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A Proof of Proposition 2.1

For h ∈ H and (x, y) ∈ X ×Y , let ph (y|x) denote the conditional probability distribution of y given
x under model h, i.e.,

ph (y|x) , ech(x) × exp
{
− l (h (x) , y)

}
, (12)

where

ch (x) , − log

[∫
y∈Y

exp
{
− l (h (x) , y)

}
d y

]
. (13)

We also remind that the entropy of a probability distribution q over Y is given by

H (q) , −
∫
y∈Y

q (y) · log q (y) d y, (14)

and that the Kullback-Leibler divergence between two probability distributions q1 and q2 over Y is
given by

KL (q1||q2) ,
∫
y∈Y

q1 (y) · log
q1 (y)

q2 (y)
d y. (15)

Proposition 2.1. Let l(·, ·) be the mean squared error loss, the logistic loss or the cross-entropy loss,
and Θ̆ and Π̆ be a solution of the following optimization problem:

minimize
Θ,Π

E
t∼DT

E
(x,y)∼Dt

[− log pt(x, y|Θ, πt)] , (4)

where DT is any distribution with support T . Under Assumptions 1, 2, and 3, the predictors

h∗t =

M∑
m=1

π̆tmhθ̆m , ∀t ∈ T (5)

minimize E(x,y)∼Dt [l(ht(x), y)] and thus solve Problem (1).

Proof. We prove the result for each of the three possible cases of the loss function. We verify that ch
does not depend on h in each of the three cases, then we use Lemma A.3 to conclude.

Mean Squared Error Loss This is the case of a regression problem where Y = Rd for some
d > 0. For x, y ∈ X × Y and h ∈ H, we have

ph (y|x) =
1√

(2π)
d
· exp

{
−‖h (x)− y‖2

2

}
, (16)

and

ch (x) = − log

(√
(2π)

d

)
(17)

Logistic Loss This is the case of a binary classification problem where Y = {0, 1}. For x, y ∈
X × Y and h ∈ H, we have

ph (y|x) = (h (x))
y · (1− h (x))

1−y
, (18)

and
ch (x) = 0 (19)

Cross-entropy loss This is the case of a classification problem where Y = [L] for some L > 1.
For x, y ∈ X × Y and h ∈ H, we have

ph (y|x) =

L∏
l=1

(h (x))
1{y=l} , (20)

and
ch (x) = 0 (21)
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Conclusion For t ∈ T , consider a predictor h∗t minimizing E(x,y)∼Dt [l(ht(x), y)]. Using
Lemma A.3, for (x, y) ∈ X × Y , we have

ph∗t (y|x) =

M∑
m=1

π̆tm · pm
(
y|x, θ̆m

)
. (22)

We multiply both sides of this equality by y and we integrate over y ∈ Y . Note that in all three cases
we have

∀x ∈ X ,
∫
y∈Y

y · ph (·|x) d y = h(x). (23)

It follows that

h∗t =

M∑
m=1

π̆tmhθ̆m , ∀t ∈ T . (24)

Supporting Lemmas

Lemma A.1. Suppose that Assumptions 1 and 3 hold, and consider Θ̆ and Π̆ to be a solution of
Problem (4). Then

pt(x, y|Θ̆, π̆t) = pt(x, y|Θ∗, π∗t ), ∀t ∈ T . (25)

Proof. For t ∈ T ,

E
(x,y)∼Dt

[
− log pt(x, y|Θ̆, π̆t)

]
(26)

= −
∫

(x,y)∈X×Y
pt(x, y|Θ∗, π∗t ) · log pt(x, y|Θ̆, π̆t) dx d y (27)

= −
∫

(x,y)∈X×Y
pt(x, y|Θ∗, π∗t ) · log

pt(x, y|Θ̆, π̆t)
pt(x, y|Θ∗, π∗t )

dx d y

−
∫

(x,y)∈X×Y
pt(x, y|Θ∗, π∗t ) · log pt(x, y|Θ∗, π∗t ) dx d y (28)

= KL
(
pt (·|Θ∗, π∗t ) ‖pt

(
· |Θ̆, π̆t

))
+H [pt (·|Θ∗, π∗t )] , (29)

Since the KL divergence is non-negative, we have

E
(x,y)∼Dt

[
− log pt(x, y|Θ̆, π̆t)

]
≥ H [pt (·|Θ∗, π∗t )] = E

(x,y)∼Dt
[− log pt(x, y|Θ∗, π∗t )] . (30)

Taking the expectation over t ∼ DT , we write

E
t∼DT

E
(x,y)∼Dt

[
− log pt(x, y|Θ̆, π̆t)

]
≥ E
t∼DT

E
(x,y)∼Dt

[− log pt(x, y|Θ∗, π∗t )] . (31)

Since Θ̆ and Π̆ is a solution of Problem (4), we also have

E
t∼DT

E
(x,y)∼Dt

[
− log pt(x, y|Θ̆, π̆t)

]
≤ E
t∼DT

E
(x,y)∼Dt

[− log pt(x, y|Θ∗, π∗t )] . (32)

Combining (31), (32), and (29), we have

E
t∼DT

KL
(
pt (·|Θ∗, π∗t ) ‖pt

(
· |Θ̆, π̆t

))
= 0. (33)

Since KL divergence is non-negative, and the support of DT is the countable set T , it follows that

∀t ∈ T , KL
(
pt (·|Θ∗, π∗t ) ‖pt

(
· |Θ̆, π̆t

))
= 0. (34)

Thus,
pt(x, y|Θ̆, π̆t) = pt(x, y|Θ∗, π∗t ), ∀t ∈ T . (35)
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Lemma A.2. Consider M probability distributions on Y , that we denote qm, m ∈ [M ], and
α = (α1, . . . , αm) ∈ ∆M . For any probability distribution q over Y , we have

M∑
m=1

αm · KL

(
qm‖

M∑
m′=1

αm′ · qm′
)
≤

M∑
m=1

αm · KL (qm‖q) , (36)

with equality if and only if,

q =

M∑
m=1

αm · qm. (37)

Proof.

M∑
m=1

αm · KL (qm‖q)−
M∑
m=1

αm · KL

(
qm‖

M∑
m′=1

αm′ · qm′
)

=

M∑
m=1

αm ·

[
KL (qm‖q)−KL

(
qm‖

M∑
m′=1

αm′ · qm′
)]

(38)

= −
M∑
m=1

αm

∫
y∈Y

qm (y) · log

(
q (y)∑M

m′=1 αm′ · qm′ (y)

)
(39)

= −
∫
y∈Y

{
M∑
m=1

αm · qm (y)

}
· log

(
q (y)∑M

m′=1 αm′ · qm′ (y)

)
d y (40)

= KL

(
M∑
m=1

αm · qm‖q

)
≥ 0. (41)

The equality holds, if and only if,

q =

M∑
m=1

αm · qm. (42)

Lemma A.3. Consider Θ̆ and Π̆ to be a solution of Problem (4). Under Assumptions 1, 2, and 3,
if ch does not depend on h ∈ H, then the predictors h∗t , t ∈ T , minimizing E(x,y)∼Dt [l(ht(x), y)],
verify for (x, y) ∈ X × Y

ph∗t (y|x) =

M∑
m=1

π̆tm · pm
(
y|x, θ̆m

)
. (43)

Proof. For t ∈ T and ht ∈ H, under Assumptions 1, 2, and 3, we have

E(x,y)∼Dt [l(ht(x), y)] =

∫
x,y∈X×Y

l(ht(x), y) · pt (x, y|Θ∗, π∗t ) dx d y. (44)

Using Lemma A.1, it follows that

E(x,y)∼Dt [l(ht(x), y)] =

∫
x,y∈X×Y

l(ht(x), y) · pt
(
x, y|Θ̆, π̆t

)
dx d y. (45)

Thus, using Assumptions 1 and 2 we have,

E(x,y)∼Dt [l(ht(x), y)] (46)

=

∫
x,y∈X×Y

l(ht(x), y) · pt
(
x, y|Θ̆, π̆t

)
dx d y (47)

=

∫
x,y∈X×Y

l(ht(x), y) ·

(
M∑
m=1

π̆tm · pm
(
y|x, θ̆m

))
p (x) dx d y (48)
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=

∫
x∈X

[
M∑
m=1

π̆tm

∫
y∈Y

l(ht(x), y) · pm
(
y|x, θ̆m

)
d y

]
p (x) dx (49)

=

∫
x∈X

[
M∑
m=1

π̆tm

{
cht (x)−

∫
y∈Y

pm

(
y|x, θ̆m

)
log pht (y|x) d y

}]
p (x) dx (50)

=

∫
x∈X

[
cht (x)−

M∑
m=1

π̆tm

∫
y∈Y

pm

(
y|x, θ̆m

)
log pht (y|x) d y

]
p (x) dx (51)

=

∫
x∈X

[
cht (x) +

M∑
m=1

π̆tm ·H
(
pm

(
·|x, θ̆m

))]
p (x) dx

+

∫
x∈X

[
M∑
m=1

π̆tm · KL
(
pm
(
· |x, θ̆m

)
‖pht (·|x)

)]
p (x) dx. (52)

Let h◦t be a predictor satisfying the following equality:

ph◦t (y|x) =

M∑
m=1

π̆tm · pm
(
y|x, θ̆m

)
.

Using Lemma A.2, we have

M∑
m=1

π̆tm · KL
(
pm
(
· |x, θ̆m

)
‖pht (·|x)

)
≥

M∑
m=1

π̆tm · KL
(
pm
(
· |x, θ̆m

)
‖ph◦t (·|x)

)
(53)

with equality if and only if
pht (·|x) = ph◦t (·|x) . (54)

Since ch does not depend on h, replacing (53) in (52), it follows that

E(x,y)∼Dt [l(ht(x), y)] ≥ E(x,y)∼Dt [l(h◦t (x), y)] . (55)

This inequality holds for any predictor ht and in particular for h∗t ∈ arg minE(x,y)∼Dt [l(ht(x), y)],
for which it also holds the opposite inequality, then:

E(x,y)∼Dt [l(h∗t (x), y)] = E(x,y)∼Dt [l(h◦t (x), y)] , (56)

and the equality implies that

ph∗t (·|x) = ph◦t (·|x) =

M∑
m=1

π̆tm · pm
(
·|x, θ̆m

)
. (57)
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B Relation with Other Multi-Task Learning Frameworks

In this appendix, we give more details about the relation of our formulation with existing frameworks
for (federated) MTL sketched in Section 2.3. We suppose that Assumptions 1–3 hold and that each
client learns a predictor of the form (5). Note that this is more general than [67], where each client
learns a personal hypothesis as a weighted combination of a set of M base known hypothesis, since
the base hypothesis and not only the weights are learned in our case.

