Assumptions |l|and|3| hold, and consider © and 11 10 be a solution of
Problem (@). Then

pe(x,y|©, %) = py(x,y|©%, 7}), Vt € T. (25)
Proof. Fort € T,
E |1 O, 7 26
B [Flospi(x 016, 70)| 26)
- _/ pt(xay|@*7ﬂ-:) . 1ngt(x7y‘éaﬁ-t)dXdy (27)
(x,y)€EXXY

é o
= —/ pt(x,yl@*ﬁi)-logwwdxdy
(x,y)eX XY pt(X,y‘@ 77Tt)

-/ pu(x.9]07. 7)oz (x.910" ;) dxedly 8)
(x,y)EXXY

=KL (00 (107,70 Ipe (- 10,7)) + H [pe (167, 77)], 29)

Since the KL divergence is non-negative, we have
E [— logpt(x,ylé,frt)] > Hp (0% 7)) = E [logp:(x,y/0%,7/)]. (30)

(x,9)~D: (x,y)~Dy
Taking the expectation over ¢ ~ D, we write

E E |1 0,7)|> E E [-1 o*,). 31
B LE[Floentxy€m))> BB [Flosp(xylet)] GD

Since © and IT is a solution of Problem (@), we also have

E E |-1 O,7) < E E [-1 e,). 32
M:T(x,y)wt[0g pi (%, Y| >7Tt)}_tNDT(x7y)NDt[og pi(x,y|O",)] (32)

Combining (3T), (32), and (29), we have

E KL (p: (167,75 Ipe(-16.%:)) = 0. (33)
t~Dr
Since KL divergence is non-negative, and the support of D is the countable set 7, it follows that
vee T, KL (pe(16%70) pi(-16,7)) = 0. (34)
Thus, .
pe(x,y0,) = pe(x,y|O", 7)), VLET. (35)
O

17

Lemma A.2. Consider M probability distributions on Y, that we denote ¢,,, m € [M], and
a=(ag,...,aqn) € AM_ For any probability distribution q over), we have

M M M
Z am - KL (qu Z Qo Qm’> = Z - KL (gmllq) (36)
m=1 m’/=1 m=1

with equality if and only if,
q= Cm Gm- (37)
m=1

Proof.

M

Z Oy ’CE qm”q Z Ay, - KL <Qm| Z A/ Qm/>
m=1
= Z Qo - IC‘C QmHQ) KL <Q7n|| Z Qm! 'Qm’>‘| (38)

m’/=1

_ an o q (y)) 39
Z / © <er\r{/_1 W G (Y) <

M
/ {Z s~ } log (ZM/l ZS) — (y)> dy (40)
=KcC (Z - qm|q> > 0. (41)

m=1

The equality holds, if and only if,
M
4= Cm " Gm- (42)

O

Lemma A.3. Consider © and 11 to be a solution of Problem @). Under Assumptions IZI and
if ¢, does not depend on h € ‘H, then the predictors hy, t € T, minimizing E(x ,)~p, [[(h:(x),y)],

verify for (x,y) € X x Y
M

pr; (1) = Y o D (v, 6) 43)

m=1

Proof. Fort € T and hy € H, under Assumptions|[I} 2] and[3] we have

E(xy)~, (17 (%),)] = / U(he(x),y) - e (x,y]©%, 1) dx dy. (44)
x,yeEX XY
Using Lemmal[A-T] it follows that
B ()] = [1)) (x.018.7) dxdy. (45)
X,YyeEX XY
Thus, using Assumptions[T]and 2] we have,
E(x’y)N'Dt [l(ht(x)a y)] (46)
— [0. p (x16,7) dxdy @)
X, yeX XY
M
= / l(ht(x)a Z/) . <Z Ttm *Pm (y|X70'm>> p(X) dXdZ/ (48)
X,YyEX XY m=1

18

r M
:/ me/ 1(he(x),9) - P (y|x,ém)dy]p(x)dx (49)
XEX Lim=1 yey
iy v
= /xe)c‘ -mX::l Tem {Cht (X) - /yeypm <y|X, em)]‘nghf, (y|X) dy}] p(X) dx (50)
B M .
— [en 0= X Ao [(v B o, (yIX)dy] p (%) dx (51)
xXEX L m—1 yey
M M
= + + 0 m * H m ;Hm d
/XEX on 00+ 3 7 (i (1))] p(x)dx
M (9]
XEX =1

Let hy be a predictor satisfying the following equality:

Py (ylx) = me Pm (y\X 0)

m=1

Using Lemma[A2] we have

M
me KL (P (- 56,0 lpr, ()) = > - KL (P (- 1, B 2z (1)) (53)

with equality if and only if

Ph, (%) = pag (%) (54)
Since ¢y, does not depend on h, replacing (33)) in (52)), it follows that
Etxy)n, [[(7:(x); Y)] = Eeyy~p, (177 (%),)] (55)

This inequality holds for any predictor h; and in particular for b} € argmin E ,yp, [[(h:(x),y)],
for which it also holds the opposite inequality, then:

Etxy)~, [[(77 (%), 9)] = Eey)op, (177 (x), 9)], (56)
and the equality implies that

Pn; (‘|x) = ph° Z Ttm * Pm (%, 0) (57)

19

B Relation with Other Multi-Task Learning Frameworks

In this appendix, we give more details about the relation of our formulation with existing frameworks
for (federated) MTL sketched in Section [2.3] We suppose that Assumptions [TH3|hold and that each
client learns a predictor of the form (3)). Note that this is more general than [[67]], where each client
learns a personal hypothesis as a weighted combination of a set of M base known hypothesis, since
the base hypothesis and not only the weights are learned in our case.

Alternating Structure Optimization [70]. Alternating structure optimization (ASO) is a popular
MTL approach that learns a shared low-dimensional predictive structure on hypothesis spaces from

multiple related tasks, i.e., all tasks are assumed to share a common feature space P € R? xd where
d’ < min(T, d) is the dimensionality of the shared feature space and P has orthonormal columns
(PPT = Ip),i.e., P is semi-orthogonal matrix. ASO leads to the following formulation:

T ny
minimize ZZl(hwt< ”) (”)+a(tr(WWT)—tr(WPTPWT))Jrﬁtr(WWT),

W,P:PPT=I, ‘
t=1 i=1

(58)
where o > 0 is the regularization parameter for task relatedness and 8 > 0 is an additional L2
regularization parameter.

When the hypothesis (%), are assumed to be linear, Eq. (3) can be written as W = I1©. Writing

the LQ decompositiorﬁ of matrix ©, i.e., © = LQ, where L € RM*M g a lower triangular matrix
and Q € RM*4 i5 a semi-orthogonal matrix (QQT = I,), (5) becomes W = IILQ € RT*4, thus,

W = WQTQ, leading to the constraint ||V — WQTQH; =tr (WWT) —tr WQTQWT) = 0.
If we assume ||0m||§ to be bounded by a constant B > 0 for all m € [M], we get the constraint
tr (WWT) < TB. It means that minimizing Zt >l (hwt (xgi)) ,yt(i)) under our Assump-
tion [I] can be formulated as the following constrained optimization problem

e ())
W%{%lglg(a[X::Zl(w,() Ye ")

subject to tr{WWT} —tr {(WQTQWT} =0,
tr (WWT) < TB.

(59)

Thus, there exists Lagrange multipliers & € R and 3 > 0, for which Problem (39) is equivalent to
the following regularized optimization problem

Wnﬁl}lglglz%[ZZ (w, ((Z)) (é)) +a(tr{WWT} —tr {WQTQWT}) + Str {WWT},
(60)

which is exactly Problem (58).

Federated MTL via task relationships. The ASO formulation above motivated the authors of [59]]
to learn personalized models by solving the following problem

manZl(wt(7)) + e (WOWT), 61)

Two alternative MTL formulations are presented in [59] to justify Problem (6I): MTL with prob-
abilistic priors [69] and MTL with graphical models [35]. Both of them can be covered using our
Assumption|[I]as follows:

* Considering T' = M and II = Ij; in Assumption [I] and introducing a prior on © of the
form

O~ (HN (0, a2fd)) MN (I; © Q) (62)

lead to a formulation similar to MTL with probabilistic priors [[69].

SNote that when © is a full rank matrix, this decomposition is unique.

20

* Two tasks ¢ and ¢’ are independent if (7, 7y) = 0, thus using €, p» = (m;, m) leads to the
same graphical model as in [35]].

Several personalized FL formulations, e.g., pFedMe[16], FedU [17]] and the formulation studied in
[24] and in [23]], are special cases of formulation (62)).

21

C Centralized Expectation Maximization

Proposition Under Assumptions [I| and [2] at the k-th iteration the EM algorithm updates

parameter estimates through the following steps:

E-step: (=" = m) ol - exp (<Uhgy, (1), 5™)), te (1), meM] ie] @)
i gt e =m)

M-step: Tl — - , telT], me[M] @
t

0kl ¢ arg mlnz quH m)l(hg(xgi))7yt(i)), m € [M] (10)

OER? t=1 i=1

Proof. The objective is to learn parameters {é, ﬁ} from the data S;. by maximizing the likelihood
p (S1.7]|©,). We introduce functions ¢:(z), t € [T] such that ¢; > 0 and 224:1 q+(z) = 1 in the
expression of the likelihood. For © € RM*4 and IT € AT*M | we have

togp(617/6,T) Zzlogpt (s”10:m) 63)
t=1 1=1
T n M (s, 20 = o, ‘

:;;log m; = (Stqt (Z;m :::) Wt) ar (zi” :m) (64)

I () _ Dt (SE >,z§ D= m|@,7rt)
g;mzl%(')1og . (zt(” :m) (65)
i 3 Zl (2" m) log py (sff)zt(” =m|@,7rt)
t=1 i=1 m=1

XT: i i G (m) log gs (Zt(i) = m) (66)

t=1 i=1 m=1
£ £(63H7Q1:T)3 (67)
where we used Jensen’s inequality because log is concave. £(0, I, Q1.7) is an evidence lower bound.

The centralized EM-algorithm corresponds to iteratively maximizing this bound with respect to Q1.7
(E-step) and with respect to {©, IT} (M-step).

E-step. The difference between the log-likelihood and the evidence lower bound £(0, I, Q1.7)
can be expressed in terms of a sum of L divergences:

1ng(81;T|®, H) - 2(67 H7 Ql:T) -

3 @ @) _
= i; log p¢ (Sgi)Ith) — mﬁ_l:lqt (Zt(l) m> log Dt (Stqt 7(1(” 7:1;977“) .

@) () _
a5 o) (an o) a2

T ne M ; Dt (S(i)|@ Wt) G (Zt(z) = m)

R e e e)
XN, (L0 a (1" =m)

B tz::l t=1 TnE::l v (Zt B m) o Dt (Zt(z) = m‘sgi)a @,Wt) oy

22

-y ke (ae (=) e (271547, 0.70)) = 0.)
t=1 i=1

For fixed parameters {©, IT}, the maximum of £(0, II, Q1.7) is reached when

535K (o (4°) I (47100, 0,m)) =0

t=1i=1
Thus for ¢t € [T] and i € [n;], we have:

6 (2" =m) =pi(z" = mls{”, 0, m) (73)
pt(sil)|z§1) =m,0,m) X pt(zt(l) =m|O, ;)

N (0 79
Y%7 (St |@77Tt)
_ (") X T s
T M @ (75)
Zm’:l pm'(St) X Tem/!
m <y51)|X§Z)a 0m> X Pm, (XEZ)) X Tim, 76)
S e (B0 o) e () % 7o
Pm (yii)lxl(f), 9m) X p (XE”) X Tim -
Z%’:l Pm/ (ygi)|x1(fi)7 5 0m’> Xp (X§1)> X Ttm!
where (77) relies on Assumption 2] It follows that
(i (i (i) oo (8"t) 71
Qt(zt = m) = pt(zt = m|st aeaﬂ-t) = (78)

Z%’:l Pm/ (yy) |)(§i)7 0177,') X Ttm/!

M-step. We maximize now £(0,II, Q1.7) with respect to {©,I1}. By dropping the terms not
depending on {©, IT} in the expression of £(©,II, Q1.7) we write:

2(@7 Ha Ql:T)

T M
= Z Z Z q: (zt(i) = m) log p; (3,@, zfi) = m|@,7rt) +c (79)

T ne M _])]
>3 > a (Zﬁl) = m) log py (Sf)IZﬁ” =m, @,m> +logp (Zt(” = m|977rt)] +e
t=1i=1 m=1)
(80)
T ne M) _)
= Z Z qt (zt(l) = m) log po,, (sﬁ”) + log wtm} +c 81
t=1 i=1 m=1)
T vt M . r . . .
=>S>3> w (275” = m) log pa,, (yﬁz)lxgl)) +log pm (Xﬁ”) +log th] +e (82)
t=1 i=1 m=1 -
T 't M . r . .
>3 > @ (zt(” = m) log pg,, (yt(l)lxt”) + log th} +d, (83)
t=1i=1 m=1)
(84)

where ¢ and ¢’ are constant not depending on {©, IT}.

Thus, for ¢t € [T] and m € [M], by solving a simple optimization problem we update 7, as follows:

nt (i)
. z =m
Ttm 22—1 qt(t)) (85)

Ty

23

On the other hand, for m € [M], we update 6,,, by solving:

T ng
O € axgmin Y~ > qu(=(” = m) x 1 (ho(x"), 51" (86)
OER? 11 =1

24

1
2
3

4

5
6
7

10
11
12
13
14

15
16
17
18
19

D Detailed Algorithms

D.1 Client-Server Algorithm

Alg.|2|is a detailed version of Alg.[1|(FedEM), with local SGD used as local solver.

Alg. 3] gives our general algorithm for federated surrogate optimization, from which Alg. 2]is derived.

Algorithm 2: FedEM: Federated Expectation-Maximization

Input : Data S;.7; number of mixture components M ; number of communication rounds K
number of local steps J
Output : 0% for 1 € [M]; 7k for t € [T]
// Initialization
server randomly initialize 0,% eReforl <m < M:;
for tasks ¢ = 1,...,T in parallel over T clients do
‘ Randomly initialize w? e AM,
// Main loop
for iterations k = 1,..., K do

server broadcasts 932;1, 1 < m < M to the T clients;
for tasks ¢t = 1,...,T in parallel over 7 clients do
for component m =1,..., M do
// E-step
for sample: = 1,...,n; do
qf (Zgl) _ m) - wf,,,,exp(—l(he%(xﬁ”),y;"))) ‘ :
Sy whren(—ilhgr (7))

// M-step
ok Ziharl=m)

ng

QZM < LocalSolver(J, m, 051, ¢ S)) ;
client ¢ sends 0F, ;, 1 < m < M to the server;
for component m = 1,..., M do

k T ny k.
‘ em A Et:l n em,t’

Function LocalSolver(J, m, 0, ¢, S):

forj=0,...,J —1do

Sample indexes Z uniformly from 1, ...,|S];

00— k1,5 er (z19 =m) - Vol (he (x)) ,y));
return 6;

25

1

L7 T N

=)

10
11
12
13

Algorithm 3: Federated Surrogate Optimization

Input : u’ e R%; VO = (v{) _, .
Output: us; v&
for iterations k = 1,..., K do

server broadcasts u*—! to the 7" clients;
vf — aulrgmingiC (uk_l,v);
vey

client ¢ sends uf to the server;
k T k.
u® Y W uyg

Function LocalSolver(J, u, v, g, S):
forj=0,....,J —1do

sample £¥~17 from S;

U< u—np_1,; - Vag(u, v;EF17);
return O;

for tasks ¢t = 1,...,T in parallel over T clients do
Compute partial first-order surrogate function gF of f; near {u

uF « LocalSolver (J, uf =1, vF=1 ¢k S));

€ VT'; number of iterations K; number of local steps .J

k’_l,Vf_l};

26

D.2 Fully Decentralized Algorithm
Alg.] shows D-FedEM, the fully decentralization version of our federated expectation maximization
algorithm.