Alternating Structure Optimization [70]. Alternating structure optimization (ASO) is a popular
MTL approach that learns a shared low-dimensional predictive structure on hypothesis spaces from
multiple related tasks, i.e., all tasks are assumed to share a common feature space P ∈ Rd′×d, where
d′ ≤ min(T, d) is the dimensionality of the shared feature space and P has orthonormal columns
(PP ᵀ = Id′ ), i.e., P is semi-orthogonal matrix. ASO leads to the following formulation:

minimize
W,P :PPᵀ=Id′

T∑
t=1

nt∑
i=1

l
(
hwt

(
x

(i)
t

)
, y

(i)
t

)
+ α (tr (WW ᵀ)− tr (WP ᵀPW ᵀ)) + β tr (WW ᵀ) ,

(58)
where α ≥ 0 is the regularization parameter for task relatedness and β ≥ 0 is an additional L2
regularization parameter.

When the hypothesis (hθ)θ are assumed to be linear, Eq. (5) can be written as W = ΠΘ. Writing
the LQ decomposition6 of matrix Θ, i.e., Θ = LQ, where L ∈ RM×M is a lower triangular matrix
and Q ∈ RM×d is a semi-orthogonal matrix (QQᵀ = IM ), (5) becomes W = ΠLQ ∈ RT×d, thus,
W = WQᵀQ, leading to the constraint ‖W −WQᵀQ‖2F = tr (WW ᵀ) − tr (WQᵀQW ᵀ) = 0.
If we assume ‖θm‖22 to be bounded by a constant B > 0 for all m ∈ [M ], we get the constraint

tr (WW ᵀ) ≤ TB. It means that minimizing
∑T
t=1

∑nt
i=1 l

(
hwt

(
x

(i)
t

)
, y

(i)
t

)
under our Assump-

tion 1 can be formulated as the following constrained optimization problem

minimize
W,Q:QQᵀ=IM

T∑
t=1

nt∑
i=1

l
(
hwt

(
x

(i)
t

)
, y

(i)
t

)
,

subject to tr {WW ᵀ} − tr {WQᵀQW ᵀ} = 0,

tr (WW ᵀ) ≤ TB.

(59)

Thus, there exists Lagrange multipliers α ∈ R and β > 0, for which Problem (59) is equivalent to
the following regularized optimization problem

minimize
W,Q:QQᵀ=IM

T∑
t=1

nt∑
i=1

l
(
hwt

(
x

(i)
t

)
, y

(i)
t

)
+ α (tr {WW ᵀ} − tr {WQᵀQW ᵀ}) + β tr {WW ᵀ} ,

(60)
which is exactly Problem (58).

Federated MTL via task relationships. The ASO formulation above motivated the authors of [59]
to learn personalized models by solving the following problem

min
W,Ω

T∑
t=1

nt∑
i=1

l
(
hwt

(
x

(i)
t

)
, y

(i)
t

)
+ λ tr (WΩW ᵀ) , (61)

Two alternative MTL formulations are presented in [59] to justify Problem (61): MTL with prob-
abilistic priors [69] and MTL with graphical models [35]. Both of them can be covered using our
Assumption 1 as follows:

• Considering T = M and Π = IM in Assumption 1 and introducing a prior on Θ of the
form

Θ ∼
(∏

N
(
0, σ2Id

))
MN (Id ⊗ Ω) (62)

lead to a formulation similar to MTL with probabilistic priors [69].
6Note that when Θ is a full rank matrix, this decomposition is unique.
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• Two tasks t and t′ are independent if 〈πt, πt′〉 = 0, thus using Ωt,t′ = 〈πt, πt′〉 leads to the
same graphical model as in [35].

Several personalized FL formulations, e.g., pFedMe[16], FedU [17] and the formulation studied in
[24] and in [23], are special cases of formulation (62).
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C Centralized Expectation Maximization

Proposition 3.1. Under Assumptions 1 and 2, at the k-th iteration the EM algorithm updates
parameter estimates through the following steps:

E-step: qk+1
t (z

(i)
t = m) ∝ πktm · exp

(
−l(hθkm(x

(i)
t ), y

(i)
t )
)
, t ∈ [T ], m ∈ [M ], i ∈ [nt] (8)

M-step: πk+1
tm =

∑nt
i=1 q

k+1
t (z

(i)
t = m)

nt
, t ∈ [T ], m ∈ [M ] (9)

θk+1
m ∈ arg min

θ∈Rd

T∑
t=1

nt∑
i=1

qk+1
t (z

(i)
t = m)l

(
hθ(x

(i)
t ), y

(i)
t

)
, m ∈ [M ] (10)

Proof. The objective is to learn parameters {Θ̆, Π̆} from the data S1:T by maximizing the likelihood
p (S1:T |Θ,Π). We introduce functions qt(z), t ∈ [T ] such that qt ≥ 0 and

∑M
z=1 qt(z) = 1 in the

expression of the likelihood. For Θ ∈ RM×d and Π ∈ ∆T×M , we have

log p(S1:T |Θ,Π) =

T∑
t=1

nt∑
i=1

log pt

(
s

(i)
t |Θ, πt

)
(63)

=

T∑
t=1

nt∑
i=1

log

 M∑
m=1

pt
(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qt

(
z

(i)
t = m

)
 qt

(
z

(i)
t = m

) (64)

≥
T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

)
log

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qt

(
z

(i)
t = m

) (65)

=

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

)
log pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
−

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

)
log qt

(
z

(i)
t = m

)
(66)

, L(Θ,Π, Q1:T ), (67)

where we used Jensen’s inequality because log is concave. L(Θ,Π, Q1:T ) is an evidence lower bound.
The centralized EM-algorithm corresponds to iteratively maximizing this bound with respect to Q1:T

(E-step) and with respect to {Θ,Π} (M-step).

E-step. The difference between the log-likelihood and the evidence lower bound L(Θ,Π, Q1:T )
can be expressed in terms of a sum of KL divergences:

logp(S1:T |Θ,Π)− L(Θ,Π, Q1:T ) =

=

T∑
t=1

nt∑
i=1

log pt

(
s

(i)
t |Θ, πt

)
−

M∑
m=1

qt

(
z

(i)
t = m

)
log

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qt

(
z

(i)
t = m

)
 (68)

=

T∑
t=1

nt∑
t=1

M∑
m=1

qt

(
z

(i)
t = m

)log pt

(
s

(i)
t |Θ, πt

)
− log

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qt

(
z

(i)
t = m

)
 (69)

=

T∑
t=1

nt∑
t=1

M∑
m=1

qt

(
z

(i)
t = m

)
log

pt

(
s

(i)
t |Θ, πt

)
· qt
(
z

(i)
t = m

)
pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

) (70)

=

T∑
t=1

nt∑
t=1

M∑
m=1

qt

(
z

(i)
t = m

)
log

qt

(
z

(i)
t = m

)
pt

(
z

(i)
t = m|s(i)

t ,Θ, πt

) (71)
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=

T∑
t=1

nt∑
i=1

KL
(
qt

(
z

(i)
t

)
||pt
(
z

(i)
t |s

(i)
t ,Θ, πt

))
≥ 0. (72)

For fixed parameters {Θ,Π}, the maximum of L(Θ,Π, Q1:T ) is reached when
T∑
t=1

nt∑
i=1

KL
(
qt

(
z

(i)
t

)
||pt
(
z

(i)
t |s

(i)
t ,Θ, πt

))
= 0.

Thus for t ∈ [T ] and i ∈ [nt], we have:

qt(z
(i)
t = m) = pt(z

(i)
t = m|s(i)

t ,Θ, πt) (73)

=
pt(s

(i)
t |z

(i)
t = m,Θ, πt)× pt(z(i)

t = m|Θ, πt)

pt

(
s

(i)
t |Θ, πt

) (74)

=
pm(s

(i)
t |θm)× πtm∑M

m′=1 pm′(s
(i)
t )× πtm′

(75)

=
pm

(
y

(i)
t |x

(i)
t , θm

)
× pm

(
x

(i)
t

)
× πtm∑M

m′=1 pm′
(
y

(i)
t |x

(i)
t , θm′

)
× pm′

(
x

(i)
t

)
× πtm′

(76)

=
pm

(
y

(i)
t |x

(i)
t , θm

)
× p

(
x

(i)
t

)
× πtm∑M

m′=1 pm′
(
y

(i)
t |x

(i)
t , , θm′

)
× p

(
x

(i)
t

)
× πtm′

, (77)

where (77) relies on Assumption 2. It follows that

qt(z
(i)
t = m) = pt(z

(i)
t = m|s(i)

t ,Θ, πt) =
pm

(
y

(i)
t |x

(i)
t , θm

)
× πtm∑M

m′=1 pm′
(
y

(i)
t |x

(i)
t , θm′

)
× πtm′

. (78)

M-step. We maximize now L(Θ,Π, Q1:T ) with respect to {Θ,Π}. By dropping the terms not
depending on {Θ,Π} in the expression of L(Θ,Π, Q1:T ) we write:

L(Θ,Π, Q1:T )

=

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

)
log pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
+ c (79)

=

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

) [
log pt

(
s

(i)
t |z

(i)
t = m,Θ, πt

)
+ log pt

(
z

(i)
t = m|Θ, πt

) ]
+ c

(80)

=

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

) [
log pθm

(
s

(i)
t

)
+ log πtm

]
+ c (81)

=

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

) [
log pθm

(
y

(i)
t |x

(i)
t

)
+ log pm

(
x

(i)
t

)
+ log πtm

]
+ c (82)

=

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

) [
log pθm

(
y

(i)
t |x

(i)
t

)
+ log πtm

]
+ c′, (83)

(84)

where c and c′ are constant not depending on {Θ,Π}.
Thus, for t ∈ [T ] and m ∈ [M ], by solving a simple optimization problem we update πtm as follows:

πtm =

∑nt
i=1 qt(z

(i)
t = m)

nt
. (85)
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On the other hand, for m ∈ [M ], we update θm by solving:

θm ∈ arg min
θ∈Rd

T∑
t=1

nt∑
i=1

qt(z
(i)
t = m)× l

(
hθ(x

(i)
t ), y

(i)
t

)
. (86)
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D Detailed Algorithms

D.1 Client-Server Algorithm

Alg. 2 is a detailed version of Alg. 1 (FedEM), with local SGD used as local solver.

Alg. 3 gives our general algorithm for federated surrogate optimization, from which Alg. 2 is derived.

Algorithm 2: FedEM: Federated Expectation-Maximization
Input : Data S1:T ; number of mixture components M ; number of communication rounds K;

number of local steps J
Output :θKm for 1 ∈ [M ]; πKt for t ∈ [T ]
// Initialization

1 server randomly initialize θ0
m ∈ Rd for 1 ≤ m ≤M ;

2 for tasks t = 1, . . . , T in parallel over T clients do
3 Randomly initialize π0

t ∈ ∆M ;
// Main loop

4 for iterations k = 1, . . . ,K do
5 server broadcasts θk−1

m , 1 ≤ m ≤M to the T clients;
6 for tasks t = 1, . . . , T in parallel over T clients do
7 for component m = 1, . . . ,M do

// E-step
8 for sample i = 1, . . . , nt do

9 qkt

(
z

(i)
t = m

)
←

πktm·exp
(
−l(h

θkm
(x

(i)
t ),y

(i)
t )
)

∑M
m′=1

πk
tm′ ·exp

(
−l(h

θk
m′

(x
(i)
t ),y

(i)
t )

) ;

// M-step

10 πktm ←
∑nt
i=1 q

k
t (z

(i)
t =m)

nt
;

11 θkm,t ← LocalSolver(J , m, θk−1
m , qkt , St) ;

12 client t sends θkm,t, 1 ≤ m ≤M to the server;
13 for component m = 1, . . . ,M do
14 θkm ←

∑T
t=1

nt
n · θ

k
m,t;

15 Function LocalSolver(J , m, θ, q, S):
16 for j = 0, . . . , J − 1 do
17 Sample indexes I uniformly from 1, . . . , |S|;
18 θ ← θ − ηk−1,j

∑
i∈I q(z

(i) = m) · ∇θl
(
hθ
(
x(i)
)
, y(i)

)
;

19 return θ;
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Algorithm 3: Federated Surrogate Optimization

Input : u0 ∈ Rdu ; V0 =
(
v0
t

)
1≤t≤T ∈ V

T ; number of iterations K; number of local steps J
Output : uK ; vKt

1 for iterations k = 1, . . . ,K do
2 server broadcasts uk−1 to the T clients;
3 for tasks t = 1, . . . , T in parallel over T clients do
4 Compute partial first-order surrogate function gkt of ft near

{
uk−1,vk−1

t

}
;

5 vkt ← arg min
v∈V

gkt
(
uk−1,v

)
;

6 ukt ← LocalSolver(J , uk−1
t , vk−1

t , gkt , St);
7 client t sends ukt to the server;
8 uk ←

∑T
t=1 ωt · ukt ;

9 Function LocalSolver(J , u, v, g, S):
10 for j = 0, . . . , J − 1 do
11 sample ξk−1,j from S;
12 u← u− ηk−1,j · ∇ug(u,v; ξk−1,j);
13 return Θ;
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D.2 Fully Decentralized Algorithm

Alg. 4 shows D-FedEM, the fully decentralization version of our federated expectation maximization
algorithm.

Alg. 5 gives our general fully decentralized algorithm for federated surrogate optimization, from
which Alg. 4 is derived.

Algorithm 4: D-FedEM: Fully Decentralized Federated Expectation-Maximization
Input : Data S1:T ; number of mixture components M ; number of iterations K; number of

local steps J ; mixing matrix distributionsWk for k ∈ [K]
Output : θKm,t for m ∈ [M ] and t ∈ [T ]; πt for t ∈ [T ]
// Initialization

1 for tasks t = 1, . . . , T in parallel over T clients do
2 Randomly initialize Θt = (θm,t)1≤m≤M ∈ RM×d ;
3 Randomly initialize π0

t ∈ ∆M ;
// Main loop

4 for iterations k = 1, . . . ,K do
// Select the communication topology and the aggregation weights

5 Sample W k−1 ∼ Wk−1;
6 for tasks t = 1, . . . , T in parallel over T clients do
7 for component m = 1, . . . ,M do

// E-step
8 for sample i = 1, . . . , nt do

9 qkt

(
z

(i)
t = m

)
←

πktm·exp
(
−l(h

θkm
(x

(i)
t ),y

(i)
t )
)

∑M
m′=1

πk
tm′ ·exp

(
−l(h

θk
m′

(x
(i)
t ),y

(i)
t )

) ;

// M-step

10 πktm ←
∑nt
i=1 q

k
t (z

(i)
t =m)

nt
;

11 θ
k− 1

2
m,t ← LocalSolver(J , m, θk−1

m,t , qkt , St, t);

12 Send θk−
1
2

m,t , 1 ≤ m ≤M to neighbors;

13 Receive θk−
1
2

m,s , 1 ≤ m ≤M from neighbors;
14 for component m = 1, . . . ,M do
15 θkm,t ←

∑T
s=1 w

k−1
s,t · θ

k− 1
2

m,s ;

16 Function LocalSolver(J , m, θ, q, S, t):
17 for j = 0, . . . , J − 1 do
18 Sample indexes I uniformly from 1, . . . , |S|;
19 θ ← θ − nt

n · ηk−1,j

∑
i∈I q(z

(i) = m) · ∇θl
(
hθ
(
x(i)
)
, y(i)

)
;

20 return θ;
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Algorithm 5: Fully-Decentralized Federated Surrogate Optimization

Input : u0 ∈ Rdu ; V0 =
(
v0
t

)
1≤t≤T ∈ V

T ; number of iterations K; number of local step J ;
mixing matrix distributionsWk for k ∈ [K]

Output : uKt for t ∈ [T ]; vKt for t ∈ [T ]
1 for iterations k = 1, . . . ,K do

// Select the communication topology and the aggregation weights
2 Sample W k−1 ∼ Wk−1;
3 for tasks t = 1, . . . , T in parallel over T clients do
4 compute partial first-order surrogate function gkt of ft near

{
uk−1
t ,vk−1

t

}
;

5 vkt ← arg min
v∈V

gkt
(
uk−1
t ,v

)
;

6 u
k− 1

2
t ← LocalSolver(J , uk−1

t , vk−1
t , gkt , t);

7 Send u
k− 1

2
t to neighbors;

8 Receive u
k− 1

2
s from neighbors;

9 ukt ←
∑T
s=1 w

k−1
ts × u

k− 1
2

s ;

10 Function LocalSolver(J , u, v, g, S, t):
11 for j = 0, . . . , J − 1 do
12 sample ξk−1,j from S ;
13 u← u− ωt · ηk−1,j∇ug(u,v, ξk−1,j);
14 return u;
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E Details on the Fully Decentralized Setting

As mentioned in Section 3.3, the convergence of decentralized optimization schemes requires certain
assumptions on the sequence of mixing matrices (W k)k>0, to guarantee that each client can influence
the estimates of other clients over time. In our paper, we consider the following general assumption.
Assumption 8 ([31, Assumption 4]). Symmetric doubly stochastic mixing matrices are drawn at
each round k from (potentially different) distributions W k ∼ Wk and there exists two constants
p ∈ (0, 1], and integer τ ≥ 1 such that for all Ξ ∈ RM×d×T and all integers l ∈ {0, . . . ,K/τ}:

E
∥∥ΞWl,τ − Ξ̄

∥∥2

F ≤ (1− p)
∥∥Ξ− Ξ̄

∥∥2

F , (87)

where Wl,τ , W (l+1)τ−1 . . .W lτ , Ξ̄ , Ξ11ᵀ

T , and the expectation is taken over the random
distributions W k ∼ Wk.

Assumption 8 expresses the fact that the sequence of mixing matrices, on average and every τ
communication rounds, brings the values in the columns of Ξ closer to their row-wise average
(thereby mixing the clients’ updates over time). For instance, the assumption is satisfied if the
communication graph is strongly connected every τ rounds, i.e., the graph ([T ], E), where the edge
(i, j) belongs to the graph if whi,j > 0 for some h ∈ {k + 1, . . . , k + τ} is connected.

We provide below the rigorous statement of Theorem 3.3, which was informally presented in
Section 3.3. It shows that D-FedEM converges to a consensus stationary point of f (proof in App. G.2).
Theorem 3.3. Under Assumptions 1–8, when clients use SGD as local solver with learning rate
η = a0√

K
, D-FedEM’s iterates satisfy the following inequalities after a large enough number of

communication rounds K:

1

K

K∑
k=1

E
∥∥∇Θf

(
Θ̄k,Πk

)∥∥2

F
≤ O

(
1√
K

)
,

1

K

K∑
k=1

T∑
t=1

nt
n
KL

(
πkt , π

k−1
t

)
≤ O

(
1

K

)
, (88)

where Θ̄k =
[
Θk

1 , . . .Θ
k
T

]
· 11

ᵀ

T . Moreover, individual estimates
(
Θk
t

)
1≤t≤T converge to consensus,

i.e., to Θ̄k:

min
k∈[K]

E
T∑
t=1

∥∥Θk
t − Θ̄k

∥∥2

F
≤ O

(
1√
K

)
.
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F Federated Surrogate Optimization

In this appendix, we give more details on the federated surrogate optimization framework introduced
in Section 3.4. In particular, we provide the assumptions under which Alg. 3 and Alg. 5 converge.
We also illustrate how our framework can be used to study existing algorithms.