Alg. [5] gives our general fully decentralized algorithm for federated surrogate optimization, from
which Alg. []is derived.

Algorithm 4: D-FedEM: Fully Decentralized Federated Expectation-Maximization
Input : Data S;.7; number of mixture components M ; number of iterations K ; number of
local steps .J; mixing matrix distributions W* for k € [K]
Output: 5 , form € [M]and ¢ € [T]; m fort € [T]
// Initialization
1 for tasks ¢ = 1,... T in parallel over T clients do
2 Randomly initialize ©; = (6,,.4)1<m<nm € RM*4;
3 Randomly initialize w? e AM,

// Main loop
4 for iterations k =1,..., K do
// Select the communication topology and the aggregation weights

5 Sample WF=1 ~ Wk=1;

6 for tasks ¢t = 1,...,T in parallel over T clients do
for component m = 1,..., M do
// E-step
8 for sample: =1,... n; do
i wkm~exp —l(h (x“)),y(i))
; it (o) = m) o —Ter(C0u 0D0D)
Zﬁ{,zlwfm,exp(—l(hek (x?)).,yi”))
// M-step '
ng k (i) _
10 T iz @i (o =m) q‘n(tz‘ =m)
k—1 _
11 O < LocalSolver(J, m, Hfmtl, qr, S, 1);
k-1 .
12 Send 0m7t2, 1 < m < M to neighbors;
. k=1 .
13 Receive 6,,,¢, 1 < m < M from neighbors;
14 for component m =1,..., M do
T _ k—1
15 ‘ elncz,t «— Zs:l w];,t b 0771752;

16 Function LocalSolver(J, m, 0, q, S, t):
17 for j=0,...,J —1do

18 Sample indexes Z uniformly from 1,...,|S|;
19 002 mp_1; ez a(zD =m) - Vol (he (x) ,y®);
20 return 6;

27

1

W R W N

10
11
12
13
14

Algorithm 5: Fully-Decentralized Federated Surrogate Optimization

.0 du- 0 _ (<0
Input :u’ € R%;V *(Vt)lgth

mixing matrix distributions W* for k € [K]
Output: ulf fort € [T]; v fort € [T]
for iterations £ = 1,..., K do
// Select the communication topology and the aggregation weights
Sample W*=1 ~ Wk—1,
for tasks ¢t = 1,...,T in parallel over T clients do
compute partial first-order surrogate function gF of f; near {ukil, vf 71};

t
k : k k—1 .
vy ¢+ argmin g; (ut ,v),
veY

€ VT number of iterations K ; number of local step J;

k—1 _ _
u, ? < LocalSolver(J, uf ', vi™1 gk t);
k—1 .
Send u, ? to neighbors;

. k=1 .
Receive us * from neighbors;

1
k T k—1 k—3.
Uy D W X Us C

Function LocalSolver(J, u, v, g, S, t):
forj=0,...,J —1do

sample €517 from S ;

U= u = w1, Vag(u, v, €8 H);
return u;

28

E Details on the Fully Decentralized Setting

As mentioned in Section [3.3] the convergence of decentralized optimization schemes requires certain
assumptions on the sequence of mixing matrices ()<, to guarantee that each client can influence
the estimates of other clients over time. In our paper, we consider the following general assumption.

Assumption 8 ([31, Assumption 4]). Symmetric doubly stochastic mixing matrices are drawn at
each round k from (potentially different) distributions W* ~ W* and there exists two constants
p € (0,1], and integer T > 1 such that for all = € RM*XT and all integers | € {0,...,K/T}:

—_ =112 —_ =112
E|l2Wi, — 2|2 < (1 -p) |2 -2, (87
where Wi , L& wlehr=1 gyl 2 A Eljlf, and the expectation is taken over the random

distributions W ~ Wk,

Assumption [§] expresses the fact that the sequence of mixing matrices, on average and every T
communication rounds, brings the values in the columns of = closer to their row-wise average
(thereby mixing the clients’ updates over time). For instance, the assumption is satisfied if the
communication graph is strongly connected every 7 rounds, i.e., the graph ([T], £), where the edge
(4, 7) belongs to the graph if wfj > 0 forsome h € {k+1,...,k+ 7} is connected.

We provide below the rigorous statement of Theorem [3.3] which was informally presented in
Section It shows that D-FedEM converges to a consensus stationary point of f (proof in App.[G.2).

Theorem 3.3} Under Assumptions [IH8| when clients use SGD as local solver with learning rate
n = j—%, D-FedEN’s iterates satisfy the following inequalities after a large enough number of

communication rounds K :

1 o . > 1 1 &) 1
K;Ey|v@f(@’2nk)\|F<o<\/E)7 2D KL (w) w 1)<0<K>, (88)

where ©F = [OF, ... 04] - % Moreover, individual estimates (@f)K

ie., to OF:

1<T converge 0 COnsensus,

T
. k_ Ak 2 1
mnEYlot- <o (7).

29

S

w

F Federated Surrogate Optimization

In this appendix, we give more details on the federated surrogate optimization framework introduced
in Section[3.4] In particular, we provide the assumptions under which Alg. [3|and Alg. [5|converge.
We also illustrate how our framework can be used to study existing algorithms.

F.1 Reminder on Basic (Centralized) Surrogate Optimization

In this appendix, we recall the (centralized) first-order surrogate optimization framework introduced
in [43]. In this framework, given a continuous function f : R% — R, we are interested in solving

min f(6)

feRd

using the majoration-minimization scheme presented in Alg. [6]

Algorithm 6: Basic Surrogate Optimization

Input : 0° € R?; number of iterations K;

Output : 6%

for iterations £ = 1,..., K do
Compute g*, a surrogate function of f near 6*1;
Update solution: % € arg min, g*(6);

This procedure relies on surrogate functions, that approximate well the objective function in a
neighborhood of a point. Reference [43]] focuses on first-order surrogate functions defined below.

Definition F.1 (First-Order Surrogate [43]). A function g : R? — R is a first order surrogate of f
near 8 € R? when the following is satisfied:

* Majorization: we have g(0’) > f(0') for all ¢ € argmingcga g(¢). When the more
general condition g > f holds, we say that g is a majorant function.

* Smoothness: the approximation error r £ ¢ — f is differentiable, and its gradient is
L-Lipschitz. Moreover, we have (%) = 0 and Vr(6%) = 0.

F.2 Novel Federated Version

As discussed in Section our novel federated surrogate optimization framework minimizes an
objective function (u,vy.r) — f (u,vy.7) that can be written as a weighted sum f (u,vy.7) =
Zle wy ft (u, vy) of T functions. We suppose that each client ¢ € [T] can compute a partial first
order surrogate of f;, defined as follows.

Deﬁnition(Partial first-order surrogate). A function g(u,v) : R% x V — R is a partial first-order
surrogate of f(u, v) wrt u near (ug, vo) € R% x V when the following conditions are satisfied:

1. g(u,v) > f(u,v) forallu € R% and v € V;

2. r(u,v) = g(u,v) — f(u,v) is differentiable and L-smooth with respect to u. Moreover,
we have 7(up, vo) = 0 and V7 (ug, vp) = 0.

3. g(u,vo) — g(u,v) = dy (v, v) forall u € R% and v € arg min,,), g(u, v’), where dy
is non-negative and dy (v,v') =0 <= v =7,

Under the assumption that each client ¢ can compute a partial first order surrogate of f;, we propose
algorithms for federated surrogate optimization in both the client-server setting (Alg.[3) and the fully
decentralized one (Alg.[5). Both algorithms are iterative and distributed: at each iteration k > 0, client
t € [T] computes a partial first-order surrogate gf of f; near {u*~*, vy ™'} (resp. {uf ', vy ~'}) for
federated surrogate optimization in Alg. [3](resp. for fully decentralized surrogate optimization in
Alg[5).

The convergence of those two algorithms requires the following standard assumptions. Each of them
generalizes one of the Assumptions for our EM algorithms.

30

Assumption 4. The objective function | is bounded below by f* € R.
Assumption 5. (Smoothness) For all t € [T] and k > 0, gF is L-smooth wrt to u.
Assumption 6'. (Unbiased gradients and bounded variance) Each client t € [T] can sample a

random batch & from S; and compute an unbiased estimator ¥V wgk (u, v; €) of the local gradient with

bounded variance, i.e., E¢ [Vug,]f(u7 v;€)] = Vugf(u, V) andIE5||Vugf(u, V; {)fvugf(u, v)||? <
2
o2

Assumption 7'. (Bounded dissimilarity) There exist 3 and G such that
T 2 T 2
e [Vaskv)|[<@ 1 52 e Vutn)|
t=1 t=1

Under these assumptions a parallel result to Theorem. [3.2] holds for the client-server setting.
Theorem 3.2'. Under Assumptions when clients use SGD as local solver with learning rate

n = j—%, after a large enough number of communication rounds K, the iterates of federated

surrogate optimization (Alg. B)) satisfy:

K K

1 1 1 1

= Y E[Vaf (¥, vig) [< 0<@) L =AW < O(W) RED)
k=1 k=1

where the expectation is over the random batches samples, and A, f(u*,v¥..) £ f (u*,v§) —
f (uk,v]f}l) > 0.
In the fully decentralized setting, if in addition to Assumptions 4’7’} we suppose that Assumption

holds, a parallel result to Theorem. [3.3]holds.

Theorem 3.3'. Under Assumptions and Assumption[8| when clients use SGD as local solver
with learning rate n = \;—"f, after a large enough number of communication rounds K, the iterates of

fully decentralized federated surrogate optimization (Alg. S)) satisfy:

1 K o) 1 1 K T R 1
LBV @bl <o (2) RN N w (sl <0 ()

k=1t=1
(90)
—k _ 1T k N : k : —k.
where 0" = = thl u;. Moreover, local estimates (ut)1<t<T converge to consensus, i.e., to u”:
1 & 9 1
k —k

w0 2).
K k=1t=1 K

The proofs of Theorem and Theorem are in Section and Section respectively.

F.3 Illustration: Analyzing pFedMe with Federated Surrogate Optimization

In this section, we show that pFedMe [16] can be studied through our federated surrogate optimization
framework. With reference to the general formulation of pFedMe in [[16| Eq. (2) and (3)], consider

A
gf (W) _ ft (ek—l) + 5 . Hek—l _w| 2

) (€29

where 981 = prox s, (wh~1) £ argmin, {ft 0)+3-]0- wk_lH2}. We can verify that g is a
first-order surrogate of f; near %~ !:
1. Ttis clear that gF (9’“’1) = fi (0’“’1).
2. Since 6*~! = proxy, (w*!), using the envelope theorem (assuming that f; is proper,
A
convex and lower semi-continuous), it follows that V f; (wk’l) = A (0’“*1 — wkfl) =
Vi (wh1).

Therefore, pFedMe can be seen as a particular case of the federated surrogate optimization algorithm
(Alg.[3), to which our convergence results apply.

31

G Convergence Proofs

We study the client-server setting and the fully decentralized setting in Section|G.T|and Section[G.2]
respectively. In both cases, we first prove the more general result for the federated surrogate
optimization introduced in App. [F] and then derive the specific result for FedEM and D-FedEM.

G.1 Client-Server Setting
G.1.1 Additional Notations

Remark 2. For convenience and without loss of generality, we suppose in this section that w € AT,
ie, vVt e [T], w > 0and ZtT/:1 wy = 1.

Atiteration k > 0, we use uf ~17 to denote the j-th iterate of the local solver at client t € [T], thus

uic—l,O — uk—l’ (92)
and
T
uf = Zwt . uff_l"]. 93)
t=1

At iteration k > 0, the local solver’s updates at client ¢ € [T'] can be written as (for 0 < j < J — 1):
k—1,5+1 k—1,j k(. k=17 _k—1.-k—17j
u, T = u, I - Mh—1,; Vuldy (ut vat 3Gt]) , (94)

where 5f ~1J is the batch drawn at the j-th local update of uffl.

We introduce n;_1 = Z}]:_Ol Mk—1,5, and we define the normalized update of the local solver at client
t € [T] as,

J-1 k (k=1 k=1, k=13
A ubb k1o ijo Mk—1,5 - Vudy (ut Vi 36
5/@71 A t t _ 95
ks - L0

J—1
Mk—1 > j—0 Me—1,j

and also define
J—1 . k=1, _ k—
Zj:O Mk—1,5 - vllgf (ut vy 1)

oh-1 4 . (96)
Nk—1
With this notation,
T
uf —uhl = —MNk—1 " Zwt . 5,5_1. o7
t=1

Finally, we define g, k > 0 as
T
gk <u7 Vl:T) é Zwt . gf (U., vt) . (98)
t=1

Note that g* is a convex combination of functions g, t € [T].

G.1.2 Proof of Theorem[3.2']
Lemma G.1. Suppose that Assumptions hold. Then, for k > 0, and (1), <j<i-1 such that

me = Zj:_ol Mk,; < min {ﬁ, ﬁ}, the updates of federated surrogate optimization (Alg
verify

E f(uk’vlf:T) _ f(uk_lavlf;}l) <
Mke—1 B
1 2 1 &
RIS @D - Y ()
T ot=1

J—1

42 L Zn; Ttig 1) o? 4 4 12G2. (99)
N k—1
=0

Proof. This proof uses standard techniques from distributed stochastic optimization. It is inspired by
[66, Theorem 1].

For k > 0, g"' is L-smooth wrt u, because it is a convex combination of L-smooth functions
gF, t € [T). Thus, we write

L
gk (uk Vlle) —gk (k—1 V]le) < <uk _ ukil,vugk(k—1 V]le)> + 5 Huk —uk71||2,
(100)
where < u,u’ > denotes the scalar product of vectors u and u’. Using Eq. (97), and taking the

k—1
expectation over random batches (J) 0<j<g—10 We have
1<i<T

E[g" (o v - of (vl | <

T
— M 1E<Zw AR VAL L v’le)> ”k L) Lokt (101)
t=1
éTl éTZ
We bound each of those terms separately. For 77 we have
T ~
T, = E<Zwt-551,vugk(-1 va1)> (102)
t=1
T ~
_ E<Zwt (B -6 Vg (! V§T1)>
t=1
T
+E<Zwt 0y Vg™ (Wt v T1)> (103)
t=1
Because stochastic gradients are unbiased (Assumption[6), we have
E[6t - a7 =0, (104)
thus,
T
T, = E<Zwt 07, Vagh (0, v’fT1)> (105)
t=1
1 2 & ’
:§ ||vugk(! V]le | +E ZUJt‘(Sfil
1
—5E Vagh ("1, vi Zwt ot (106)
For T we have for k > 0,
. 55*1 (107)
T T 2
—E| Y (87 o)+ Y w0 (108)
t=1 t=1

33

2 2

T T
<2E Zwt-(éffl—(sf*l) +2E | w56 (109)
t=1 t=1
T 2
—2Y w5 a2 3 wthE<3fl—6fl,5f_1—5§_1>
t=1 1<s£t<T
T 2
+2E (> wior ! (110)
t=1

Since clients sample batches independently, and stochastic gradients are unbiased (Assumption @,
we have

E<5f‘1 — kL gkt 5§1> =0, (111)
thus,
T) T 2
T, <2 Wl E Haf—l — 7Y 2B | S wis? (112)
t=1 t=1
2
T J—1))))
=23 W |3 T [uot (7 vi) = Vol (w7 i)
t=1 =0 M1
J
T 2
+2E (> wior ! (113)
t=1
Using Jensen inequality, we have
2
J_1Uk1' k—1,5 k—1,5 k—1,5
el A G B Gt || I
— Nk—1
7=0
J-1 . , , N\ 2
> Ly gh (wf v) = Vagh (v gL e

=0 k=1

and since the variance of stochastic gradients is bounded by o (Assumption , it follows that
2

J—1
Nk—1,5 k(. k=17 _ k-1 k(. k=1 k-1, k—1,j
E E TIT Vugr (uy ' Vi = Vgt | » Vi 5St
. -1
Jj=0

<
Jun

< Nk—1,5 o2 = o2 (115)
Nk—1

I
o

J
Replacing back in the expression of T5, we have

2

T T
T2§22w502+2E Zwt.af—l (116)
t=1 t=1
Finally, since 0 < w; <1, ¢ € [T] and Zthl w; = 1, we have
T 2
Ty < 202+ 2E Zwt okt 117)
t=1

Having bounded 7 and T5, we can replace Eq. (I06) and Eq. (IT7) in Eq. (I0TI)), and we get

E[g"(u, vi7) — g (@ vigh)| < =T Vgt (oA [P+ ik Lo

34

(1 — 2L’I]k 1

Zwt 61{: 1

Nk—1 :
+ E[[Vug® (u* vz Zwt ok 1” (118)

E[gk(ukavlfz}l) A V]le)} < —nk_l Hvugk(ot VIT)H + i Lo”

Nk—1 k (k=1 k—1
+ 2]EHVug (uh=1,vhz)) Zwté H (119)
Replacing Vyug* (uF=1,vio!) = Zt - Vagr (w1 vf‘l), and using Jensen inequality to
bound the last term in the RHS of Eq. we have

_ 2
E[g"(u*,viz!) - g" (w1 Vi) g—”’;l Vg™ (@ Vi) 4+ Lo?