F.1 Reminder on Basic (Centralized) Surrogate Optimization

In this appendix, we recall the (centralized) first-order surrogate optimization framework introduced
in [43]. In this framework, given a continuous function f : Rd 7→ R, we are interested in solving

min
θ∈Rd

f(θ)

using the majoration-minimization scheme presented in Alg. 6.

Algorithm 6: Basic Surrogate Optimization

Input : θ0 ∈ Rd; number of iterations K;
Output : θK

1 for iterations k = 1, . . . ,K do
2 Compute gk, a surrogate function of f near θk−1;
3 Update solution: θk ∈ arg minθ g

k(θ);

This procedure relies on surrogate functions, that approximate well the objective function in a
neighborhood of a point. Reference [43] focuses on first-order surrogate functions defined below.
Definition F.1 (First-Order Surrogate [43]). A function g : Rd 7→ R is a first order surrogate of f
near θk ∈ Rd when the following is satisfied:

• Majorization: we have g(θ′) ≥ f(θ′) for all θ′ ∈ arg minθ∈Rd g(θ). When the more
general condition g ≥ f holds, we say that g is a majorant function.

• Smoothness: the approximation error r , g − f is differentiable, and its gradient is
L-Lipschitz. Moreover, we have r(θk) = 0 and∇r(θk) = 0.

F.2 Novel Federated Version

As discussed in Section 3.4, our novel federated surrogate optimization framework minimizes an
objective function (u,v1:T ) 7→ f (u,v1:T ) that can be written as a weighted sum f (u,v1:T ) =∑T
t=1 ωtft (u,vt) of T functions. We suppose that each client t ∈ [T ] can compute a partial first

order surrogate of ft, defined as follows.
Definition 1 (Partial first-order surrogate). A function g(u,v) : Rdu ×V → R is a partial first-order
surrogate of f(u,v) wrt u near (u0,v0) ∈ Rdu × V when the following conditions are satisfied:

1. g(u,v) ≥ f(u,v) for all u ∈ Rdu and v ∈ V;
2. r(u,v) , g(u,v)− f(u,v) is differentiable and L-smooth with respect to u. Moreover,

we have r(u0,v0) = 0 and ∇ur(u0,v0) = 0.
3. g(u,v0)− g(u,v) = dV (v0,v) for all u ∈ Rdu and v ∈ arg minv′∈V g(u,v′), where dV

is non-negative and dV(v, v′) = 0 ⇐⇒ v = v′.

Under the assumption that each client t can compute a partial first order surrogate of ft, we propose
algorithms for federated surrogate optimization in both the client-server setting (Alg. 3) and the fully
decentralized one (Alg. 5). Both algorithms are iterative and distributed: at each iteration k > 0, client
t ∈ [T ] computes a partial first-order surrogate gkt of ft near

{
uk−1, vk−1

t

}
(resp.

{
uk−1
t , vk−1

t

}
) for

federated surrogate optimization in Alg. 3 (resp. for fully decentralized surrogate optimization in
Alg 5).

The convergence of those two algorithms requires the following standard assumptions. Each of them
generalizes one of the Assumptions 4–7 for our EM algorithms.
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Assumption 4′. The objective function f is bounded below by f∗ ∈ R.
Assumption 5′. (Smoothness) For all t ∈ [T ] and k > 0, gkt is L-smooth wrt to u.
Assumption 6′. (Unbiased gradients and bounded variance) Each client t ∈ [T ] can sample a
random batch ξ from St and compute an unbiased estimator∇ug

k
t (u,v; ξ) of the local gradient with

bounded variance, i.e., Eξ[∇ug
k
t (u,v; ξ)] = ∇ug

k
t (u,v) and Eξ‖∇ug

k
t (u,v; ξ)−∇ug

k
t (u,v)‖2 ≤

σ2.
Assumption 7′. (Bounded dissimilarity) There exist β and G such that

T∑
t=1

ωt ·
∥∥∥∇ug

k
t (u,v)

∥∥∥2

≤ G2 + β2
∥∥∥ T∑
t=1

ωt · ∇ug
k
t (u,v)

∥∥∥2

.

Under these assumptions a parallel result to Theorem. 3.2 holds for the client-server setting.
Theorem 3.2′. Under Assumptions 4′–7′, when clients use SGD as local solver with learning rate
η = a0√

K
, after a large enough number of communication rounds K, the iterates of federated

surrogate optimization (Alg. 3) satisfy:

1

K

K∑
k=1

E
∥∥∇uf

(
uk,vk1:T

)∥∥2

F
≤ O

(
1√
K

)
,

1

K

K∑
k=1

∆vf(uk,vk1:T ) ≤ O
(

1

K3/4

)
, (89)

where the expectation is over the random batches samples, and ∆vf(uk,vk1:T ) , f
(
uk,vk1:T

)
−

f
(
uk,vk+1

1:T

)
≥ 0.

In the fully decentralized setting, if in addition to Assumptions 4′-7′, we suppose that Assumption 8
holds, a parallel result to Theorem. 3.3 holds.
Theorem 3.3′. Under Assumptions 4′–7′ and Assumption 8, when clients use SGD as local solver
with learning rate η = a0√

K
, after a large enough number of communication rounds K, the iterates of

fully decentralized federated surrogate optimization (Alg. 5) satisfy:

1

K

K∑
k=1

E
∥∥∇uf

(
ūk, vk1:T

)∥∥2 ≤ O
(

1√
K

)
,

1

K

K∑
k=1

T∑
t=1

ωt · dV
(
vkt , v

k+1
t

)
≤ O

(
1

K

)
,

(90)
where ūk = 1

T

∑T
t=1 u

k
t . Moreover, local estimates

(
ukt
)

1≤t≤T converge to consensus, i.e., to ūk:

1

K

K∑
k=1

T∑
t=1

∥∥ukt − ūk
∥∥2 ≤ O

(
1√
K

)
.

The proofs of Theorem 3.2′ and Theorem 3.3′ are in Section G.1 and Section G.2, respectively.

F.3 Illustration: Analyzing pFedMe with Federated Surrogate Optimization

In this section, we show that pFedMe [16] can be studied through our federated surrogate optimization
framework. With reference to the general formulation of pFedMe in [16, Eq. (2) and (3)], consider

gkt (w) = ft
(
θk−1

)
+
λ

2
·
∥∥θk−1 − ω

∥∥2
, (91)

where θk−1 = prox ft
λ

(
ωk−1

)
, arg minθ

{
ft (θ) + λ

2 ·
∥∥θ − ωk−1

∥∥2
}

. We can verify that gkt is a

first-order surrogate of ft near θk−1:

1. It is clear that gkt
(
θk−1

)
= ft

(
θk−1

)
.

2. Since θk−1 = prox ft
λ

(
ωk−1

)
, using the envelope theorem (assuming that ft is proper,

convex and lower semi-continuous), it follows that ∇ft
(
ωk−1

)
= λ

(
θk−1 − ωk−1

)
=

∇gkk
(
ωk−1

)
.

Therefore, pFedMe can be seen as a particular case of the federated surrogate optimization algorithm
(Alg. 3), to which our convergence results apply.
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G Convergence Proofs

We study the client-server setting and the fully decentralized setting in Section G.1 and Section G.2,
respectively. In both cases, we first prove the more general result for the federated surrogate
optimization introduced in App. F, and then derive the specific result for FedEM and D-FedEM.

G.1 Client-Server Setting

G.1.1 Additional Notations

Remark 2. For convenience and without loss of generality, we suppose in this section that ω ∈ ∆T ,
i.e., ∀t ∈ [T ], ωt ≥ 0 and

∑T
t′=1 ωt′ = 1.

At iteration k > 0, we use uk−1,j
t to denote the j-th iterate of the local solver at client t ∈ [T ], thus

uk−1,0
t = uk−1, (92)

and

uk =

T∑
t=1

ωt · uk−1,J
t . (93)

At iteration k > 0, the local solver’s updates at client t ∈ [T ] can be written as (for 0 ≤ j ≤ J − 1):

uk−1,j+1
t = uk−1,j

t − ηk−1,j∇ug
k
t

(
uk−1,j
t ,vk−1

t ; ξk−1,j
t

)
, (94)

where ξk−1,j
t is the batch drawn at the j-th local update of uk−1

t .

We introduce ηk−1 =
∑J−1
j=0 ηk−1,j , and we define the normalized update of the local solver at client

t ∈ [T ] as,

δ̂k−1
t , −uk−1,J

t − uk−1,0
t

ηk−1
=

∑J−1
j=0 ηk−1,j · ∇ug

k
t

(
uk−1,j
t ,vk−1

t ; ξk−1,j
t

)
∑J−1
j=0 ηk−1,j

, (95)

and also define

δk−1
t ,

∑J−1
j=0 ηk−1,j · ∇ug

k
t

(
uk−1,j
t ,vk−1

t

)
ηk−1

. (96)

With this notation,

uk − uk−1 = −ηk−1 ·
T∑
t=1

ωt · δ̂k−1
t . (97)

Finally, we define gk, k > 0 as

gk (u,v1:T ) ,
T∑
t=1

ωt · gkt (u,vt) . (98)

Note that gk is a convex combination of functions gkt , t ∈ [T ].

G.1.2 Proof of Theorem 3.2′

Lemma G.1. Suppose that Assumptions 5′–7′ hold. Then, for k > 0, and (ηk,j)0≤j≤J−1 such that

ηk ,
∑J−1
j=0 ηk,j ≤ min

{
1

2
√

2L
, 1

4Lβ

}
, the updates of federated surrogate optimization (Alg 3)

verify

E

[
f(uk,vk1:T )− f(uk−1,vk−1

1:T )

ηk−1

]
≤

− 1

4
E
∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥2 − 1

ηk−1

T∑
t=1

ωt · dV
(
vk−1
t ,vkt

)
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+ 2ηk−1L

J−1∑
j=0

η2
k−1,j

ηk−1
L+ 1

σ2 + 4η2
k−1L

2G2. (99)

Proof. This proof uses standard techniques from distributed stochastic optimization. It is inspired by
[66, Theorem 1].

For k > 0, gk is L-smooth wrt u, because it is a convex combination of L-smooth functions
gkt , t ∈ [T ]. Thus, we write

gk
(
uk,vk−1

1:T

)
− gk

(
uk−1,vk−1

1:T

)
≤
〈
uk − uk−1,∇ug

k(uk−1,vk−1
1:T )

〉
+
L

2

∥∥uk − uk−1
∥∥2
,

(100)
where < u,u′ > denotes the scalar product of vectors u and u′. Using Eq. (97), and taking the
expectation over random batches

(
ξk−1,j
t

)
0≤j≤J−1

1≤t≤T
, we have

E
[
gk
(
uk,vk−1

1:T

)
− gk

(
uk−1,vk−1

1:T

) ]
≤

− ηk−1 E
〈 T∑
t=1

ωt · δ̂k−1
t ,∇ug

k(uk−1,vk−1
1:T )

〉
︸ ︷︷ ︸

,T1

+
Lη2

k−1

2
· E

∥∥∥∥∥
T∑
t=1

ωt · δ̂k−1
t

∥∥∥∥∥
2

︸ ︷︷ ︸
,T2

. (101)

We bound each of those terms separately. For T1 we have

T1 = E
〈 T∑
t=1

ωt · δ̂k−1
t ,∇ug

k
(
uk−1,vk−1

1:T

)〉
(102)

= E
〈 T∑
t=1

ωt ·
(
δ̂k−1
t − δk−1

t

)
,∇ug

k
(
uk−1,vk−1

1:T

)〉

+ E
〈 T∑
t=1

ωt · δk−1
t ,∇ug

k
(
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. (103)

Because stochastic gradients are unbiased (Assumption 6′), we have

E
[
δ̂k−1
t − δk−1

t

]
= 0, (104)

thus,
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=
1

2

∥∥∇ug
k
(
uk−1,vk−1

1:T

)∥∥2
+ E

∥∥∥∥∥
T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2


− 1

2
E

∥∥∥∥∥∇ug
k
(
uk−1,vk−1

1:T

)
−

T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2

. (106)

For T2 we have for k > 0,
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. (110)

Since clients sample batches independently, and stochastic gradients are unbiased (Assumption 6′),
we have

E
〈
δ̂k−1
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t , δ̂k−1
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s

〉
= 0, (111)

thus,
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Using Jensen inequality, we have∥∥∥∥∥∥
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and since the variance of stochastic gradients is bounded by σ2 (Assumption 6′), it follows that

E
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Replacing back in the expression of T2, we have

T2 ≤ 2
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t σ

2 + 2E
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2

. (116)

Finally, since 0 ≤ ωt ≤ 1, t ∈ [T ] and
∑T
t=1 ωt = 1, we have

T2 ≤ 2σ2 + 2E

∥∥∥∥∥
T∑
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ωt · δk−1
t
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2

. (117)

Having bounded T1 and T2, we can replace Eq. (106) and Eq. (117) in Eq. (101), and we get

E
[
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1:T )− gk(uk−1,vk−1
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]
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As ηk−1 ≤ 1
2
√

2L
≤ 1

2L , we have
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Replacing ∇ug
k
(
uk−1,vk−1

1:T

)
=
∑T
t=1 ωt · ∇ug

k
t

(
uk−1,vk−1

t

)
, and using Jensen inequality to

bound the last term in the RHS of Eq. (119), we have

E
[
gk(uk,vk−1

1:T )− gk(uk−1,vk−1
1:T )

]
≤ −ηk−1

2

∥∥∇ug
k
(
uk−1,vk−1

1:T

)∥∥2
+ η2

k−1Lσ
2

+
ηk−1

2

T∑
t=1

ωt · E
∥∥∥∇ug

k
t

(
uk−1,vk−1

t

)
− δk−1

t

∥∥∥2

︸ ︷︷ ︸
,T3

. (120)

We now bound the term T3:
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where the first inequality follows from Jensen inequality and the second one follow from the
L-smoothness of gkt (Assumption 5′). We bound now the term E

∥∥∥uk−1 − uk−1,j
t

∥∥∥ for j ∈
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where, in the last two steps, we used the fact that stochastic gradients are unbiased and have bounded
variance (Assumption 6′). We bound now the last term in the RHS of Eq. (131),
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where the first inequality is obtained using Jensen inequality, and the last one is a result of the
L-smoothness of gt (Assumption 5′). Replacing Eq. (139) in Eq. (131), we have
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Since
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We use Lemma G.11 to simplify the last expression, obtaining
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Rearranging the terms, we have
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Finally, replacing Eq. (143) into Eq. (125), we have
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For ηk−1 small enough, in particular if ηk−1 ≤ 1
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√
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Replacing the bound of T3 from Eq. (145) into Eq. (120), we have obtained
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Using Assumption 7′, we have
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Dividing by ηk−1, we get
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For ηk−1 small enough, if ηk−1 ≤ 1
4Lβ , then 8η2
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Since for t ∈ [T ], gkt is a partial first-order surrogate of ft near
{
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t

}
, we have (see Def. 1)
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Multiplying by ωt and summing over t ∈ [T ], we have
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)
+

T∑
t=1

ωt · dV
(
vk−1
t ,vkt

)
. (155)

Replacing Eq. (153), Eq. (154) and Eq. (155) in Eq. (149), we have

E

[
gk(uk,vk1:T )− f(uk−1,vk−1

1:T )

ηk−1

]
≤

− 1

4
E
∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥2 − 1

ηk−1

T∑
t=1

ωt · dV
(
vk−1
t ,vkt

)
+ 2ηk−1L


J−1∑
j=0

η2
k−1,j

ηk−1

L+ 1

 · σ2 + 4η2
k−1L

2G2. (156)

Using again Definition 1, we have

gk(uk,vk1:T ) ≥ f(uk,vk1:T ), (157)

thus,

E

[
f(uk,vk1:T )− f(uk−1,vk−1

1:T )

ηk−1

]
≤
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− 1

4
E
∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥2 − 1

ηk−1

T∑
t=1

ωt · dV
(
vk−1
t ,vkt

)
+ 2ηk−1L

J−1∑
j=0

η2
k−1,j

ηk−1
L+ 1

 · σ2 + 4η2
k−1L

2G2. (158)

Lemma G.2. For k ≥ 0 and t ∈ [T ], the iterates of Alg. 3 verify

0 ≤ dV
(
vk+1
t ,vkt

)
≤ ft

(
uk,vkt

)
− ft(uk,vk+1

t ) (159)

Proof. Since vk+1
t ∈ arg minv∈V g

k
t

(
uk−1, v

)
, and gkt is a partial first-order surrogate of ft near

{uk−1,vk−1
t }, we have

gkt
(
uk−1,vk−1

t

)
− gkt

(
uk−1,vkt

)
= dV

(
vk−1
t ,vkt

)
, (160)

thus,
ft
(
uk−1,vk−1

t

)
− ft

(
uk−1,vkt

)
≥ dV

(
vk−1
t ,vkt

)
, (161)

where we used the fact that

gkt
(
uk−1,vk−1

t

)
= ft

(
uk−1,vk−1

t

)
, (162)

and,
gkt
(
uk−1,vkt

)
≥ ft

(
uk−1,vkt

)
. (163)

Theorem 3.2′. Under Assumptions 4′–7′, when clients use SGD as local solver with learning rate
η = a0√

K
, after a large enough number of communication rounds K, the iterates of federated

surrogate optimization (Alg. 3) satisfy:

1

K

K∑
k=1

E
∥∥∇uf

(
uk,vk1:T

)∥∥2

F
≤ O

(
1√
K

)
,

1

K

K∑
k=1

E
[
∆vf(uk,vk1:T )

]
≤ O

(
1

K3/4

)
,

(89)
where the expectation is over the random batches samples, and ∆vf(uk,vk1:T ) , f

(
uk,vk1:T

)
−

f
(
uk,vk+1

1:T

)
≥ 0.

Proof. For K large enough, η = a0√
K
≤ 1

J min
{

1
2
√

2L
, 1

4Lβ

}
, thus the assumptions of Lemma G.1

are satisfied. Lemma G.1 and non-negativity of dV lead to

E
[f(uk,vk1:T )− f(uk−1,vk−1

1:T )

Jη

]
≤ −1

4
E
∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥2

+ 2ηL (ηL+ 1) · σ2 + 4J2η2L2G2. (164)

Rearranging the terms and summing for k ∈ [K], we have

1

K

K∑
k=1

E
∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥2

≤ 4E
[f(u0,v0

1:T )− f(uK ,vK1:T )

JηK

]
+ 8

ηL (ηL+ 1) · σ2 + 2J2η2L2G2

K
(165)

≤ 4E
[f(u0,v0

1:T )− f∗

JηK

]
+ 8

ηL (ηL+ 1) · σ2 + 2J2η2L2G2

K
, (166)

where we use Assumption 4′ to obtain (166). Thus,

1

K

K∑
k=1

E
∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥2
= O

(
1√
K

)
. (167)
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To prove the second part of Eq. (89), we first decompose ∆v , f
(
uk,vk1:T

)
− f

(
uk,vk+1

1:T

)
≥ 0 as

follow,

∆v = f
(
uk,vk1:T

)
− f

(
uk+1,vk+1

1:T

)︸ ︷︷ ︸
,Tk1

+ f
(
uk+1,vk+1

1:T

)
− f

(
uk,vk+1

1:T

)︸ ︷︷ ︸
,Tk2

. (168)

Using again Lemma G.1 and Eq. (167), it follows that

1

K

K∑
k=1

E
[
T k1
]
≤ O

(
1

K

)
. (169)

For T k2 , we use the fact that f is 2L-smooth (Lemma G.12) w.r.t. u and Cauchy-Schwartz inequality.
Thus, for k > 0, we write

T k2 = f
(
uk+1,vk+1

1:T

)
− f

(
uk,vk+1

1:T

)
(170)

≤
∥∥∇uf

(
uk+1,vk+1

1:T

)∥∥ · ∥∥uk+1 − uk
∥∥+ 2L2

∥∥uk+1 − uk
∥∥2
. (171)

Summing over k and taking expectation:

1

K

K∑
k=1

E
[
T k2
]
≤ 1

K

K∑
k=1

E
[∥∥∇uf

(
uk+1,vk+1

1:T

)∥∥ · ∥∥uk+1 − uk
∥∥]

+
1

K

K∑
k=1

2L2 E
[∥∥uk+1 − uk

∥∥2
]

(172)

≤ 1

K

√√√√ K∑
k=1

E
[∥∥∇uf

(
uk+1,vk+1

1:T

)∥∥2
]√√√√ K∑

k=1

E
[
‖uk+1 − uk‖2

]

+
1

K

K∑
k=1

2L2 E
[∥∥uk+1 − uk

∥∥2
]
, (173)

where the second inequality follows from Cauchy-Schwarz inequality. From Eq. (143), with ηk−1 =
Jη, we have for t ∈ [T ]

E
∥∥∥uk − uk−1,J

t

∥∥∥2

≤ 4σ2Jη2 + 8J3η2 · E
∥∥∇ug

k
t

(
uk−1,vk−1

t

)∥∥2
. (174)

Multiplying the previous by ωt and summing for t ∈ [T ], we have
T∑
t=1

ωt · E
∥∥∥uk−1 − uk−1,J

t

∥∥∥2

≤ 4J2σ2η2 + 8J3η2 ·
T∑
t=1

ωtE
∥∥∇ug

k
t

(
uk−1,vk−1

t

)∥∥2
. (175)

Using Assumption 7′, it follows that

T∑
t=1

ωtE
∥∥∥uk−1 − uk−1,J

t

∥∥∥2

≤ 4J2η2
(
2JG2 + σ2

)
+ 8J3η2β2E

∥∥∥∥∥
T∑
t=1

ωt∇ug
k
t

(
uk−1,vk−1

t

)∥∥∥∥∥
2

.

(176)
Finally using Jensen inequality and the fact that gkt is a partial first-order of ft near

{
uk−1, vk−1

t

}
,

we have

E
∥∥∥uk−1 − uk

∥∥∥2

≤ 4J2η2
(
2JG2 + σ2

)
+ 8J3η2β2E

∥∥∇uf
(
uk−1,vk−1

1:T

)∥∥2
. (177)

From Eq. (167) and η ≤ O(1/
√
K), we obtain

1

K

K∑
k=1

E
∥∥uk−1 − uk

∥∥2 ≤ O (1) , (178)

Replacing the last inequality in Eq. (173) and using again Eq. (167), we obtain

1

K

K∑
k=1

E
[
T k2
]
≤ O

(
1

K3/4

)
. (179)
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Combining Eq. (169) and Eq. (179), it follows that

1

K

K∑
k=1

E
[
∆vf(uk,vk1:T )

]
≤ O

(
1

K3/4

)
. (180)

G.1.3 Proof of Theorem 3.2

In this section, f denotes the negative log-likelihood function defined in Eq. (6). Moreover, we
introduce the negative log-likelihood at client t as follows

ft(Θ,Π) , − log p(St|Θ,Π)

n
, − 1

nt

nt∑
i=1

log p(s
(i)
t |Θ, πt). (181)

Theorem 3.2. Under Assumptions 1–7, when clients use SGD as local solver with learning rate
η = a0√

K
, after a large enough number of communication rounds K, FedEM’s iterates satisfy:

1

K

K∑
k=1

E
∥∥∇Θf

(
Θk,Πk

)∥∥2

F
≤ O

(
1√
K

)
,

1

K

K∑
k=1

∆Πf(Θk,Πk) ≤ O
(

1

K3/4

)
, (11)

where the expectation is over the random batches samples, and ∆Πf(Θk,Πk) , f
(
Θk,Πk

)
−

f
(
Θk,Πk+1

)
≥ 0.

Proof. We prove this result as a particular case of Theorem 3.2′. To this purpose, in this section, we
consider that V , ∆M , u = Θ ∈ RdM , vt = πt, and ωt = nt/n for t ∈ [T ]. For k > 0, we define
gkt as follows:

gkt

(
Θ, πt

)
=

1

nt

nt∑
i=1

M∑
m=1

qkt

(
z

(i)
t = m

)
·
(
l
(
hθm(x

(i)
t ), y

(i)
t

)
− log pm(x

(i)
t )− log πt

+ log qkt

(
z

(i)
t = m

)
− c
)
, (182)

where c is the same constant appearing in Assumption 3, Eq. (3). With this definition, it is easy
to check that the federated surrogate optimization algorithm (Alg. 3) reduces to FedEM (Alg. 2).
Theorem 3.2 then follows immediately from Theorem 3.2′, once we verify that

(
gkt
)

1≤t≤T satisfy
the assumptions of Theorem 3.2′.

Assumption 4′, Assumption 6′, and Assumption 7′ follow directly from Assumption 4, Assumption 6,
and Assumption 7, respectively. Lemma G.3 shows that for k > 0, gk is smooth w.r.t. Θ and then
Assumption 5′ is satisfied. Finally, Lemmas G.4–G.6 show that for t ∈ [T ] gkt is a partial first-order
surrogate of ft w.r.t. Θ near

{
Θk−1, πt

}
with dV(·, ·) = KL(·‖·).

Lemma G.3. Under Assumption 5, for t ∈ [T ] and k > 0, gkt is L-smooth w.r.t Θ.

Proof. gkt is a convex combination of L-smooth function θ 7→ l(θ; s
(i)
t ), i ∈ [nt]. Thus it is also

L-smooth.

Lemma G.4. Suppose that Assumptions 1–3, hold. Then, for t ∈ [T ], Θ ∈ RM×d and πt ∈ ∆M

rkt (Θ, πt) , gkt (Θ, πt)− ft (Θ, πt) =
1

nt

nt∑
i=1

KL
(
qkt

(
z

(t)
i

)
‖pt
(
z

(t)
i |s

(t)
i ,Θ, πt

))
,

where KL is Kullback–Leibler divergence.
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Proof. Let k > 0 and t ∈ [T ], and consider Θ ∈ RM×d and πt ∈ ∆M , then

gkt

(
Θ, πt

)
=

1

nt

nt∑
i=1

M∑
m=1

qkt

(
z

(i)
t = m

)
·
(
l
(
hθm(x

(i)
t ), y

(i)
t

)
− log pm(x

(i)
t )− log πt

+ log qkt

(
z

(i)
t = m

)
− c
)
, (183)

=
1

nt

nt∑
i=1

M∑
m=1

qkt

(
z

(i)
t = m

)
·
(
− log pm

(
y

(i)
t |x

(i)
t , θm

)
− log pm(x

(i)
t )− log πt

+ log qkt

(
z

(i)
t = m

))
(184)

=
1

nt

nt∑
i=1

M∑
m=1

qkt

(
z

(i)
t = m

)
·
(
− log pm

(
y

(i)
t |x

(i)
t , θm

)
· pm(x

(i)
t ) · pt

(
z

(i)
t = m

)
+ log qkt

(
z

(i)
t = m

))
(185)

=
1

nt

nt∑
i=1

M∑
m=1

qkt

(
z

(i)
t = m

)
·
(

log qkt

(
z

(i)
t = m

)
− log pt

(
s

(i)
t , z

(i)
t = m

∣∣∣Θ, πt))
(186)

=
1

nt

nt∑
t=1

M∑
m=1

qkt

(
z

(i)
t = m

)
log

qkt

(
z

(i)
t = m

)
pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

) . (187)

Thus,

rkt

(
Θ, πt

)
, gkt (Θ, πt)− ft (Θ, πt) (188)

= − 1

nt

nt∑
t=1

M∑
m=1

qkt (z(i)
t = m

)
· log

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qkt

(
z

(i)
t = m

)


+
1

nt

nt∑
i=1

log pt

(
s

(i)
t |Θ, πt

)
(189)

=
1

nt

nt∑
t=1

M∑
m=1

qkt

(
z

(i)
t = m

)(
log pt

(
s

(i)
t |Θ, πt

)

− log
pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qkt

(
z

(i)
t = m

) )
(190)

=
1

nt

nt∑
t=1

M∑
m=1

qkt

(
z

(i)
t = m

)
log

pt

(
s

(i)
t |Θ, πt

)
· qkt

(
z

(i)
t = m

)
pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

) (191)

=
1

nt

nt∑
t=1

M∑
m=1

qkt

(
z

(i)
t = m

)
· log

qkt

(
z

(i)
t = m

)
pt

(
z

(i)
t = m|s(i)

t ,Θ, πt

) . (192)

Thus,

rkt (Θ, πt) =
1

nt

nt∑
i=1

KL
(
qkt (·)‖pt(·|s(t)

i ,Θ, πt)
)
≥ 0. (193)

The following lemma shows that gkt and gk (as defined in Eq. 98) satisfy the first two properties in
Definition 1.
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Lemma G.5. Suppose that Assumptions 1–3 and Assumption 5 hold. For all k ≥ 0 and t ∈ [T ],
gkt is a majorant of ft and rkt , gkt − ft is L-smooth in Θ. Moreover rkt

(
Θk−1, πk−1

t

)
= 0 and

∇Θr
k
t

(
Θk−1, πk−1

t

)
= 0.