T
Nk—1 _
+ 2 tz_:lwt-EHVugf GG B 1” . (120)
£
‘We now bound the term T3:
2
TSZE‘Vugf (uh=1 vh- 1)—55*“ (121)
2
=E | VagF (u,v an “vu t(kolj k= 1) (122)
2
B[S B [(b) — Vgt (a1)] 123)
Mk—1
7=0
Nk—1,5 k—1 k 1,] vE—1 2
Z =R | Vagy (0" vi ™) = Vagr (w77, v (124)
=0 k=1

2
Zﬁk 1,JL2EH k=1 _ k 1,4 ’ (125)

=0 Mk—1

where the first inequality follows from Jensen inequality and the second one follow from the

L-smoothness of gF (Assumption . We bound now the term E Hu’“_1 —uf H for j €
{0,...,J—1}andt € [T],
2 _ 2
IE’uk*1 uffl’JH =E|uf! fuffl’OH (126)
_ 2
(E—1,04+1 f_l’l) (127)
1=0
. 2
=E an 11 Vugf (i f’l;é‘f’l’l) (128)
1=0
i1 2
<2E Z%—u[ugt (i f‘l;ff_l’l)—vugt (e f‘l)]
1=0
Jj—1 2
+ 2B |3 10 Vagh (uf v (129)
1=0

35

2

J—1
=23 B[Vg (uf M vE) - Vgl (T v
=0
Jj—1 2
+ 28| 1 Vugh (uf v (130)
=0
j—1 2
<2023 2, +2E Zm Vgl (v (131)

1=0
where, in the last two steps, we used the fact that stochastic gradients are unbiased and have bounded

variance (Assumption [6'). We bound now the last term in the RHS of Eq. (I31)),

2
k-1, _ k-1
uJt (» Vi)

2

_ j—1
an,uf I L G (132)
-0 1=0 Zl’ o Me—1,1/
= Nk—1,1 k—1,1 2
(e u/> ~ZZWEHvug5()| (133)
=0 /= -1,
-1 2
(an 11) 'an_l,lEHvugf (wivE) | (134)
=0
—1
~(Send) Socrssouat (w0t
=0
2
_vugt (k—1,0 Vf 1)+Vugt (k— ll 71) H (135)
<Z77k 1l> an 1l EHvugt(FhvE 1)”
+EHvugt (k-1, Vf 1) *Vugt< k— Lo, ic—l)”] (136)
-1 j—1 ,
. (znku) S s BVt (v
=0 =0
+E||[Vugh (uf M vE) = Vgl (u H (137)
= = 2 k—1,1 2
2 (Sne) Soca[piwut i]
=0 =0
-1 -1)
—9I2 (Z”kl,l> k=10 uk—lH
=0 =0
(139)

i1 2
2
e2(Sne) vt G
1=0
where the first inequality is obtained using Jensen inequality, and the last one is a result of the
L-smoothness of g; (Assumption[5’). Replacing Eq. @ in Eq. (T31)), we have

Mk—1,5 H k—1 k=15 2 Mk—1,j
-Efjlu —u, <20 Me—1.1
jz:; Nk—1 Z Mke—1 Z:

Jj=0

36

+u5;@“qulg(zmluwk“)

M1 15
B s

+4 Zm(Zm_l,z> B[Vgl (uf=tvE)| (140)
j=0 FT 1=0

) 2
. j—1 k—1,1 k—1 k—1,5 k—1
Since) —0 Mh—1,1 ~EHut —u H < E - 0 Mh—1,5 EHut J —uy ‘ , we have

an L.g -EHuk*I—uffl’j’rg?az an = an 1,0

Jonkl Jonk1

+412 an UZW 1.0] an—l,j'E'
=0 1=0 j
2

+4 an L (an 11) E||Vagr (W, vy~ 1)HQ. (141)

Joﬁkl

We use Lemma[G.TT]to simplify the last expression, obtaining

J-1
12
Zﬂk 1,j EHukﬂ *UfimH <202 Zni—u

=0 M1 =

2
+ A B || Vagl (0F = vEY | 4 iy L2 - an LB [kt u’HH . (142)

7=0

Rearranging the terms, we have

2 J—1
B S R Al IET R Do
Jj=0 j=0

A E || Vagh (@ v (143)
Finally, replacing Eq. (T43) into Eq. (123), we have

J—1
(L= 4n?_,L%) Ty <20°L% - | Yo mi_y, | +4nfo L% E||[Vagl (0" vE Y|P (144
=0

For 13—, small enough, in particular if n,_; < then 3 <1 —4n?_,L? thus

QfL’

J—-1
% <2077 [D miy; | H 4 L E || Vagl (0 vET Y. (145)
j=0

Replacing the bound of T3 from Eq. (I43) into Eq. (I20), we have obtained
k—
B[k Vi) — gt)] < L Dt (b v

T

+477,?;71L22wt -EHVugf (u"'_l,v,lgC 1)H2
t=1
J—1

+ 2L [> niy Lt | o (146)
=0

37

Using Assumption[7’} we have

E[gk(uk Vllch) gk(uk 1 Vlle)} < 777]6—1 EHVugk (uk—l’vllc:}l)HQ

2
+anp_L*B%-E Zwt Vagf (W1 viTh)
J-1
2 L | D iy LA ke | - o® +4n LGP (147)
j=0
Dividing by 751, we get
k(k k=1 k(yk—1 k=1 8n2 L2382 — 1
E[g (u*,viy)—g"(u VlT):| < Mk—1 2/8 EHVugk(k—1 Vllch)H
Nk—1
+2n,_1L ZUT‘; By 1 | 0?4 4np L2GR. (148)
, k—1
7=0

For 7;_1 small enough, if ,_; < ﬁ, then 8y7_,L?3? — 1 < 1. Thus,

k k k—1 k k—1 k—1
g"(u VlT) g"(u 7V1:T) 1 ko(ok—1 k=12
]E[}g—fE Vug* (uF1v
Th1 1 H 9(1T>H
+ 2np_1L § 777’7“ S 41 o - anp PGP (149)
N k—1
7=0

Since for ¢ € [T, gF is a partial first-order surrogate of f; near {u*~!,v{~'}, we have (see Def.|l)

gr (uk ! vf 1) = f (uk ! V,’f 1), (150)
vugf(’“vi“ = uft(k1 Vi), (151)
gt (u Vf 1) —gt (u vt) —i—dv(7vf). (152)
Multiplying by w; and summing over ¢ € [T'], we have

g" (Wl vig') = f (u! V’le) (153)
Vag® (a1, vE) = Vaf (ub1, v (154

T
g (uk v’le) =gF (uk,vlf:T) + Zwt ~dy (vf‘l,vf) . (155)

t=1

Replacing Eq. (I53), Eq. (I54) and Eq. (I33)) in Eq. (T49), we have

E Qk(ukavlf;T) - f(uk ! V]f Tl)

Nk—1
1 k=1 k- 1
B EEHvuf (u*hvig) wdy (v L)
I12
tomp L [{3 A L1 | o® + A LPG2. (156)
=0 k-1
Using again Definition[T] we have
gk(ukvvlf:T) > f(ukﬂvllczT)v (157)
thus,
o[£) — ft v]

Nk—1

38

1
fZIElHVuf (ub=t vEoh Zwt dy (vET1)

77k1t1

2L an L1 0?4 d LGP, (158)
=0 k=1

Lemma G.2. For k > 0 andt € [T), the iterates of Alg.[3|verify

0 <dy (viT',vF) < fi (0, v)) — fu(u®,vith) (159)

Proof. Slnce Vk+1 € argmin, ¢y gr (uk’l, v), and g is a partial first-order surrogate of f; near
{ub=1 vF11 we have

gf (uk ! V,’f 1) - gf (ukil,vf) =dy (Vf_l,vf) , (160)
thus,
fo (0w ™) = fo (0 hvE) 2 dy (v) (161)
where we used the fact that
gr (WP vETh) = i (0 v (162)
and,
gf (WP V) > f (WP v (163)
O
Theorem Under Assumptions when clients use SGD as local solver with learning rate
n = j—f’? after a large enough number of communication rounds K, the iterates of federated
surrogate optimization (Alg. B) satisfy:
1 & 2 1 i 1
R LBV (i <o) R bh v <0).
K= VK K3/

where the expectation is over the random batches samples, and A f(a*,v¥..) £ f (u*,vi) —
7wk, vE5) >0

Proof. For K large enough, n = ;—% < % min { PNAITAR! L 3 } thus the assumptions of Lemma
are satisfied. Lemma and non-negativity of dy, lead to

fak vEp) = faf Vi 1 2
B| S S < | Vaf (0 v
+2nL (nL + 1) - 0® 4+ 4J*n*L2G>. (164)

Rearranging the terms and summing for k € [K], we have

1 & 1 a2
LS B v
k=1

f(u07v(1)'T) B f(uKaV{("T> 77L (77[’ + 1)) 02 + 2‘]2772L2G2
< A4E : : 1
< 4E| e | +8 ~ (165)
f°, V0 — f* nL (nL +1) -0 + 2J?n? L2G?
< 4E 1
< 4E| o | +8” - : (166)
where we use Assumption 4] mto obtain (T66). Thus,
» ZE vur (@ i) P = 0 (=) (167
K

39

To prove the second part of Eq. (89), we first decompose Ay £ f (u*, vi.) — f (u¥,vih') > 0as

follow,

Ay = f (0¥ vip) = f (05T vEE) + F (WM VD) — f (uR vERY). (168)
27k £k
Using again Lemma[G.T]and Eq. (I67), it follows that
1 ZK:E [Tf] <0 (1> . (169)
K Pt K

For T¥, we use the fact that f is 2L-smooth (Lemma|G.12) w.r.t. u and Cauchy-Schwartz inequality.
Thus, for k& > 0, we write

TQk —f (uk+17vllc}1) —f (uk’vllc:-;l) (170)
<[Vaf (VB -t = 227 [t -t (171

Summing over k£ and taking expectation:

1 & 1 &

D B[] < 2 Y E[[|[Vaf (0 ViR [ttt -]

k=1 k=1

1 & 2
+K;2L2E[Huk+l—uk”] (172)

1 | & K
<= ;E[Hvuf(ukﬂ,v;@l)”?] ;E[Hukﬂ_uﬂz}

1 & 2
+ = ; 2L2E [|[ut ! - ut[] (173)

where the second inequality follows from Cauchy-Schwarz inequality. From Eq. (T43), with 71 =
Jn, we have for t € [T

IEHu]C — uffl’JH2 <do?Jn® +8J%* -E HVug,{C (uk_l,vffl) H2 (174)

Multiplying the previous by w; and summing for ¢ € [T], we have

T 9 T)
Zwt -IEIHuk_1 — uffl’JH < 4J%0*n? + 8137 - Zth HvugiC (uk_l,vffl)H . (175)
t=1 t=1

Using Assumption |7’} it follows that

T 2

> wiVagt (u v

T

2
g thHuk_l — uf_l’JH < 4J%n? (2JG2 + 02) + 8792 B°E
t=1 t=1

Finally using Jensen inequality and the fact that g is a partial first-order of f; near {ukil, vf -1 }
we have

2
Bllut=t = ut | < 4202 (2062 + 0%) + 8PPFE | Vaf (0P a7
From Eq. (I67) and n < O(1/v K), we obtain
1 & 2
k=1 _ .k
?;Enu —u*|" <o), (178)
Replacing the last inequality in Eq. (T73)) and using again Eq. (I67), we obtain
1 & 1
k
K};E[TQ}<O<K3/4>. (179)

40

Combining Eq. (T69) and Eq. (T79), it follows that

1 & 1
e > E[Af(WF vEp)] < O(W) : (180)
k=1

G.1.3 Proof of Theorem[3.2]

In this section, f denotes the negative log-likelihood function defined in Eq. (6). Moreover, we
introduce the negative log-likelihood at client ¢ as follows

log p(S:|©, I0)
f(o,m & _oepSo.1) o ——Zlogp D10,). (181)

n

Theorem 3.2} Under Assumptions[IH7} when clients use SGD as local solver with learning rate
n= \;—0}, after a large enough number of communication rounds K, FedENM’s iterates satisfy:

1« 2 1
P Elver e mlico(). wXawenn<o(y). @

where the expectation is over the random batches samples, and Ay f(OF 11F) = f (@k, Hk) —
F(OF,11+1) > .

Proof. We prove this result as a particular case of Theorem To this purpose, in this section, we
consider that V £ AM u =0 € RM v, = 7, and w; = ny/n fort € [T]. For k > 0, we define
gF as follows:

gi“(@,vrt) = ZZ% (=) <l (he (x (Z)),yt(”> 10g o (x{)) — log ¢

i=1 m=1
+log g (@) _ m> c>, (182)

where ¢ is the same constant appearing in Assumption [3} Eq. (3). With this definition, it is easy
to check that the federated surrogate optimization algorlthm (Alg. [3) reduces to FedEM (Alg. [2).
Theorem then follows 1mmed1ately from Theorem L once we verify that (gt) satisfy

the assumptions of Theorem

Assumption[#’] Assumption @ and Assumption 7] follow directly from Assumptlon [l Assumption 6]
G.3

1<t<T

and Assumptlon | respectively. Lemma|G.3|shows that for k > 0, g* is smooth w.r.t. © and then
Assumptionis satisfied. Finally, Lemmas|G.4HG.6|show that for ¢ € [T] gF is a partial first-order
surrogate of f, w.r.t. © near {©*~1 7, } with dv(-7 N =KL(|). O

Lemma G.3. Under Assumption fort € [T)and k > 0, g¥ is L-smooth w.r.t ©.

Proof. g is a convex combination of L-smooth function 6 + 1(6; sgi)), i € [n¢]. Thus it is also
L-smooth. O

Lemma G.4. Suppose that Assumptions|IH3| hold. Then, fort € [T], © € RM*? gnd 1, € AM
rk(©,m) 2 gf (©,7) — £, (O Z/a: (o (=) e (2718 0,m1))
where KCL is Kullback—Leibler divergence.