The same holds for gk, i.e., gk is a majorant of f , rk , gk−f is L-smooth in Θ, rk
(
Θk−1,Πk−1

)
= 0

and ∇Θr
k
(
Θk−1,Πk−1

)
= 0

Proof. For t ∈ [T ], consider Θ ∈ RM×d and πt ∈ ∆M , we have (Lemma G.4)

rkt (Θ, πt) , gkt (Θ, πt)− ft (Θ, πt) =
1

nt

nt∑
i=1

KL
(
qkt

(
z

(t)
i

)
‖pt
(
z

(i)
t |s

(i)
t ,Θ, πt

))
. (194)

Since KL divergence is non-negative, it follows that gkt is a majorant of ft, i.e.,

∀ Θ ∈ RM×d, πt ∈ ∆M : gkt (Θ, π) ≥ ft (Θ, πt) . (195)

Moreover since, qkt
(
z

(i)
t

)
= pt

(
z

(i)
t |s

(i)
t ,Θk−1, πk−1

t

)
for k > 0, it follows that

rkt
(
Θk−1, πk−1

t

)
= 0. (196)

For i ∈ [nt] and m ∈ [M ], from Eq. 78, we have

pt

(
z

(i)
t = m|s(i)

t ,Θ, πt

)
=

pm

(
y

(i)
t |x

(i)
t , θm

)
× πtm∑M

m′=1 pm′
(
y

(i)
t |x

(i)
t , θm′

)
× πtm′

(197)

=
exp

[
−l
(
hθm(x

(i)
t ), y

(i)
t

)]
× πtm∑M

m′=1 exp
[
−l
(
hθm′ (x

(i)
t ), y

(i)
t

)]
× πtm′

(198)

=
exp

[
−l
(
hθm(x

(i)
t ), y

(i)
t

)
+ log πtm

]
∑M
m′=1 exp

[
−l
(
hθm′ (x

(i)
t ), y

(i)
t

)
+ log πtm′

] . (199)

For ease of notation, we introduce

li(θ) , l
(
hθ(x

(i)
t ), y

(i)
t

)
, θ ∈ Rd, m ∈ [M ], i ∈ [nt], (200)

γm (Θ) , pt

(
z

(i)
t = m|s(i)

t ,Θ, πt

)
, m ∈ [M ], (201)

and,
ϕi (Θ) , KL

(
qkt

(
z

(t)
i

)
‖pt
(
z

(i)
t |s

(i)
t ,Θ, πt

))
. (202)

For i ∈ [nt], function li is differentiable because smooth (Assum 5), thus γm, m ∈ [M ] is differen-
tiable as the composition of the softmax function and the function {Θ 7→ −li (Θ) + log πtm}. Its
gradient is given by{ ∇θmγm (Θ) = −γm (Θ) · (1− γm (Θ)) · ∇li (θm) ,

∇θm′γm (Θ) = γm (Θ) · γm′ (Θ) · ∇li (θm) , m′ 6= m.
(203)

Thus for m ∈ [M ], we have

∇θmϕi (Θ) =

M∑
m′=1

qkt

(
z

(t)
i = m′

)
· ∇θmγm

′ (Θ)

γm′ (Θ)
(204)

=
∑
m′=1
m′ 6=m

[
qkt

(
z

(t)
i = m′

)
· γm (Θ) · γm′ (Θ)

γm′ (Θ) ·
· ∇li (θm)

]
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− qkt
(
z

(t)
i = m

)
· γm (Θ) · (1− γm (Θ))

γm (Θ)
· ∇li (θm) . (205)

Using the fact that
∑M
m′=1 q

k
t

(
z

(t)
i = m

)
= 1, it follows that

∇θmϕi (Θ) =
(
γm (Θ)− qkt

(
z

(t)
i = m

))
· ∇li (θm) . (206)

Since li, i ∈ [nt] is twice continuously differentiable (Assumption 5), and γm, m ∈ [M ] is
differentiable, then φi, i ∈ [nt] is twice continuously differentiable. We use H (ϕi (Θ)) ∈ RdM×dM
(resp. H (li (θ)) ∈ Rd×d) to denote the Hessian of ϕ (resp. li) at Θ (resp. θ). The Hessian of ϕi is a
block matrix given by

(
H (ϕi (Θ))

)
m,m

= −γm (Θ) · (1− γm (Θ)) ·
(
∇li(θm)

)
·
(
∇li(θm)

)ᵀ
+
(
γm(Θ)− qkt

(
z

(t)
i = m

))
·H (li (θm))(

H (ϕi (Θ))
)
m,m′

= γm (Θ) · γm′ (Θ) ·
(
∇li(θm′)

)
·
(
∇li(θm)

)ᵀ
, m′ 6= m.

(207)
We introduce the block matrix H̃ ∈ RdM×dM , defined by H̃m,m = −γm (Θ) ·

(
1− γm (Θ)

)
·
(
∇li(θm)

)
· (∇li(θm))

ᵀ

H̃m,m′ = γm (Θ) · γm (Θ) ·
(
∇θli(θm)

)
·
(
∇li(θm′)

)ᵀ
, m′ 6= m,

(208)

Eq. (207) can be written as
(
H (ϕi (Θ))

)
m,m
− H̃m,m =

(
γm(Θ)− qkt

(
z

(t)
i = m

))
·H (li (θm))(

H (ϕi (Θ))
)
m,m′

− H̃m,m′ = 0, m′ 6= m.

(209)
We recall that a twice differentiable function is L smooth if and only if the eigenvalues of its Hessian
are smaller then L, see e.g., [52, Lemma 1.2.2] or [6, Section 3.2]. Since li and also−li are L-smooth
(Assumption 5), we have for θ ∈ Rd,

−L · Id 4 H (li (θ)) 4 L · Id. (210)

Using Lemma G.15, we can conclude that matrix H̃ is semi-definite negative. Since

−1 ≤ γm(Θ)− qkt
(
z

(t)
i = m

)
≤ 1, (211)

it follows that
H (ϕi (Θ)) 4 L · IdM . (212)

The last equation proves that ϕi is L-smooth. Thus rkt is L-smooth with respect to Θ as the average
of L-smooth function.

Moreover, since rkt (Θk−1, πk−1
t ) = 0 and ∀Θ,Π; rkt (Θ, πt) ≥ 0, it follows that Θk−1 is a minimizer

of
{

Θ 7→ rkt
(
Θ, πk−1

t

)}
. Thus,∇Θr

k
t (Θk−1, πk−1

t ) = 0.

For Θ ∈ RM×d and Π ∈ ∆T×M , we have

rk (Θ,Π) , gk (Θ,Π)− f (Θ,Π) (213)

,
T∑
t=1

nt
n
·
[
gkt (Θ, πt)− ft (Θ, πt)

]
(214)

=

T∑
t=1

nt
n
rkt (Θ, πt) . (215)

We see that rk is a weighted average of
(
rkt
)

1≤t≤T . Thus, rkt is L-smooth in Θ, rk (Θ,Π) ≥ 0,
moreover rkt

(
Θk−1,Πk−1

)
= 0 and ∇Θr

k
t

(
Θk−1,Πk−1

)
= 0.
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The following lemma shows that gkt and gk satisfy the third property in Definition 1.
Lemma G.6. Suppose that Assumption 1 holds and consider Θ ∈ RM×d and Π ∈ ∆T×M , for
k > 0, the iterates of Alg. 3 verify

gk (Θ,Π) = gk
(
Θ,Πk

)
+

T∑
t=1

nt
n
KL

(
πkt , πt

)
.

Proof. For t ∈ [T ] and k > 0, consider Θ ∈ RM×d and πt ∈ ∆M such that ∀m ∈ [M ];πtm 6= 0,
we have

gkt (Θ, πt)− gkt
(
Θ, πkt

)
=

M∑
m=1

{
1

nt

nt∑
i=1

qkt

(
z

(i)
t = m

)}
︸ ︷︷ ︸

=πktm (Proposition 3.1)

×
(
log πktm − log πtm

)
(216)

=

M∑
m=1

πktm log
πktm
πtm

(217)

= KL
(
πkt , πt

)
. (218)

We multiply by nt
n and some for t ∈ [T ]. It follows that

gk
(
Θ,Πk

)
+

T∑
t=1

nt
n
KL

(
πkt , πt

)
= gk (Θ,Π) . (219)

G.2 Fully Decentralized Setting

G.2.1 Additional Notations

Remark 3. For convenience and without loss of generality, we suppose in this section that ωt =
1, t ∈ [T ].

We introduce the following matrix notation:

Uk ,
[
uk1 , . . . ,u

k
T

]
∈ Rdu×T (220)

Ūk ,
[
ūk, . . . , ūk

]
∈ Rdu×T (221)

∂gk
(
Uk,vk1:T ; ξk

)
,
[
∇ug

k
1

(
uk1 ,v

k
1 ; ξk1

)
, . . . ,∇ug

k
T

(
ukT ,v

k
T ; ξkT

)]
∈ Rdu×T (222)

where ūk = 1
T

∑T
t=1 u

k
t and vk1:T =

(
vkt
)

1≤t≤T ∈ V
T .

We denote by uk−1,j
t the j-th iterate of the local solver at global iteration k at client t ∈ [T ], and by

Uk−1,j the matrix whose column t is uk−1,j
t , thus,

uk−1,0
t = uk−1

t ; Uk−1,0 = Uk−1, (223)

and,

ukt =

T∑
s=1

wk−1
st uk−1,J

s ; Uk = Uk−1,JW k−1. (224)

Using this notation, the updates of Alg. 5 can be summarized as

Uk =

Uk−1 −
J−1∑
j=0

ηk−1,j∂g
k
(
Uk−1,j ,v1:T ; ξk−1,j

)W k−1. (225)

Similarly to the client-server setting, we define the normalized update of local solver at client t ∈ [T ]:

δ̂k−1
t , −uk−1,J

t − uk−1,0
t

ηk−1
=

∑J−1
j=0 ηk−1,j∇ug

k
t

(
uk−1,j
t ,vkt ; ξk−1,j

t

)
∑J−1
j=0 ηk−1,j

, (226)
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and

δk−1
t ,

∑J−1
j=0 ηk−1,j∇ug

k
t

(
uk−1,j
t ,vkt

)
ηk−1

. (227)

Because clients updates are independent, and stochastic gradient are unbiased, it is clear that

E
[
δk−1
t − δ̂k−1

t

]
= 0, (228)

and that
∀ t, s ∈ [T ] s.t. s 6= t, E〈δk−1

t − δ̂k−1
t , δk−1

s − δ̂k−1
s 〉 = 0. (229)

We introduce the matrix notation,

Υ̂k−1 ,
[
δ̂k−1
1 , . . . , δ̂k−1

T

]
∈ Rdu×T ; Υk−1 ,

[
δk−1
1 , . . . , δk−1

T

]
∈ Rdu×T . (230)

Using this notation, Eq. (225) becomes

Uk =
[
Uk−1 − ηk−1Υ̂k−1

]
W k−1. (231)

G.2.2 Proof of Theorem 3.3′

In fully decentralized optimization, proving the convergence usually consists in deriving a re-
currence on a term measuring the optimality of the average iterate (in our case this term is
E
∥∥∇uf