41

Proof. Letk > 0andt € [T)], and consider © € RM*4 and 1, € AM then

9¢ () = Z Z g (= m) : (l (hem(XEi)),yt(i)) — log pm (x{”) — log m

(183)

EZZ (e)'<—1°ng ui V1%, 0) —10g pn(x(”) — log

i=1 m=1

- L3550 (49) (ot (9 =) 1o (406

ny Qf (Zt(l) _ m)
_ 1)
nt;mz;qt (m) ng (s§>7z§)—m|@,m)
Thus,
rE(0,m) 2 gF (©,m) — £, (O,m)
! ifzwj (49— m) i (50,2 = mio,m,)
= —— z =m| -lo :
M] =1 A © qr (zt(l) = m)

1 & ;
+— Zlogpt (8,(5)|@,7rt>
ti=1
1 &))
L3S (40 m) (1o (410.m)
Nt —
pi (st " = mle, m))

— log
gF (() _)
1 ne M k ((4)) Dt (Sgl)le) 7Tt) : qzlfg (Zgl) = m)
= — = 1
e ;;qt 2t m) log N (sgz),zt(z) _ ml@,m)
(4)
1 ng M) @) qf (Zt :m)
= — = -1 .
n tZ:;mz::IQt (Zt m) 0og o ((i) _ m|8§i)7@’ﬂ_t)
Thus,
k(O,m) Z;cg (qt pe (st ,@mt)) > 0.

(185)

= m‘ @,m))

(186)

(187)

(188)

(189)

(190)

(191)

(192)

(193)

O

The following lemma shows that gF and g* (as defined in Eq.|98)) satisfy the first two properties in

Definition[I]

42

Lemma G.5. Suppose that Assumptions and Assumption E| hold. Forallk > 0andt € [T),
gF is a majorant of f; and v = gF — f; is L-smooth in ©. Moreover r¥ (@k_l,ﬂf_l) = 0and

Vorl (051, 7k1) = 0.

The same holds for g*, i.e., g* is a majorant of f, % & ¢*— f is L-smooth in ©, r* (@k_l, H’“_l) =0
and Ver* (@k L IIk- 1) =0

Proof. Fort € [T, consider © € RM*? and 1, € AM, we have (Lemma|G.4)
rf(O,m) £ gf (©,m) = fi(0,m) Zm (o (=) lpe (=715, 0,0)) . (194
Since KL divergence is non-negative, it follows that gF is a majorant of f;, i.e.,
VO eRM*d . c AM . gF(O,7)> f,(0,7). (195)
Moreover since, gF (zt(i)) =Dt (zii)|s§i), ekt Wf_1> for £ > 0, it follows that
rg (O 1wt = 0. (196)
For i € [n] and m € [M], from Eq.[78] we have

Pm (yt(l)|XEZ)7 9m) X Tim

pi (27 = mlst”, 0,m) = ST (yt(“\xg“,em,) - (197)

B exp {—l (hgm() yt())} X Tim
= zn]\fl:1 o [_l (he ,((l)) ygl)ﬂ N (198)

exp [fl (hg (xﬁ”), yf”) + log th}
_ s . (199)
Sy exp |1 (o, (<), 5 + log mim |
For ease of notation, we introduce
OEY, (hg(@y, y,f“), 0 €R% m e [M], i€ [n], (200)
Y (©) £ py (z,E’) = m|s§i),(977rt> , m € [M], (201)
d,

: 0:(0) 2 KL (af (=) Ipe (715", €,m:)) 202)

For i € [n], function I; is differentiable because smooth (Assum|[J)), thus v,,,, m € [M] is differen-
tiable as the composition of the softmax function and the function {© — —I; (©) + log 7y, }. Its
gradient is given by

{ VGm’}’m (@) = ~Tm (6) ' (1 —Tm (@)) ' Vlz (em) y (203)
Vo, Ym (O) = ¥m (©) - Ym () - Vi (0) , m’ # m.
Thus for m € [M], we have
M
(©) = k(0 Z Y Vowtm (©)

Voe:(0)= 3 d (2 =) - =2 (204)

_ W _ N\ IO () o

p o (5 =) 22 O

43

ot (o = m) - 220 'v:(é)7 nO) 1, 6,.). (205)

Using the fact that Z%zl qr (z.(t) = m) =1, it follows that

3

Vo, ¢i (0) = (vm (©) — ¢~ (zi(t) = m)) Vi (0) - (206)

Since ;, i € [n] is twice continuously differentiable (Assumption [5), and 7,,, m € [M] is
differentiable, then ¢;, i € [n,] is twice continuously differentiable. We use H (p; (0)) € RIMxdM
(resp. H (I; (9)) € R?*9) to denote the Hessian of ¢ (resp. [;) at © (resp. 6). The Hessian of ¢; is a
block matrix given by

(B (@) =3 (€) - (1= 7 (0)) - (Vha(6) - (VEl6))
+ (1) —gf (27 =m)) - H (1 (0.))
(H@:(©) =9 (®) 7w ()« (VIilow) - (VEow))', ' 2 m.
’ (207)
We introduce the block matrix H € R *4M _ defined by
Hon = 9 (0) - (17 ()) - (Via(6)) - (VE(6)" o0
I:Im,m’ ="Tm (9) “Ym (@) : (vélz(gm)) : (Vli(em’)>Tv m' #m,
Eq. (207) can be written as
(H (¢i (©)))m,m - I:Im.,m = ('Ym(@) - qf (th) = m)) “H(; (0m))
(H(ei(0) —Hpm =0, m' £ m.
' (209)

We recall that a twice differentiable function is L smooth if and only if the eigenvalues of its Hessian
are smaller then L, see e.g., [52, Lemma 1.2.2] or [|6} Section 3.2]. Since [; and also —[; are L-smooth
(Assumption , we have for § € R¢,

~L-Ig<H (1 (0) < L Ia. (210)
Using Lemma we can conclude that matrix H is semi-definite negative. Since
—1 < 9n(0) — gf <Z§t) = m) <1, (211)
it follows that
H(pi(©)) < L-lanr- (212)

The last equation proves that ¢; is L-smooth. Thus 7¥ is L-smooth with respect to © as the average
of L-smooth function.

Moreover, since rf (©F 1 7F~1) = 0and VO, II; rF(©,7;) > 0, it follows that ©*~! is a minimizer
of {6 ry (@,ﬂf_l)}. Thus, Verf (0%~ 7F~1) = 0.

For © € RM*d and IT € AT*M | we have

¥ (6,10) £ ¢* (6,11) — £ (6,1) (213)
T
232 (g (©,m) = fi (O,m)] 214)
t=1
r n
=> ﬁrf (©,m). (215)

~
Il

1

E

We see that 7* is a weighted average of (rf)KKT. Thus, 7 is L-smooth in ©, 7* (6,11) > 0,
moreover ry (©F~1 II*71) = 0 and Very (01, 11" 1) = 0. O

44

The following lemma shows that g¥ and g* satisfy the third property in Deﬁnition

Lemma G.6. Suppose that Assumption holds and consider © € RM*4 and T1 € AT*M | for
k > 0, the iterates of Alg. [3|verify

T
g" (0,11) = g* (0,11%) + Y~ “LKL (wf,)

t=1

Proof. Fort € [T] and k > 0, consider © € RM*? and mr, € AM such that Vm € [M]; 74 # 0,
we have

M [on
X 1 i X
9t (©,m) — gy (©,7F) = Z {m qu (zlE) — m)} x (log 7y, — log mem) (216)
m=1 L't i=1
=nk . (Proposition[31)
M ﬂ'k
= Z 7k log —m (217)
m—1 Ttm
=KL (), m). (218)
We multiply by “+ and some for ¢ € [T']. It follows that
T
n
g* (0,11%) +Z;t/c,c (nk,m) = g* (©,11). (219)
t=1
O

G.2 Fully Decentralized Setting
G.2.1 Additional Notations

Remark 3. For convenience and without loss of generality, we suppose in this section that w; =
1, t e [T).

We introduce the following matrix notation:

Uk 2 [uf,... uf] e RTXT (220)

Uk 2 [a,... 6"] e R%XT (221)

09" (U*, vipi€¥) £ [Vugr (uf, vii€h) ., Vagh (uf, v ¢7)] € RBXT (222)
where 0¥ = + ZtT:l uf and v¥ . = (Vf)lgth e VT,

We denote by uf 17 the j-th iterate of the local solver at global iteration k at client ¢ € [T, and by

U*~1J the matrix whose column # is u,lffl’j, thus,
uf_LO _ ué{)—l; Uk_LO — Uk_l, (223)
and,
T
uf = whab Uk = Uk ke (224)
s=1

Using this notation, the updates of Alg.[5|can be summarized as
J—1
U = U =) ;0" (UF 7, v €97 17) | Wk (225)
j=0

Similarly to the client-server setting, we define the normalized update of local solver at client ¢ € [T]:

J-1 k k=17 _k.¢ck—1]
uk_l"] — uk_l’o Z i=0 77k—17jvu9t uy » Vs gt
t t = (226)
- b

5}(371 L
t J—1
k-1 D i=0 Me—1,j

45

and

J—1 k—1
Zj:o nk—l,jvugt (j V:{c)

oyt & (227)
Mk—1
Because clients updates are independent, and stochastic gradient are unbiased, it is clear that
E [55*1 - 52’5*1} =0, (228)
and that . .
Vi,se[T]st.s#t, BOFT—oF 1 gkt —gk=1y —q. (229)
We introduce the matrix notation,
T & [35—1,...,5§;—1} e RUXT, k-l & o=l gk=1] € RWXT, (230)
Using this notation, Eq. (223)) becomes
U = [U’H — nk_ﬂfkﬂ Wwh-1. 231)

G.2.2 Proof of Theorem[3.3]]

In fully decentralized optimization, proving the convergence usually consists in deriving a re-

currence on a term measuring the optimality of the average iterate (in our case this term is
_ 2 . . . kN2

E|[Vuf (@* viz)|) and a term measuring the distance to consensus, i.e., E Sy |[uf ok

In what follows we obtain those two recurrences, and then prove the convergence.

Lemma G.7 (Average iterate term recursion). Suppose that Assumptions and Assumption

A J-1 . 1 1
hold. Then, for k > 0, and (ny.;),< ;< ;_ such that g, = 325" ni,; < min {m, W}’ the
updates of fully decentralized federated surrogate optimization (Alg.) verify

T
_ _ 1 -
E|f(@* vip) - f@* ! V]le S*TZ]EdV (vavz]sc 1)

_ 1 b 124 T)me1L? IR
—%EHvuf (uk 17V]1€:T1)H2+(4)T77k 1 ZEHUf 1_ gk 1||2
t=1

n? -} 163, L2
kil 42 L P %GQ. (232)

Proof. We multiply both sides of Eq. (231)) by %, thus for £ > 0 we have,
Uk 117

Uk’ 1 _ _Tk 1:|Wk 1 233
—=[u - = (233)
since W*—1 ig doubly stochastic (Assumption , ie., Wk-1 % = 171; , is follows that,
_ _ . 11T
UF =0 e T (234)
thus,
T
T L "’“1:1 e (235)
t=1
Using the fact that ¢g* is L-smooth with respect to u (Assumption|5’), we write
T
E|g"* (uk,vlf:}l)] = E[gk (ukl - n’“T‘l 5,{“_1,v]f:}1>] (236)
t=1

T
< gt) - B(T v B Y)

46

L |mes =
ol o | et §k—1 237
2 T ; t (237)
1.
=) — i BVt 36
t=1
27,
2
2 T
M1 - L Sk—1
E 5 238
T ;t : (238)
AT,

where the expectation is taken over local random batches. As in the client-server case, we bound the
terms 73 and T5. First, we bound 77, for £ > 0, we have

T
P | Ap_
Ty :E<Vugk(uk 1,v’f:T1),Tt§:155 1> (239)
1< /s
_ E<Vugk (o vt 3 (0 551)>

=0, because E[éf‘th—l]:o

T
+ E<Vugk (v, % > 5fl> (240)
t=1
—E{V.o* (@F1 vEoL l a4 sk—1
— ug” (@ ’vliT)’TZ ! (241)
t=1
1 11 & ’
e _ 2 _
ziEHVugk (uk 1,vf:Tl)‘| +§E T;(Sf 1

2

T
1 e 1 _
- 5E Vag® (@ v — T;aﬁ ! (242)
‘We bound now 75. For k£ > 0, we have,
T 2
T,=E|Y & (243)
t=1
T T 2
=B (et Y er (244)
t=1 t=1
T 2 T 2
<2k} (85*1 - 55*1) +2-E|> ! (245)
t=1 t=1
A 2 o R
=2 Y E|§ s 42 Y E <5{:1 Y 55—1>
t=1 1<t#£s<T
=0; because of Eq. (229)
T 2
+2R > ot (246)
t=1
T)) T 2
:2-211«:“55—1—55—1“ +2-E|> s 247)
t=1 t=1

47

=2-E

k=1, .k
anlj{ugt(] fl)

*Vugt< h=Lj k-1, ffl,j)] 2>' (248)

Since batches are sampled independently, and stochastic gradients are unbiased with finite variance
(Assumption , the last term in the RHS of the previous equation can be bounded using o2, leading
to

+2- Z(

T

k—1
20
t=1

Tyl T 2
Z] 0 h—1j 2 L 9. 25571 (249)
=1 M1 t=1
Tyl T 2
— 9T .52 (Z M) +92E Z(;f—l (250)
t=1 e t=1
T 2
<2T-0”+2-E|> 6" (251)
t=1
Replacing Eq. (242) and Eq. (251) in Eq. (238), we have
E gk(uk Vllch) gk(ﬁk 1 Vllch):| <
1 & i
M—1 k- 2 Me-1 _
- EHVugk (uk ! V]le)H - (I —-2Lnk_1)E TZéf !
t=1
+£7713 0%+ k-1 Vug" (ﬁk L yk _ 725k 1 (252)
T k= 2 lT
For 7,1 small enough, in particular for nx_1 < 5 L, we have
E gk(ﬁk,vlf:}l)—gk(ﬁk_l Vllch) <
_kalEvk k-1 gk-1y2 , L o o
[Vug® (@i T 719
2
77k g
: Tz Vagh (a1 Vi) = 37 2s3)

We use Jensen inequality to bound the last term in the RHS of the previous equation, leading to

k—1 k—1

E Qk(uk Vig) — gk(ﬁk_l vip)| <

_ 771;—1 E Hvugk (ﬁkq’V/lc:—Tl)H? 4 %771%_1‘72

T
o7 OB Vagl (a7 v - P [(254)

t=1 X

We bound now the term 73:
= E||[Vagf (@, vEY) = oF 255)
2
Zi]:_ Nh—15* Vug (k=lj k-1

— B | Vg (a1 v) - S Vi) 056

k—1

48

J—1
=E Z 77;;15 . [Vugf (ﬁk—17vffl) Vg (ufﬂ,j?‘,fﬂ)} . 257)
j=0 F~

Using Jensen inequality, it follows that

J-1
, , 2
T3 < Z L?];k_l’J -E HVugf (@ Vi) = Vagr (uf_l’J,vf“)H (258)
- -1
7=0
J-1 ‘
_ Z Nk—1,5 K Vugf (ﬁk_l,vffl) _ Vugf (Ufflvvffl)
—o k-1
J
2
+ Vgt (uf Vi) = Vugh (uf v (259)
2
<2 E|Vagy (0", vi™") = Vagf (uf ™ vi)
J—1 . . 2
+2. Z % E||Vagk (uf_l,vf_l) — Vugk (uf_m,vf_l) (260)
; -1
7=0
, J-1 ‘ A)
<202l - uf P 2r2 e Y B R a0 261)
=0 k=1

where we used the L-smoothness of gF (Assumption to obtain the last inequality. As in the

, 2
centralized case (Lemma , we bound terms |luf " — uf _1’0‘

, j€{0,...,J —1}. Using
exactly the same steps as in the proof of Lemma|G.1| Eq. (T43) holds with u} " instead of uf!,
ie.,

J—1
(1—anp_,L2) -y T=ld .]EHuf—l,o kol
=0 Mk—1

) J-1
2 2
<207 E Mie—1,5

j=0

2
Y2 - E Hvugf (uffl’o,v,’ffl) H . (262)

For 7,1 small enough, in particular for n;_1 < ﬁ we have

J—1 ‘
Zﬁkq,g E‘

k=1,0 k—1,4]|°
u — W
=0 k=1

2 J—1
< Sup_y B[Vgl (uf 0w | 4402 { Sk (263)
7=0
2
< 8nt ;|| Vugh (w0 vE) = Vgl (@81 vET) + Vagh (@ v)|
J—1
+40% S 2 (264)
2
< 1677,3_1 -E Hvugf (uf_l’o,vf_l) — Vug,ic (ﬁkil,vf_l)H
9 J—1
+16m7 - || Vugr (@ vE) T+ 402 80> Tk, (265)
§=0

<162 L% E flab " — @ " 4+ 1602, - | Vgl (@1, vEY)|

49

S i (266)
=0

where the last inequality follows from the L-smoothness of g¥. Replacing Eq. (266)) in Eq. (261), we
have

Ty <3207 L' Eljuf ™ — " " + 8% { Sy

+ 37 L2 B || Vugh (@8, vi)P + 202 B Jab — a7 (267)
For 7, small enough, in particular if 7, < 5 fL we have,
J-1
Ty < 6L°E |[uf = — o 1|* 4 82%0% Y mi_y ; + 3207, L2 || Vgl (@ L vE D). (268)
=0
Replacing Eq. (268) in Eq. (254), we have
E|g*@",vig') — g" (@ vigh | <
3np—1L? = ko1 k12, Mol - TL'nl%—l,j 2
T;Euut —u H +T 470T+1 g
- =
_ 16m}_ L2 &
— P [Vagh (v |+ 77’“ : ZI wgl (@1 vE (269)

We use now Assumption [7’|to bound the last term in the RHS of the previous equation, leading to

E Qk(uk V]le) gk(ﬁk_l V]le) <

3 B L2 T J— lT 2
77kT1) ZE Hui€_1 _ ﬁkq”? 77k 1L 4 4102
t=1 j=0 -
Ne—1 - (1 — 327727 LQBQ 2 1677 L2
- et I) i gt (it vt o+ 2 @m0
For 731 small enough, in particular, if 71 < we have

SLB’

E gk(uk Vllch) gk(ﬁk 1 vlich) <

Mk—1 ko(oke1 ko1y(2 , SMk—1L? d k=1 —k—1]|2
- T EVagt (@ vig) T+ S DR u

T

t=1

2 J-1 2 3 2

N1 L TL-m;_q o, 16m_ L7
+ AN T LG g) g2 g TR g2 271)
T Z Mk—1 T
7=0
We use Lemmal[G.T4]to get

E|g*(@*, viz) — f@* "t vigh| <

_ e 124 T)me_1L? ke
_%EHvuJC (uk 17V]1€;T1)H2+ (4)T77k 1 ZEHU:’; l_uk 1H2
t=1

50

77k 1L L nk i 2 16771%—1L2 2
4 : — G- 272
+ E o° + T 272)

Finally, since g/ is a partial first-order surrogate of f; near {u*~!,vf~'}, we have

_ g _ 1 _
E f(ukavllc:T) - f(uk 1av]f:T1) < 7? Z]Edv (vavzlfc 1)

_ et ez (124 T L2 & L a2
et)+ T S
=1
9 J=1p 2 3 72
M—1L 4 ﬁ—l—l 02+MG2. (273)
T = Me—1 T

O

Lemma G.8 (Recursion for consensus distance, part 1). Suppose that Assumptions and Assump-

tion|8| hold. For k > 7, consider m = || — 1 and (Mh,j) 1< j< g1 Such that ny = Z;-FOI Mej <

min 41L, i 6} then, the updates of fully decentralized federated surrogate optimization (Alg

verify

T 2
EZ Huf - 7k||F <
t=1

k—1

p mT T |2 2 71|12
(1= DE[Um™ —U™7|[, + 447 (1 + p) L? l;rﬁﬂﬂ [u' -0l
k-1 5 k—1
+T-0%- Y S nf +167L° <1+ > an +167 <1+p> Gy
l=mTt l=mT
2 = , 2
+ 167 (1 + p) B2 Z Nt E || Vaf (@, v
l=mTt
Proof. Fork > 7,andm = |£] — 1, we have
T
EY [uf — o = E[JU* ~ TY|, @74)
t=1
—E|[U* - O™ — (TF —T™)| (275)
<E|U* -0, (276)
where we used the fact that ||A — A 2 = |A- (1=, < 1=, - JA]% = [|A]l% to
obtain the last inequality. Using Eq. recursively, we have

k—1 k—1
U"”{ H w }— > ot {H Wl’}. (277)

l'=mt l=mt =l
Thus,
k—1 k-1 k—1 2
*kH <E U””{ I1 Wl'}—U"”— 3 nﬂ”{H Wl’} (278)
U'=mTt l=mt U=l F
k—1 k—1
UmT{ H Wl}_UmT_ anTl{HWl/}
U'=mTt l=mt U=l

51

2

k—1 k—1
+§:m(w_fﬁ{[pw} 279)
l=mt U=l F
k-1 k—1 k-1 2
—E |lumr { H Wl/} —_gm — Z anl {H Wl/}
U'=mt l=mt =l F
k—1 k—1 2
+E| Y m (Tl le) {le’}
l:mTk—l - k—1 g k—1
+2]E<U”” { I1 Wl'} U=y Y {H W”} :
U'=mt l:]:n:’l =7 o
>om (Tl _ Yl) {H Wl'} > . (280)
l=mr U=l F

Since stochastic gradients are unbiased, the last term in the RHS of the previous equation is equal to
zero. Using the following standard inequality for Euclidean norm with o > 0,

la+b|* < (1+a) flal* + (1+a7") [b]?, (281)
we have
2
ot ﬁkHF - (282)
2 2
(1+a)E U"”{H WZ}U"” (1+a! an{nwl’}
U'=mr rF l=mT U=l F
k-1 k—1 2
+ 3 pE (Tl _ Tl) {H Wl } (283)
l=mTt U=l F
Since k > (m + 1)7 and matrices (W') 1> are doubly stochastic, we have
a 2
EY [juf — o <
=1
(m+1)7—1 2
1+ a)E|U™” H wh Sy — o (1+a! Z mTl
U'=mr o l=mT
k=1)
QEHTZ —TlH 284
i l:zm,:T " B ()
(m41)r—1 2 b1 i
<(1+a)E|Um™ [w'p-0u| +0+a)-(k—mr) > WE|TY,
U'=mt F l=mT
k—1)
2 Y
E HT -7 H 7 285
+ 2 . (285)

l=mt

where we use the fact that || AB|| < ||A]|, ||B|| and that || A|| = 1 when A is a doubly stochastic
matrix to obtain the first inequality, and Cauchy-Schwarz inequality to obtain the second one. Using
Assumption [§] to bound the first term of the RHS of the previous equation and the fact that that
k < (m+ 2)r, it follows that

d 2
B [uf —a|f, <
t=1

52

(1+a)1-pE[[U™ — U™ |2 +2r(1+a” Z nE || 7Y

l=mt
k—1 9
QIEHTZ _ TlH . 286
+l:2ijm . (286)

We use the fact that stochastic gradients have bounded variance (Assumption @ to bound
L2
B[t = 71|| as follows,
F

T
]EHTl TlH ZE gt — 5t (287)
T .77177 2
_ g I+1 Lj k—=1\ _ I+1
*t_ZlE Z nl (vugt (ut 7vt) vugt (ut »Vtvft))
= =0
(288)
T J-1 _ 2
<3y Mg (vugiﬂ (uiﬂ,vf 1) — Vgt (ut ,vi;giﬂ))‘ (289)
=1 j=0 I
T J-—1)
<33 i (290)
=1 =0 I
=T 02, (291)

where we used Jensen inequality to obtain the first inequality and Assumption @ to obtain the second
inequality. Replacing back in Eq. (286)), we have

d 2
B [[uf —u|f, <
t=1

k—1 k—1
(14)1 = B[O — O™ 2r (14a7) 3 n?E\\T’\\§+T-02~{ S

l=mt l=mT
(292)
The last step of the proof consists in bounding E HTl Hi forl € {mr,..., k—1},
TR ST (293)
t=1
T |1 2
=Y E|Y iy, gt (utﬂ,vi) (294)
=1 |j=0 ™
T J-1)
<SS B | Tttt (u v (295)
=1 =0 I
T J-1)
<303 B |[Vaglt (ulvl) - Yk (V) Vul) @96
t=1 j=0
T g1)
<233 M B | Tughtt (w V) - Vi (ud) |
=1 =0 N
d 2
+2) E||[Vaf: (uf, vi)]" (297)
t=1

53

Since g, is a first order surrogate of f near {u}, vi}, we have

BITE <23 ot (u) = Vgt (i) [

t= 1] 0
+ QZ]E [Vafe (ul,vh) = Vufo (8, V1) + Vufi (&, V1)) (298)
t=1
T J-1 . 2
<2 H'l u,/ ,vl — Vg™t uO,vl ’
tzlj ‘ (t t> t (t t)
2 da 2
+4Z]E]|Vuft (uf,vi) = Vaufe (@, V)" +4D E|Vafi (@ V)] (299
t=1 t=1

Since f is 2L-smooth w.r.t u (Lemma[G.12)) and g is L-smooth w.r.t u (Assumption[5’), we have

T J-1
E||TlHiSZZZ%~L2E’u ’ +16L2 - ZEHuf |’
t=1 j=0

7ut

T
+43 E|Vuf (@, V)] (300)

t=1
We use Eq. (266) to bound the first term in the RHS of the previous equation, leading to
T T

E Y5 < 3207L Y E||Vaght! (@9, vH)||” + 1622 (1 +207L%) - Y E [Jul — &'||”
t=1 t=1
T 9 J—1
+4) E||[Vaf: (@, v))||" +8TL%0* - <> 0ty ¢ (301)
t=1 =0
Using Lemma[G.T4] we have
T
E[YY% <4(1+1697L) - Y E|[Vaf: (0, v1)]
t=1
T 5 J—-1
+16L% (14 677L%) - > Elluf —a'||" +8L2c*T- ¢ > "7, o (302)
t=1 =0

For n; small enough, in particular, for n; < 57, we have

J—-1
E||Tl||F<8ZE||Vuft(L VY|P + 2202 B|[UN - TY|% + 8L 2T{ "]}. (303)
t=1

7=0
Replacing Eq. (303) in Eq. (292)), we have

d 2
B [luy —u*, <
t=1

(1+a)(1-pE|U™ —U™"

k—1

1 +44r (14)22 Y RE|U -0},

l=mt

+ 167 1—|—a Z i ZEHVuft u b vt)H

l=mTt

k—1
+T 0%) {m +167L% (1+a7) - {Znu}} (304)

54

Using Lemma|G.13|and considering a = £, we have
T
EY [uf - ut <
=1
k-1

(1= DIE[U™ —U™|[}, + 447 (1 + 2> 2y pE|U -

l=mTt

I

k—1

k—1
2
+T 0% Y m+167'L2<1+> an +16¢<1+p>G2Zn?

l=mt
k—1

+ 167 (1+ ;) 823" WPE||Vaf (@, vip)|” (305)

l=mTt

O

Lemma G.9 (Recursion for consensus distance, part 2). Suppose that Assumptions and As-

sumption @ hold. Consider m = Léj then, for (77k,j)1<j<J,1 such that n, = Z];Ol My <

min {ﬁ, ﬁ } the updates of fully decentralized federated surrogate optimization (Alg verify
4 2
k_ =k
B [[uf —u|f, <
t=1
k-1

-+ Pefo -0 (14 2) 22 3 st elot - O
l=mTt

k—1

k—1
2
+T0% Y nl+16TL2<1+> Z”m +16T<1+p>GQan

l=mt
#or (1+2) S REITur (64, v0) (306)
l=mTt

Proof. We use exactly the same proof as in Lemma[G.8] with the only difference that Eq. (284)-
Eq. (286) is replaced by

d 2
B [lut —u*, <
t=1

(14 @)E|[U™ = U™ |% +2r (1+a”! Z nE || 7Y%

l=mT

k-1
2
2 Y
E HT ~ % H : 307
i l:z'r;‘r K F ()
resulting from the fact that { (mH)T wr } is a doubly stochastic matrix. O

Lemma G.10. Under Assum. and Assum@ For ny; = * with

cmind L P 1 1 P
min § — =
= AL’ 927L° 4BL 32v2 78’
the iterates ofAlg Bl verifies

1247 K B
a2+ DL T) ZI@HU’c U2 < GZ]EHVuf (@, vE)||* +164-
k=0 k=0

124 T 7L
) —(K+1)n?,

(308)

for some constant A > 0 and K > 0.

55

7"77

Proof. Note that for k > 0, n;, = Z; o Mkj = 1, and that Zz omE = Zz o2
Using Lemmaand Lemma and the fact that p < 1, we have for m = L J -1
k mT T || 2 1327 2 2 — l 1
EU* -0 < = DE[Um -0} + -, L > E|U-U;
l=mt
2
P or {TJZ <1 4 7L <1 + 2)) + 167 <1 + 2) G2}
J D p
22
167 = 2
e 3 E[|Var (o v (309)
l=mT
and form = EJ
p mT rTmT 1327 2, 2 — 1 1
Do~ o+ B2 e 3 sl - o)
l=mt

— 12

E||U" - O, <(
167L2 2 2

+7722T{T02(1+ T (1+)>+167(1+)G2}
J D D

22
(310)

167'52 2 Z]EHVuf Gl V1T)H2-

\W—/ l=mT
EY))
Using the fact that) < g%+, it follows that for m = HJ -1
E[U* - UY[< 0 - DE[U™ —T™J; Z E|[U' -0
l mT
k—1)
+?A+Dn? > E||Vaf (@, vi0)|, (311)
l=mT
and for m = EJ
B » B) » k—1
B0t O} < (4 R U O+ g 3 B U O
k—1)
+n?A+Dn? Y E||Vaf (@, vl 312)
l=mt
The rest of the proof follows using |31, Lemma 14] with B = %, b= %, constant (thus
2 — 1\ /I8 and constant weights wy, = 1. O

8t
?-slo steps-size n < 32\/5 L=
Theorem- Under Assumptions and Assumptzon@ when clients use SGD as local solver
with learning rate n = TR after a large enough number of communication rounds K, the iterates of
fully decentralized federated surrogate optimization (Alg. [B) satisfy
1
) ; (313)

K
1 _ 2
ggﬂf!lw (@, vE) | so(ﬁ

The notion of 7-slow decreasing sequence is defined in 31} Defintion 2]

56

and,

K T
1 1
?ZZwt.]Edv (v, vF) gO(K), (314)
k=1t=1
where GiF = % 23:1 uf. Moreover, local estimates (uk) L << COnverge to consensus, ie., tou":
;iiEHu?—’“sz(jE) (315)
k=1 t=1

Proof. We prove first the convergence to a stationary point in u, i.e. Eq. (313), using [31, Lemma
17], then we prove Eq. (314) and Eq. (313).

Note that for K large enough, n < min {

1 _p 1 _1 p
4L 9270 4BL’ 322 1B [°

Proof of Eq.313] Rearranging the terms in the result of Lemma[G.7]and dividing it by n we have

| N 1 el e
LB f Vi) ft >] < —gEIVus @ i)l
2 2712
+% E Ukt 7I’j’f*1||2+% (4}3+1> 02+%G2. (316)

Summing over k € [K + 1], we have

K
1 _ _ 1 _ 2
o E|FEE Vi) - f<u°,v?:T>] <5 D E[Vaf (0, vig)|
k=0
K
(12+T) L? v ern2 (K+1)nL (4L 9
L) ONTE|UR - SR
+ 7 kzzo [0 =0 + = T +1)e
16(K + 1) - n2L?
6(+T) R g2, (317)
Using Lemma|[G.10] we have
1 1 & 5
; E| @K v _f(ﬁo’vg:T)] < —I—GZ]EHVuf (w*,vio) ||
k=0
12+T 7L? (K +1)nL (4L
16A - (KDL =41 0?
+16 T . (K+1)n"+ T -t
16(K + 1)n2L?
i 6(K + 1) 2. (318)

T
Using Assumption 4’} it follows that

s u *
Tlg S E||Vaf (@ Vi) < f@vig) - f
k=0

Ui
12+7 7L2 (K+1)nL (4L 16(K + 1)n*L?
16A - . — (K 1 2 S/ S 1 2 o T L= 2'
+16 T . (K +1)n" + T A T G
(319)
We divide by K + 1 and we have
K _
1 _ 2 fa%v0,) - f*

E k k < > V1. T

16(K+1)kZ=O IVar (@ vi)|[" < (K +1)
1247 7L , nL (4L o 16n%L%

The final result follows from [31, Lemma 17].

57

Proof of Eq. We multiply Eq. (308) (Lemma G.10) by z+, and we have

1 iEUk—fjk2< 1 zK:IEVf”“ O ey
K12~ I ”Ffmk:o [V (u,Vl:T)HFﬂLm %, (321)

sincen < O (ﬁ), using Eq. (313),, it follows that

1« _ 1
=Y E[ut-UH <0 (\/f> : (322)

k=1
Thus,

K& 2 1
k_ =k
72 2B - <0 (). o2
k: =1 K
Proof of Eq.[314] Using the result of Lemma[G.7| we have

T

1

72 Eldy (vi,viT!)] <E
t=1

F@* vt - f(ﬁk,v’f:T)l

2 T
2D ML S et g

4T
=1
77k 1L M1 Lo Mg—1,5 o L6mi, L%,
4 —G". 324
+ Z o+ T G (324)
_ 1
The final result follows from the fact that n = O (—K) and Eq. (3T3). O

G.2.3 Proof of Theorem [3.3]
We state the formal version of Theorem [3.3] for which only an informal version was given in the
main text.

Theorem 3.3} Under Assumptions[IH8| when clients use SGD as local solver with learning rate
n = \;70? D-FedENM’s iterates satisfy the following inequalities after a large enough number of

communication rounds K :
iZK:EHV FE) h <o (L iiii (ke)< 0 (325)
K] e] F = \/? 9 K Pt n to 't K)

where OF = [OF, ... 0%] - 1L
ie., to OF:

k
(Gt)1 <t COMVErge to consensus,

Jnin, EZ [CCHREge (ﬁ> :

Proof. We prove this result as a particular case of Theorem To this purpose, we consider that
VEAM u=0cRM v, =mn,and w; = n;/n fort € [T]. For k > 0, we define gF as follow,

gf(Gm):%ZZQf (Zt(i):m)(l(y) log pom (x{) — log
(7 =m) -) (326)

where c is the same constant appearing in Assumption [3] Eq. (3). With this definition, it is easy
to check that the federated surrogate optimization algorithm (Alg. [3) reduces to D-FedEM (Alg. [).

+ logq

58

Theorem [3.3|then follows immediately from Theorem once we verify that (gy) satisfy

the assumptions of Theorem [3.3]

Assumption[d] Assumpnon@ and Assumption 7’ follow directly from Assumptlonl Assumption|[6]
iI

1<t<T

and Assumptlon | respectively. Lemma [G.3|shows that for & > 0, g* is smooth w.r.t. © and then
Assumptlonlls satisfied. F1na11y, Lemmas|G.4HG.6|show that for t € [T] g is a partial first-order

surrogate of f; near {©; ', m, } with dy(-,-) = ICE(). O

G.3 Supporting Lemmas

Lemma G.11. Consider J > 2 and positive real numbers n;, j =0,...,J — 1, then:

1 J—1 j—1 J—2
Zj—O M = 1=0 j=0
1 J— j—1 J—2
T—1 {77] : le} < 77]27
Z]:O N =0 1=0 =0

Proof. For the first inequality,

1 J-1 J—1 J—2 J—2
72 nj - Zm} . {Uj'an}ZZm- (327)
Zj =0 j= o{ Zg 0" j=o0 1=0 1=0

For the second inequality

J-1

} 'Z{% Zﬂz}<z:1'2{77j'2n12}=z7712~ (328)

J—1
> j=0"i =0
For the third inequality,

2

1 J-1 j—1 1 J—1 J—2 \?2
1 Z nj - (Z 771> < z:]fl : nj - (Z 77l> (329)
=0 j j

Ym0 M <o j=0 "5 j=0 1=0
J—2
<(>m (330)
j=0
J—-1 J—2
<D om Y (331)
j=0 j=0
O

Lemma G.12. Suppose that g is a partial first-order surrogate of f, and that g is L-smooth, where
L is the constant appearing in Definition[l} then f is 2L-smooth.

Proof. The difference between f and g is L-smooth, and g is L-smooth, thus f is 2L-smooth as the
sum of two L-smooth functions. O

Lemma G.13. Consider [= EtT Lwi - [y, for weights w € AT. Suppose that for all (u,v) €

R x V, and t € [T] ft admits a partial first-order surrogate g{ Y near {u, v}, and that
gtovt = 23:1 we g verlﬁes Assumption H fort € [T]. Then f also verifies Assumption

59

Proof. Consider arbitrary u, v € R4 x V, and for t € [T, consider g{uv"} to be a partial first-order
surrogate of f; near {u, v}. We write Assumptionfor gtV

T
Zwt HVug;{“ v} (u V)H2 <G?+ 52H Zwt : Vugt{u’v}(u, v)Hz. (332)

t=1

Since g{u Yisa partial first-order surrogate of f; near {u, v}, it follows that
T 9 T 9

> |Vafita)| <624+ 82| D Vuhilu v (333)

t=1 t=1
O

Remark 4. Note that the assumption of Lemma is implicitly verified in Alg.[3]and Alg.[] where
we assume that every client t € T canfunction compute a partial first-order surrogate of its local
objective f; near any iterate (u,v) € R% x V.

Lemma G.14. For k > 0, the iterates of Alg. |5 verify the following inequalities:

gk (ﬁk 1 VlT) <f(Zthuk 1 ,]f_1||2,

T
[Vaf (8 vAZ) 7 < 2| Vag® (@ i) 7 4222 Y e 6 4 a7

and,

T
[Vag® (2 AT < 2 Vs (@ A7) 283 ! -

t=1

Proof. For k > 0andt € [T], we have
g (1 v =

G ’“)+f(’“v,’f = fe (@ v (334)

= fo (@) oy (@ v (335)

= fi (ﬁk Vi Y +rk (u k=l yh=) —rF (u,i€ Lvk= D) + 1k (uffl,vffl). (336)
Since gF (u,’f,vffl) ft (ut,) (Deﬁnmon , it follows that

gt(k=l yh= 1) = fi (ﬁk Lvk= 1)—|—rt(k=1 v 1) rk (uffl,vf 1) (337)

Because rF is L-smooth in u (Definition 1] , we have
k (ok—1 k-1 k (k=1 k-1 k (k=1 Ck—1\ k-1 k—1
T (u ' Vi)*Tt (ut ' Vi) < <Vu7"t (ut » Vi)au -y >
L _._ _1y2
+ 5 o (338)
. k- . k (1k—1 k—1\ _
Since gy is a partial first order surrogate of We have V 7} (ut , Vi) = 0, thus

gf (@F1 vEY) < £ (81 vES 1)+5||ﬁk717uf_1||2. (339)

Multiplying by w; and summing for ¢ € [T'], we have

gF (@1 vigh) < F (v Zw okt — k%, (340)

and the first inequality is proved.

60

Writing the gradient of Eq. (337), we have
Vugt (k=1 _1) = Vauft (ﬁk_l,vf_l) —l—Vurf (ﬁk_l,vf_l) —Vurf (uf_l,vf_l) . (341)
Multiplying by w; and summing for ¢ € [T'], we have
Vag® (@1 Vi) = uf(“Lvig) +
+ Zwt I (LR I VAV (e R | (342)

Thus,

vt k)

H uf (@1 Vi) +Zwt Varg (057 vi ™) = Varg (w7 vy 7)) 2 (343)
> |[Vuf (ﬁk*l,v’f}l)HQ* [Vart (@1 v = Varf (0 vi)] 2 (344)
> IVaf (@ v fzwtuvun V) = Vark @D)
> 2|V (@ Vi) | - 2 Zwt [=t =l (346)

where (344) follows from ||a||® = |la + b — b||* < 2||a + b||> + 2]|b]|*. Thus,

T
[Vafe @ vE Y|P < 2| Vagh (@ vE Y7 42073 w [lab - P 347)
t=1

The proof of the last inequality is similar, it leverages [|a + b||> < 2||a]|® + 2 ||a||* to upper bound
O

7).

Lemma G.15. Consideruy,...,uy € R* and o = (a1,...,ap) € AM, Define the block matrix
H with
Hinm = =0 - (1= am) - Wy - afy (348)
Hm7m/ = Qup - Ay’ - Uy ~ u;@/; m’ 75 m,

then H is a semi-definite negative matrix.

Proof. Consider x = [x1,...,Xy] € RM | we want to prove that
xT-H-x<0. (349)
We have:
XTH-X=> > xI - Hpm X (350)
m=1m'=1
M
=3 X Hum X+ > XE, Hypn X (351)
m=1 =
m’#m
M
= Z (_am . (1 - am) . X,}-n U - 1111.-,1 : Xm) (352)

3
I

61

M M
3D (e X, ul X (353)
m=1 | m/=1
m'#m
M M
= Z — 0 (1=) - (X, W)+ - (X, W) Z Qs+ (X7, W)
m=1 m'=1
m'#m
(354)
Since o € AM,
M
Ym € [M], Z O = (1= ay) (355)
'
thus,
M M
xT ' H-x= Z Ay - <Xm7 um> : Z Qg (<xm’a um’> - <Xm7um>> (356)
m=1 m' =
m';ﬁ#z
M M
= Z Qo <Xm7 um> : Z Q! (<xm’7 um'> - <Xm>um>) (357)
m=1 m/=1
M 2 Ny
= <Z Ay - <Xm7um>> - Z Ay - <Xm7um>2~ (358)
m=1 m=1
Using Jensen inequality, we have x7 - H - x < 0. O

62

H Distributed Surrogate Optimization with Black-Box Solver

In this section, we cover the scenario where the local SGD solver used in our algorithms (Alg. [3]and
Alg.[5) is replaced by a (possibly non-iterative) black-box solver that is guaranteed to provide a local
inexact solution of

ne

Vm € [M], mlnlmlzeZq A(hg(x ()) yt(i))7 (359)

with the following approximation guarantee.

Assumption 9 (Local a-approximate solution). There exists 0 < « < 1 such that for t € [T,
m € [M]and k > 0,

Zq m)- {1hgs (), 0" = Uy, (xi7),0i)} <
a3 "z = m) - {Uhgs (™) u”) — Dy, ()0} (360)

where 0F, , . € argmingcga >t ¢ (2f = m) - 1(hg (xgi)), yt(l)) 0, . is the output of the local
solver at client t and O%1 is its starting point (see Alg. .

We further assume strong convexity.

Assumption 10. Fort¢ € [T] and i € [n], we suppose that 6 — | (he (x,@) ,ygi)) is pi-strongly
convex.

Assumption [J]is equivalent to the y-inexact solution used in [37]] (Lemma. , when local functions
((I)t)1<t<T are assumed to be convex. We also need to have G* = 0 in Assumptlon I as in [38,

Definition 3], in order to ensure the convergence of Alg. [2land Alg.[]to a stationary point of f, as
shown by [66, Theorem. Z]EI

Theorem H.1. Suppose that Assumptlons Eand . hold with G? = 0 and o < /32 1, then the
updates of federated surrogate optimization converge to a stationary point of f, i.e.,

. 2
Jim [[Vef (08,)|y, =0, (361)
and
a n
lim Y =KL (7,7 = 0. (362)

k—+o00 i—1 n
As in App.[G| we provide the analysis for the general case of federated surrogate optimization (Alg. [3)
before showing that FedEM (Alg. [2) is a particular case.

We suppose that, at iteration & > 0, the partial first-order surrogate functions g~, ¢ € [T used
in Alg. |3| verifies, in addition to Assumptions 4'H7’} the following assumptions that generalize
Assumptions[9]and

Assumption 9’ (Local a-inexact solution). There exists 0 < o < 1 such that for t € [T] and k > 0,
Vv e, gf(uta) = 9¢ (ut*v)< a- {gf (uk !) *gt (ut*7v)}a (363)

where uf,* € arg mingcga, gF (u, Vf)

Assumption 10'. Fort € [T] and k > 0, gF is p-strongly convex in .

Under these assumptions a parallel result to Theorem. [H.T] holds.

8 As shown by [[66, Theorem. 2], the convergence is guaranteed in two scenarios: 1) G2 = 0, 2) All clients
use take the same number of local steps using the same local solver. Note that we allow each client to use an
arbitrary approximate local solver.

63

Theorem H.1'. Suppose that Assumptions m—. Assumptions ﬂand - 10| hold with G* = 0 and
a< BQ 1, then the updates of federated surrogate optimization converges to a stationary point of f,
ie.,

kgrfocuvufu V| =0, (364)
and
kll)rwawt dy (v, vi™!) =0. (365)

H.1 Supporting Lemmas

First, we prove the following result.
Lemma H.2. Under Assumptionsﬂ @and m 10| the iterates of Alg. IZ| verify for k > 0 and t € [T,

YW eV, |[Vugr (uf,v)| < Vak - ||[Vags (b, v)], (366)

where k = L/ p.

Proof. Consider v € V. Since g is L-smooth in u (Assumption , we have using Assumption

[Vugt (uf,v)HF < 2L (g¢ (uf,v) — g (ui,.v)) <2La(g; (wv) —gf (uf,.v)()3.67)
Since ®F is pi-strongly convex (Assumption (10 , we can use Polyak-Lojasiewicz (PL) inequality,

1

gf (uffl,v) — ﬂ Hvugf (uk*l,v)H2 < g; (uf*l,v), (368)

thus,
20 (gF (uf ™' v) = g (uf.v)) < [[Vugh ("2 9)|". (369)

Combining Eq. and Eq. (369), we have

[Vust (a9 < o[Tugh™! (o))" (370)

thus,
[Vuge (uf, v)|| < Var Vgt (@, v)- (371)
O

Lemma H.3. Suppose that Assumptions and hold with G? = 0. Then,
g (u* vh) = g" (ul,vh) < a x {g" (0" vHTT) — " (ulvh) }, (372)
where & = 3°k*a, and uf £ argmin, " (u, v¥.;.) where g* is defined in (98)

Proof. Consider k > 0 and ¢ € [T]. Since g; is p-convex in u (Assumption[10’), we write

o —willp < L[Vagh (whvE) = Vgl (ubvh)| (373)
< 19t (k) 4 [()| 674
< YO8 Vg (V) + 1 Vs (V) @75)

where the last inequahty is a result of Lemma@ Using Jensen inequality, we have

[u® Z we - (uf —u¥ (376)

64

| A\

¢ [Juy — uf| (377)

| A

2
g {\/@HVH(,vf)!|+i||Vugf(u’:,vf)|{}. (378)

Using Assumption [7’|and Jensen inequality with the "/-" function, it follows that

o~] < VAR~ [Vug (b, vhr) |+ 2 Tug (v (79
= cmg ||Vugk (ukil,v’f:T) H . (380)
Since g* is L-smooth in u as a convex combination of L-smooth function, we have
[Vug® (0", vig) || = [[Vag" (071 vig) = Vag® (ul, vig)|| (381)
< L|ju” —uf| (382)
< Bvard HVugk (w1, vip) IE (383)
Using Polyak-Lojasiewicz (PL), we have
o (0 vhr) =g (o) < o [t (vt [200 g (v)
(384)
Using the L-smoothness of g’c in u, we have
||Vugk (ukil,v’f:T) H2 < 2L [gk (ukil,vlf T) —g (u*,v]f Tﬂ (385)
Thus,
g (uk,v]f:T) g (u*,V’fT) < fr'a (gk (ukfl,v’f T) —g (u*,v’f T)) (386)
Since vi = argmin, ¢y, g (u*1,v), it follows that
gf (uk_l,vf) < gf (uk ! v,’f 1) . (387)
Thus,
o (0 vhp) - o (i vhr) <6 {of (LR o (Vi) G88)
O

Fort € [T] and k > 0, we introduce 7} 2 gF — fyandr* 2 g% — f = ST w, (gF — f:). Since gF
is a partial first-order surrogate of f, it follows that 7f (u®*~*, vy ') = 0 and that r}’ is non-negative

and L-smooth in u.
Lemma H.4. Suppose that Assumptionsand hold and that

9" (0¥, Vi) < g" (" Vi), VE >0, (389)
then
lim r*(u*,v¥ ;) =0 (390)
k—o0
lim [|Var® (u¥, vE)||* =0 (391)
k—o0

If we moreover suppose that Assumpttonﬂholds and that there exists 0 < & < 1 such that for all
k>0,

gk(uk7vlf:T) - gk(ufvvlf:T) <ax (Qk(uk ! Vlf Tl) gk(uﬁvvlf:T))) (392)
then,
lim [u* —u¥|* =0 (393)
k— oo

where u¥ is the minimizer of u — g (u, vf:T).

65

Proof. Since g is a partial first-order surrogate of f near {u*~*, v} ™'} fort € [T] and k > 0, it
follows that g* is a majorant of f and that g% (u*~!,v¥=1) = f(u*~!,v¥~1). Thus, the following
holds,

F(ub,vh) < gF(uP,vF) < gF(uhl vty = Fub v, (394)
It follows that the sequence ((vk) , 18 a non-increasing sequence. Since f is bounded below
(Assum. l) it follows that (f (u k vk)), .
(9% (u¥,v")), ., also converges to f°°

k>0 is convergent. Denote by f° its limit. The sequence

Proof of Eq. Using the fact that g*(u*, v¥) < ¢gF(uF=1, v¥), we write for k > 0,

f(uk Vi T)+T (u VIfT) g (u VIfT) <9 (u ot VIle) f(uk_l V’le) (395)

Thus,
Tk(ukavlf:T) S f(uk ! V;C Tl) f(ukvvk)? (396)

By summing over £ then passing to the limit when k£ — +oc0, we have

(Vi) < f(u vig) - £ (397)
k=1
Finally since 7*(u*, v},;.) is non negative for k > 0, the sequence (r*(u*,v}.;.)), ., necessarily
converges to zero, i.e., -
lim r*(u®,vi;) = 0. (398)
k—o0
Proof of Eq. Because the L-smoothness of u — 7% (u, v}.;,.), we have
1 2
rk (- —Vur (u*, Vi), vh T) <7k (u¥, vig) - 3 [Var® (0¥, vEg) || (399)
Thus,
1
||Vur (uk vy T) HF <2L < (uk,v’f:T) —rk (uk — ZVurk (uk,vf:T) ,v’f:T)> (400)
< 2Lrk (u V]f T) (401)
because 7* is a non-negative function (Definition [1). Finally, using Eq. (390), it follows that

lim || Var* (¥, vE)" = 0. (402)
k—oo

Proof of Eq.[393] We suppose now that there exists 0 < & < 1 such that

VEk >0, g*(u" vip) — " (ub vip) < a(¢" (T v — g (b vEg) (403)
It follows that,
gF (0¥ vhp) —agk (b vz < (1 - @)gt (ul, Vi), (404)
then,
1

-4 X [gk(ukvvlsz) —ax gt ut, V]f Tl)] (405)

gk(ui,vl T) >

and by using the definition of ¢g* we have,

gk(uf,v’f:T) > 1—a X [9k<ukavlf::r) —ax f(uk ! V]f Tl)} (406)
Since g* (ul, vh.;) < g* (0, vh,) < gF (uh v]le),we have
9" (ul, vig) < g" (Vi) = T vigh). (407)

66

From Eq. (406) and Eq. @07), it follows that,

1
1-a

X [Qk(ukavlf:T) —ax fu" vl Tl)} < g* (b i) < Fa VD, (408)

Finally, since f (u*~!,vi7!) " fo°and gF (u¥, vi.;) P 1°°, it follows from Eq. (#08)

that,

hm g (u* , VT, T) fe. (409)
Since g* is p-strongly convex in u (Assumption [10| , we write
5 o k] < g* (ub Vi) o (ukvha) (410)
It follows that,
lim [u* — ¥ = 0. @11)
k——+oo
O

H.2 Proof of Theorem [H.1']

Combining the previous lemmas we prove the convergence of Alg.[3|with a black box solver.

Theorem m Suppose that Assumptions |4'H7'| Assumptions and 10| hold with G*> = 0 and
a < ﬁ2 1, then the updates of federated surrogate optimization (Alg.|3) converge to a stationary

point of f, i.e.,

Jim[[Vust vin)|F = o, (412)
and,
kETOOZwt dy (v, vi7t) = 0. (413)
Proof.
F* vig) = g" (0, vig) — r*(u", vig). (414)
Computing the gradient norm, we have,
[Vuf (", vig)|| = [Vag" (0", vig) = Vur® (u®, vig)| (415)
< [[Vag® (@*, vip) || + [Var® (0, vip)]] - (416)
Since gk is L-smooth in u, we write
||Vugk(uk7vllczT)H = Hvugk(uk7vk) - vug (u*,Vlf T)H (417)
§L||uk7u’,f}|. (418)
Thus by replacing Eq. #I8) in Eq. (#16), we have
[Vaf (0¥, vE)| < L2 [ub — o || + || Vurk (b, vE)||. (419)

Using Lemma[H3] there exists 0 < & < 1, such that

[o"(0*, Vi) = g"(ul,vig)] <ax [o" (T vigh) — gt (ulvip)] . (420

Thus, the conditions of Lemma [H.4]hold, and we can use Eq. (391) and (393), i.e.

[Vur® (¥, vE)| 0 (421)
[ut — | —0 (422)
—+o00

Finally, combining this with Eq. (#19), we get the final result

Gl |Vaf®, vip)| =0. (423)

67

Since g is a partial first-order surrogate of f; near {u*~*, v} "'} for k > O and ¢ € [T7, it follows
that

> wedy (vivET) = g" (uh Vi) — g (P Vi) (424)
< gF (W Vi) = oF (vt V) (425)
Thus,
T
Zwrdv (Vi Vi) < f (vl = f (uh V) (426)
=1

Since dy (vF, v~ 1) is non-negative for k > 0 and t € [T, it follows that

lim Zwt dy (vi,vi) =0 (427)

k—4oc0

H.3 Proof of Theorem [H.1|

Theorem Suppose that Assumptions |IH7| and Assumptions @ hold with G*> = 0 and
a< 52%’ then the updates of FedEM (Alg.|2)) converge to a stationary point of f, i.e.,

. 2
Jim_[[Ver(©%, 1) =0, a2s)
and,
£l n
lim KL (xkF, 7Y = 0. (429)

k— n
tooi

Proof. We prove this result as a particular case of Theorem To this purpose, we consider that
VEAM =0 cRM v, =n;, and wy = ng/n fort € [T]. For k > 0, we define gJ as follow,

gt()— qut ()(l (he (xi), (1)) — log pm(x{”) — log m,

+ log qf (zt(l) = m) — c), (430)

where c is the same constant appearing in Assumption [3] Eq. (3). With this definition, it is easy
to check that the federated surrogate optimization alorlthm (Alg. [B) reduces to FedEM (Alg. [2).
Theorem|H.1|then follows immediately from Theorem [H. 1’| once we verify that (gf) satisfy

the assumptions of Theorem

1<t<T

Assumptlon Assumptlon@ Assumpt1onu Assumpuon@and Assumptlon 110'| follow directly
from Assumptlon Al Assumption [6] Assumptlon [7} Assumption [@]and Assum on[I0] respectively.
Lemma shows that for & > 0, g* is srnooth w.r.t. © and then Assumptlon 5 is satisfied. Finally,
Lemmas show that for ¢t € [T gF is a partial first-order surrogate of f; w.r.t. © near

{eF1 x, with dy(-,-) = KLC|. O

68

I Details on Experimental Setup

1.1 Datasets and Models

In this section we provide detailed description of the datasets and models used in our experiments.
We used a synthetic dataset, verifying Assumptions[I}{3] and five "real" datasets (CIFAR-10/CIFAR-
100 [33[], sub part of EMNIST [{8]], sub part of FEMNIST [[7, 47] and Shakespeare [7} 47]) from
which, two (FEMNIST and Shakespeare) has natural client partitioning. Below, we give a detailed
description of the datasets and the models / tasks considered for each of them.

I.1.1 CIFAR-10/ CIFAR-100

CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They both
share the same 60, 000 input images. CIFAR-100 has a finer labeling, with 100 unique labels, in
comparison to CIFAR-10, having 10 unique label. We used Dirichlet allocation [65]], with parameter
o = 0.4 to partition CIFAR-10 among 80 clients. We used Pachinko allocation [54]] with parameters
a = 0.4 and 8 = 10 to partition CIFAR-100 on 100 clients. For both of them we train MobileNet-
v2 [55]] architecture with an additional linear layer. We used TorchVision [45] implementation of
MobileNet-v2.

I.1.2 EMNIST

EMNIST (Extended MNIST) is a 62-class image classification dataset, extending the classic MNIST
dataset. In our experiments, we consider 10% of the EMNIST dataset, that we partition using
Dirichlet allocation of parameter v = 0.4 over 100 clients. We train the same convolutional network
as in [54]. The network has two convolutional layers (with 3 x 3 kernels), max pooling, and dropout,
followed by a 128 unit dense layer.

1.1.3 FEMNIST

FEMNIST (Federated Extended MNIST) is a 62-class image classification dataset built by partitioning
the data of Extended MNIST based on the writer of the digits/characters. In our experiments, we
used a subset with 15% of the total number of writers in FEMNIST. We train the same convolutional
network as in [54]. The network has two convolutional layers (with 3 x 3 kernels), max pooling, and
dropout, followed by a 128 unit dense layer.

I.1.4 Shakespeare

This dataset is built from The Complete Works of William Shakespeare and is partitioned by the
speaking roles [47]]. In our experiments, we discarded roles with less than two sentences. We consider
character-level based language modeling on this dataset. The model takes as input a sequence of
200 English characters and predicts the next character. The model embeds the 80 characters into
a learnable 8-dimensional embedding space, and uses two stacked-LSTM layers with 256 hidden
units, followed by a densely-connected layer. We also normalized each character by its frequency of
appearance.

L.1.5 Synthetic dataset
Our synthetic dataset has been generated according to Assumptions[TH3]as follows:

1. Sample weight 7, ~ Dir («), t € [T] from a symmetric Dirichlet distribution of parameter
aeRT

2. Sample §,, € R ~ U ([—1, 1]d) . m € [M] for uniform distribution over [—1,1]%.

3. Sample my, t € [T] from a log-normal distribution with mean 4 and sigma 2, then set
ny = min (50 4+ my, 1000).

4. Fort € [T] and i € [n:], draw xgi) ~U ([—1, 1]d> and egi) ~ N (0,14).

5. Fort € [T] and i € [n;], draw zt(i) ~ M ().

69

Table 4: Average computation time and used GPU for each dataset.

Dataset GPU Simulation time
Shakespeare [/7,47] Quadro RTX 8000 4h42min
FEMNIST [[7] Quadro RTX 8000 1h14min
EMNIST [8] GeForce GTX 1080 Ti 46min
CIFAR10 [33]] GeForce GTX 1080 Ti 2h37min
CIFAR100 [33]] GeForce GTX 1080 Ti 3h9min
Synthetic GeForce GTX 1080 Ti 20min

Table 5: Learning rates 7 used for the experiments in Table[2] Base-10 logarithms are reported.

Dataset FedAvg [47] FedProx [38] FedAvg+ [27] Clustered FL [56] pFedMe [16] FedEM (Ours)
FEMNIST —-1.5 —1.5 —-1.5 —1.5 —1.5 —1.0
EMNIST —-1.5 —-1.5 —-1.5 —-1.5 —1.5 —1.0
CIFAR10 —1.5 —1.5 —1.5 —1.5 —1.0 —1.0
CIFAR100 —1.0 —1.0 —1.0 —1.0 —1.0 —0.5
Shakespeare —1.0 —-1.0 —1.0 —1.0 —1.0 —0.5
Synthetic —1.0 —1.0 —1.0 —1.0 —1.0 —1.0

6. For € [T] and i € [n], draw y,gi) ~B (sigmoid ((xii), 0 @)+ e,@)).

1.2 Implementation Details
I.2.1 Machines

We ran the experiments on a CPU/GPU cluster, with different GPUs available (e.g., Nvidia Tesla
V100, GeForce GTX 1080 Ti, Titan X, Quadro RTX 6000, and Quadro RTX 8000). Most experiments
with CIFAR10/CIFAR-100 and EMNIST were run on GeForce GTX 1080 Ti cards, while most
experiments with Shakespeare and FEMNIST were run on the Quadro RTX 8000 cards. For each
dataset, we ran around 30 experiments (not counting the development/debugging time). Table [4]
gives the average amount of time needed to run one simulation for each dataset. The time needed
per simulation was extremely long for Shakespeare dataset, because we used a batch size of 128.
We remarked that increasing the batch size beyond 128 caused the model to converge to poor local
minima, where the model keeps predicting a white space as next character.

1.2.2 Libraries

We used PyTorch [53]] to build and train our models. We also used Torchvision [45]] implementation
of MobileNet-v2 [53]], and for image datasets preprossessing. We used LEAF [[7]] to build FEMNIST
dataset and the federated version of Shakespeare dataset.

1.2.3 Hyperparameters

For each method and each task, the learning rate was set via grid search on the set
{10’0'5, 1071,10715,1072, 1072, 10’3}. FedProx and pFedMe’s penalization parameter ;4 was
tuned via grid search on {101, 109,101,102, 10’3}. For Clustered FL, we used the same values
of tolerance as the ones used in its official implementation [56]]. We found tuning tol; and tols
particularly hard: no empirical rule is provided in [56], and the few random setting we tried did not
show any improvement in comparison to the default ones. For each dataset and each method, Table[3]
reports the learning rate 7 that achieved the corresponding result in Table [2]

70

Table 6: Test accuracy: average across clients.

Dataset Local FedAvg [47] FedAvg+ [27] Clustered FL [56| pFedlMe [16] FedEM (Ours) D-FedEM (Ours)
FEMNIST 71.0 78.6 75.3 73.5 74.9 79.9 77.2
EMNIST 71.9 82.6 83.1 82.7 83.3 83.5 83.5
CIFAR10 70.2 78.2 82.3 78.6 81.7 84.3 77.0
CIFAR100 31.5 40.9 39.0 41.5 41.8 44.1 43.9
Shakespeare 32.0 46.7 40.0 46.6 41.2 46.7 45.4
Synthetic 65.7 68.2 68.9 69.1 69.2 74.7 73.8

J Additional Experimental Results

J.1 Fully Decentralized Federated Expectation-Maximization

D-FedEM considers the scenario where clients communicate directly in a peer-to-peer fashion instead
of relying on the central server mediation. In order to simulate D-FedEM, we consider a binomial
Erd6s-Rényi graph [18] with parameter p = 0.5, and we set the mixing weight using Fast Mixing
Markov Chain [5]] rule. We report the result of this experiment in Table [6] showing the average
weighted accuracy with weight proportional to local dataset sizes. We observe that D-FedEM often
performs better than other FL approaches and slightly worst than FedEM, except on CIFAR-10 where
it has low performances.

J.2 Comparison with MOCHA

In the case of synthetic dataset, for which train a linear model, we compare FedEM with
MOCHA [59]. We implemented MOCHA in Python following the official implementationﬂin MATLAB.
We tuned the parameter A of MOCHA on a holdout validation set via grid search in
{10%,10°,1071,1072,1073}, and we found that the optimal value of X is 10°. For this value, we
ran MOCHA on the synthetic dataset with three different seeds, and we found that the average accuracy
is 73.4 £ 0.05 in comparison to 74.7 £ 0.01 achieved by FedEM. Note that MOCHA is the second best
method after FedEM on this dataset. Unfortunately, MOCHA only works for linear models.

J.3 Generalization to Unseen Clients

Table[3|shows that FedEM allows new clients to learn a personalized model at least as good as FedAvg’s
global one and always better than FedAvg+’s one. Unexpectedly, new clients achieve sometimes a
significantly higher test accuracy than old clients (e.g., 47.5% against 44.1% on CIFAR100).

In order to better understand this difference, we looked at the distribution of FedEM personalized
weights for the old clients and new ones. The average distribution entropy equals 0.27 and 0.92 for
old and new clients, respectively. This difference shows that old clients tend to have more skewed
distributions, suggesting that some components may be overfitting the local training dataset leading
the old clients to give them a high weight.

We also considered a setting where unseen clients progressively collect their own dataset. We
investigate the effect of the number of samples on the average test accuracy across unseen clients,
starting from no local data (and therefore using uniform weights to mix the M components) and
progressively adding more labeled examples until the full local labeled training set is assumed to be
available. Figure 2] shows that FedEM achieves a significant level of personalization as soon as clients
collect a labeled dataset whose size is about 20% of what the original clients used for training.

As we mentioned in the main text, it is not clear how the other personalized FL algorithms (e.g.,
pFedMe and Clustered FL) should be extended to handle unseen clients. For example, the global
model learned by pFedMe during training can then be used to perform some “fine-tuning” at the
new clients, but how exactly? The original pFedMe paper [[16] does not even mention this issue. For
example, the client could use the global model as initial vector for some local SGD steps (similarly to
what done in FedAvg+ or the MAML approaches) or it could perform a local pFedMe update (lines
6-9 in [[16 Alg. 1]). The problem is even more complex for Clustered FL (and again not discussed
in [56]). The new client should be assigned to one of the clusters identified. One can think to compute

https://github.com/gingsmith/fmtl

71

https://github.com/gingsmith/fmtl

47.4
47.3

>47.2

@]

o 47.1

U470
46.9

46.8

0.0 0.2 0.4 0.6 0.8 1.0

Samples Fraction

Figure 2: Effect of the number of samples on the average test accuracy across clients unseen at
training on CIFAR100 dataset.

the cosine distances of the new client from those who participated in training, but this would require
the server to maintain not only the model learned, but also the last-iteration gradients of all clients
that participated in the training. Moreover, it is not clear which metric should be considered to
assign the new client to a given cluster (perhaps the average cosine similarity from all clients in the
cluster?). This is an arbitrary choice as [56] does not provide a criterion to assign clients to a cluster,
but only to decide if a given cluster should be split in two new ones. It appears that many options
are possible and they deserve separate investigation. Despite these considerations, we performed an
additional experiment extending pFedMe to unseen clients as described in the second option above on
CIFAR-100 dataset with a sampling rate of 20%. pFedMe achieves a test accuracy of 40.5% + 1.66%,
in comparison to 38.9% =+ 0.97% for FedAvg and 42.7% + 0.33% for FedEM. FedEM thus performs
better on unseen clients, and pFedMe’s accuracy shows a much larger variability.

J.4 FedEM and Clustering

We performed additional experiments with synthetic datasets to check if FedEM recovers clusters
in practice. We modified the synthetic dataset generation so that the mixture weight vector 7,
of each client ¢ has a single entry equal to 1 that is selected uniformly at random. We consider
two scenarios both with T" = 300 client, the first with M = 2 component and the second with
M = 3 components. In both cases FedEM recovered almost the correct IT* and ©*: we have

cosine_distance (@*, é) < 1072 and cosine_distance (H’ﬂf[) <1078 A simple cluster-

ing algorithm that assigns each client to the component with the largest mixture weight achieves
100% accuracy, i.e., it partitions the clients in sets coinciding with the original clusters.

J.5 Effect of M in Time-Constrained Setting

Recall that in FedEM, each client needs to update and transmit M/ components at each round, requiring
roughly M times more computation and M times larger messages than the competitors in our study.
In this experiment, we considered a challenging time-constrained setting, where FedEM is limited to
run one third (= 1/M) of the rounds of the other methods. The results in Table show that even if
FedEM does not reach its maximum accuracy, it still outperforms the other methods on 3 datasets.

We additionally compared FedEM with a model having the same number of parameters in order to
check if FedEM’s advantage comes from the additional model parameters rather than by its specific
formulation. To this purpose, we trained Resnet-18 and Resnet-34 on CIFAR10. The first one has
about 3 times more parameters than MobileNet-v2 and then roughly as many parameters as FedEM
with M = 3. The second one has about 6 times more parameters than FedEM with M = 3. We

72

Table 7: Test and train accuracy comparison across different tasks. For each method, the best test
accuracy is reported. For FedEM we run only % rounds, where K is the total number of rounds
for other methods—K = 80 for Shakespeare and K = 200 for all other datasets—and M = 3 is the
number of components used in FedEM.

Dataset Local FedAvg [47] FedProx [38] FedAvg+ [27] Cl;;?seér_ed pFedMe [16] FedEM (Ours)
FEMNIST (7] 71.0(99.2) 78.6 (79.5) 78.6 (79.6) 75.3 (86.0) 73.5(74.3) 74.9 (91.9) 74.0 (80.9)
EMNIST [8] 71.9 (99.9) 82.6 (86.5) 82.7 (86.6) 83.1(93.5) 82.7 (86.6) 83.3(91.1) 82.7(89.4)

CIFAR10 [33] 70.2(99.9) 78.2(96.8) 78.0(96.7) 82.3(98.9) 78.6 (96.8) 81.7(99.8) 82.5(92.2)
CIFAR100 [33] 31.5(99.9) 41.0(78.5) 40.9 (78.6) 39.0 (76.7) 41.5(78.9) 41.8(99.6) 42.0(72.9)
Shakespeare [7] 32.0(95.3) 46.7 (48.7) 45.7(47.3) 40.0(93.1) 46.6 (48.7) 41.2(42.1) 43.8 (44.6)
Synthetic 65.7(91.0) 68.2 (68.7) 68.2 (68.7) 68.9 (71.0) 69.1(85.1) 69.2 (72.8) 73.2(74.7)

observed that both architectures perform even worse than MobileNet-v2, so the comparison with these
larger models does not suggest that FedEM’s advantage comes from the larger number of parameters.

We note that there are many possible choices of (more complex) model architectures, and finding one
that works well for the task at hand is quite challenging due to the large search space, the bias-variance
trade-off, and the specificities of the FL setting.

73

Table 8: Test accuracy under 20% client sampling: average across clients with +/- standard deviation
over 3 independent runs. All experiments with 1200 communication rounds.

Dataset FedAvg FedAvg+ pFedMe APFL FedEM (Ours)
CIFARIO 73.1+£0.14 77.74+£0.16 77.84+0.07 78.2+£0.27 82.1+0.13
CIFARIOO[33] 40.6 £0.17 39.7+0.75 39.9+0.08 40.3+0.71 43.2+0.23
Synthetic 68.24+0.02 69.04+0.03 69.14+0.03 69.14+0.04 74.740.01
—=— Clustered FL ¥
20 —e— FedAvg
—+— FedEM (Ours) 0s
. —— Local
a —— FedAvg+ = —=— Clustered FL
< D-FedEM < —e— FedAvg
g —+_FedProx £ —+— FedEM (Ours)
o —=— Local
o5 —— FedAvg+
o D-FedEM
o —=— FedProx
" T Roungs T " T Roungs T
225 —=— Clustered FL s
—— FedAvg
1 —+— FedEM (Ours) o7
175 —»— Local 06
B0 + EegAvg+ g.. —=— Clustered FL
p -FedEM 2 —e— FedAvg
s FedProx P —— FedEM (Ours)
oo —— Local
" —— FedAvg+
075! 02 D-FedEM
050 o —=— FedProx

0 25 50 7 100 125 150 175 200 0 25 50 75 160 125 150 175 200

Rounds Rounds

Figure 3: Train loss, train accuracy, test loss, and test accuracy for CIFAR10 . .

J.6 Additional Results under Client Sampling
In our experiments, except for Figure[T] we considered that all clients participate at each round. We
run extra experiments with client sampling, by allowing only 20% of the clients to participate at each

round. We also incorporate APFL [[14]] into the comparison. Table [§| summarizes our findings, giving
the average and standard deviation of the test accuracy across 3 independent runs.

J.7 Convergence Plots

Figures |§|t0|§| show the evolution of average train loss, train accuracy, test loss, and test accuracy
over time for each experiment shown in Table[2]

74

Train loss
N w

I I
pFedMe
Clustered FL
FedAvg
FedEM (Ours)
Local
FedAvg+
D-FedEM
FedProx

W F
i

150 175 200

X

Test loss

+

T T
pFedMe
Clustered FL
FedAvg
FedEM (Ours)
Local
FedAvg+
D-FedEM
FedProx

.
T

% % 75 160 5
Rounds

150 75 200

Train acc

Test acc

e Sapuet g i
s

3

<
-

+

pzsal

=

pFedMe
Clustered FL
FedAvg

FedEM (Ours) |
Local
FedAvg+
D-FedEM
FedProx

| |
50 75 100 125 150 175 200

Rounds

?

pFedMe 4

Clustered FL
FedAvg
FedEM (Ours)
Local
FedAvg+
D-FedEM
FedProx

25 50 75 100 125 150 75 200

Rounds

Figure 4: Train loss, train accuracy, test loss, and test accuracy for CIFAR100 [@]

Train loss

T I
pFedMe s
Clustered FL
FedAvg
FedEM (Ours) |
Local
FedAvg+
D-FedEM
FedProx

89

25 75 100
Rounds

Test loss

\

= ae =asad
5 200
|

150 T

[
pFedMe .
Clustered FL
FedAvg
FedEM (Ours)
Local
FedAvg+
D-FedEM i
FedProx

05 Vv =y

2 50 75

160
Rounds

125

150 175 200

Train acc

Test acc

/

S
'Y
I

3

I oAb 4 v

pFedMe
Clustered FL
FedAvg

FedEM (Ours) |
Local

FedAvg+
D-FedEM
FedProx

|
5 50 75 100 125 150 175 200

Rounds

A A A A A A 4 Ao la A o

pFedMe
Clustered FL

FedAvg .
FedEM (Ours)
Local

FedAvg+ B
D-FedEM
FedProx

2 50 75

125 150 175 200

160
Rounds

Figure 5: Train loss, train accuracy, test loss, and test accuracy for EMNIST .

Train loss

Test loss

Train loss

Test loss

I
pFedMe -
Clustered FL
FedAvg

FedEM (Ours) |
Local

FedAvg+
D-FedEM
FedProx

125 150 175 200

|
pFedMe
Clustered FL
FedAvg
FedEM (Ours)
Local
FedAvg+
D-FedEM
FedProx

Figure 6: Train loss, train accuracy, test loss,

125 150 175 200

100
Rounds

>

Train acc

Test acc

160 125
Rounds

I H—H—X

—u— %

EApEEERE)

—a—a—a—a—a
pFedMe
Clustered FL |
FedAvg

FedEM (Ours) |
Local

FedAvg+
D-FedEM
FedProx

|
150 175 200

S

7

pFedMe
Clustered FL
FedAvg b
FedEM (Ours)
Local

FedAvg+
D-FedEM B

FedProx
|

125

100
Rounds

150 175 200

and test accuracy for FEMNIST [[7, 47].

| |
—e— pFedMe = ==
—=— Clustered FL . //
—e— FedAvg
—+— FedEM (Ours) —»— pFedMe
‘\‘\”\: II;Z;ZIVQ+ §u6 —=— Clustered FL
< —e— FedAvg
=gy —— D-FedEM 7 S —+— FedEM (Ours) |
—=— FedProx —— Local
. ,/"’—~— FedAvg+
\\ / —+— D-FedEM
~ . —=— FedProx
0.0 T T |
* * R:)unds ® ’) 2 Rgunds i ; i .
T T T
—«— pFedMe S S
—=— Clustered FL v % —
—e— FedAvg 4 — e
\ —+— FedEM (Ours) s —»— pFedMe
_ —— Local | o = —=— Clustered FL
T FedAvg+ ® /‘/
= —— FedAvg
A . —+— D-FedEM [—+— FedEM (Ours)
> —— FedProx / —— Local
L<\ N —— FedAvg+
— —+— D-FedEM
———a ‘?’-?ﬁ?— —— FedProx
0. :) ;
® ’ Rz)unds ’ ” B ! Rz)unds B N " ”

Figure 7: Train loss, train accuracy, test loss, and test accuracy for Shakespeare [7, 47]\.

° & i L
—»— pFedMe
gus —=— Clustered FL S
£ | —— FedAvg —————
£ —— FedEM (Ours)
" —— Local
—— FedAvg+
°* —— D-FedEM
—o— FedProx MW
| |
" " Reunes "
| | | |
—«— pFedMe |
! —=— Clustered FL
os0 —+— FedAvg
. //—o— FedEM (Ours) |
@ / —— Local
L0 / —— FedAvg+
& oesl— —+— D-FedEM .
—=— FedProx
o S o o e e
[
050 "\H;—,.H_{:;j:¢ s
’ “ ” ROL]JU%dS * e " ”

o)/W" S I HHHTHHX
—»— pFedMe
s —=— Clustered FL
—e— FedAvg A
o ;:
& | —+— FedEM (Ours) o
g —— Local
Pz FedAvg+
s —— D-FedEM
—=— FedProx
5 = Y P L
.75 2% ¥ e‘;z
/ P
0.70 / /
A e
sesl_ —»— pFedMe B
Y —=— Clustered FL
©
B oo —e— FedAvg |
= —+— FedEM (Ours)
—»— Local
' —— FedAvg+
—+— D-FedEM
% —+— FedProx
[[| |
o 25 75 ROLIJU;]dS 125 150 175 200

Figure 8: Train loss, train accuracy, test loss, and test accuracy for synthetic dataset.

77