(
ūk,vk1:T

)∥∥2
) and a term measuring the distance to consensus, i.e., E

∑T
t=1

∥∥ukt − ūk
∥∥2

.
In what follows we obtain those two recurrences, and then prove the convergence.
Lemma G.7 (Average iterate term recursion). Suppose that Assumptions 5′–7′ and Assumption 8
hold. Then, for k > 0, and (ηk,j)1≤j≤J−1 such that ηk ,

∑J−1
j=0 ηk,j ≤ min

{
1

2
√

2L
, 1

8Lβ

}
, the

updates of fully decentralized federated surrogate optimization (Alg. 5) verify

E

[
f(ūk,vk1:T )− f(ūk−1,vk−1

1:T )

]
≤ − 1

T

T∑
t=1

E dV
(
vkt ,v

k−1
t

)
− ηk−1

8
E
∥∥∇uf

(
ūk−1,vk−1

1:T

)∥∥2
+

(12 + T ) ηk−1L
2

4T
·
T∑
t=1

E
∥∥uk−1

t − ūk−1
∥∥2

+
η2
k−1L

T

4

J−1∑
j=0

L · η2
k−1,j

ηk−1
+ 1

σ2 +
16η3

k−1L
2

T
G2. (232)

Proof. We multiply both sides of Eq. (231) by 11ᵀ

T , thus for k > 0 we have,

Uk · 11
ᵀ

T
=
[
Uk−1 − ηk−1Υ̂k−1

]
W k−111

ᵀ

T
, (233)

since W k−1 is doubly stochastic (Assumption 8), i.e., W k−1 11ᵀ

T = 11ᵀ

T , is follows that,

Ūk = Ūk−1 − ηk−1Υ̂k−1 · 11
ᵀ

T
, (234)

thus,

ūk = ūk−1 − ηk−1

T
·
T∑
t=1

δ̂k−1
t . (235)

Using the fact that gk is L-smooth with respect to u (Assumption 5′), we write

E

[
gk
(
ūk,vk−1

1:T

)]
= E

[
gk

(
ūk−1 − ηk−1

T

T∑
t=1

δ̂k−1
t ,vk−1

1:T

)]
(236)

≤ gk(ūk−1,vk−1
1:T )− E

〈
∇ug

k(ūk−1,vk−1
1:T ),

ηk−1

T

T∑
t=1

δ̂k−1
t

〉
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+
L

2
E

∥∥∥∥∥ηk−1

T

T∑
t=1

δ̂k−1
t

∥∥∥∥∥
2

(237)

= gk(ūk−1,vk−1
1:T )− ηk−1 E

〈
∇ug

k(ūk−1,vk−1
1:T ),

1

T

T∑
t=1

δ̂k−1
t

〉
︸ ︷︷ ︸

,T1

+
η2
k−1 · L
2T 2

E

∥∥∥∥∥
T∑
t=1

δ̂k−1
t

∥∥∥∥∥
2

︸ ︷︷ ︸
,T2

, (238)

where the expectation is taken over local random batches. As in the client-server case, we bound the
terms T1 and T2. First, we bound T1, for k > 0, we have

T1 = E
〈
∇ug

k(ūk−1,vk−1
1:T ),

1

T

T∑
t=1

δ̂k−1
t

〉
(239)

= E
〈
∇ug

k
(
ūk−1,vk−1

1:T

)
,

1

T

T∑
t=1

(
δ̂k−1
t − δk−1

t

)〉
︸ ︷︷ ︸

=0, because E[δk−1
t −δ̂k−1

t ]=0

+ E
〈
∇ug

k
(
ūk−1,vk−1

1:T

)
,

1

T

T∑
t=1

δk−1
t

〉
(240)

= E
〈
∇ug

k
(
ūk−1,vk−1

1:T

)
,

1

T

T∑
t=1

δk−1
t

〉
(241)

=
1

2
E
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2
+

1

2
E

∥∥∥∥∥ 1

T

T∑
t=1

δk−1
t

∥∥∥∥∥
2

− 1

2
E

∥∥∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

)
− 1

T

T∑
t=1

δk−1
t

∥∥∥∥∥
2

. (242)

We bound now T2. For k > 0, we have,

T2 = E

∥∥∥∥∥
T∑
t=1

δ̂k−1
t

∥∥∥∥∥
2

(243)

= E

∥∥∥∥∥
T∑
t=1

(
δ̂k−1
t − δk−1

t

)
+

T∑
t=1

δk−1
t

∥∥∥∥∥
2

(244)

≤ 2E

∥∥∥∥∥
T∑
t=1

(
δ̂k−1
t − δk−1

t

)∥∥∥∥∥
2

+ 2 · E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

(245)

= 2 ·
T∑
t=1

E
∥∥∥δ̂k−1
t − δk−1

t

∥∥∥2

+ 2
∑

1≤t6=s≤T

E
〈
δ̂k−1
t − δk−1

t , δ̂k−1
s − δk−1

s

〉
︸ ︷︷ ︸

=0; because of Eq. (229)

+ 2E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

(246)

= 2 ·
T∑
t=1

E
∥∥∥δ̂k−1
t − δk−1

t

∥∥∥2

+ 2 · E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

(247)
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= 2 · E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

+ 2 ·
T∑
t=1

(
1

η2
k−1

E

∥∥∥∥∥
J−1∑
j=0

ηk−1,j ·
[
∇ug

k
t

(
uk−1,j
t ,vk−1

t

)

−∇ug
k
t

(
uk−1,j
t ,vk−1

t ; ξk−1,j
t

) ]∥∥∥∥∥
2)
. (248)

Since batches are sampled independently, and stochastic gradients are unbiased with finite variance
(Assumption 6′), the last term in the RHS of the previous equation can be bounded using σ2, leading
to

T2 ≤ 2 ·
T∑
t=1

[∑J−1
j=0 η

2
k−1,j

η2
k−1

σ2

]
+ 2 · E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

(249)

= 2T · σ2 ·

(
T∑
t=1

·
∑J−1
j=0 η

2
k−1,j

η2
k−1

)
+ 2E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

(250)

≤ 2T · σ2 + 2 · E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

. (251)

Replacing Eq. (242) and Eq. (251) in Eq. (238), we have

E

[
gk(ūk,vk−1

1:T )− gk(ūk−1,vk−1
1:T )

]
≤

− ηk−1

2
E
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2 − ηk−1

2
(1− 2Lηk−1)E

∥∥∥∥∥ 1

T

T∑
t=1

δk−1
t

∥∥∥∥∥
2

+
L

T
η2
k−1σ

2 +
ηk−1

2
E

∥∥∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

)
− 1

T

T∑
t=1

δk−1
t

∥∥∥∥∥
2

. (252)

For ηk−1 small enough, in particular for ηk−1 ≤ 1
2L , we have

E

[
gk(ūk,vk−1

1:T )− gk(ūk−1,vk−1
1:T )

]
≤

− ηk−1

2
E
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2
+
L

T
η2
k−1σ

2

+
ηk−1

2
E

∥∥∥∥∥ 1

T

T∑
t=1

(
∇ug

k
t

(
ūk−1,vk−1

t

)
− δk−1

t

)∥∥∥∥∥
2

. (253)

We use Jensen inequality to bound the last term in the RHS of the previous equation, leading to

E

[
gk(ūk,vk−1

1:T )− gk(ūk−1,vk−1
1:T )

]
≤

− ηk−1

2
E
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2
+
L

T
η2
k−1σ

2

+
ηk−1

2T
·
T∑
t=1

E
∥∥∇ug

k
t

(
ūk−1,vk−1

t

)
− δk−1

t

∥∥2︸ ︷︷ ︸
T3

. (254)

We bound now the term T3:

T3 = E
∥∥∇ug

k
t

(
ūk−1,vk−1

t

)
− δk−1

t

∥∥2
(255)

= E

∥∥∥∥∥∥∇ug
k
t

(
ūk−1,vk−1

t

)
−

∑J−1
j=0 ηk−1,j · ∇ug

k
t

(
uk−1,j
t ,vk−1

t

)
ηk−1

∥∥∥∥∥∥
2

(256)
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= E

∥∥∥∥∥∥
J−1∑
j=0

ηk−1,j

ηk−1
·
[
∇ug

k
t

(
ūk−1,vk−1

t

)
−∇ug

k
t

(
uk−1,j
t ,vk−1

t

)]∥∥∥∥∥∥
2

. (257)

Using Jensen inequality, it follows that

T3 ≤
J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥∇ug

k
t

(
ūk−1,vk−1

t

)
−∇ug

k
t

(
uk−1,j
t ,vk−1

t

)∥∥∥2

(258)

=

J−1∑
j=0

ηk−1,j

ηk−1
· E

∥∥∥∥∥∇ug
k
t

(
ūk−1,vk−1

t

)
−∇ug

k
t

(
uk−1
t ,vk−1

t

)
+∇ug

k
t

(
uk−1
t ,vk−1

t

)
−∇ug

k
t

(
uk−1,j
t ,vk−1

t

)∥∥∥∥∥
2

(259)

≤ 2 · E

∥∥∥∥∥∇ug
k
t

(
ūk−1,vk−1

t

)
−∇ug

k
t

(
uk−1
t ,vk−1

t

) ∥∥∥∥∥
2

+ 2 ·
J−1∑
j=0

ηk−1,j

ηk−1
· E

∥∥∥∥∥∇ug
k
t

(
uk−1
t ,vk−1

t

)
−∇ug

k
t

(
uk−1,j
t ,vk−1

t

)∥∥∥∥∥
2

(260)

≤ 2L2 · E
∥∥ūk−1 − uk−1

t

∥∥2
+ 2L2 ·

J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1,j

t − uk−1,0
t

∥∥∥2

, (261)

where we used the L-smoothness of gkt (Assumption 5′) to obtain the last inequality. As in the

centralized case (Lemma G.1), we bound terms
∥∥∥uk−1,j

t − uk−1,0
t

∥∥∥2

, j ∈ {0, . . . , J − 1}. Using

exactly the same steps as in the proof of Lemma G.1, Eq. (143) holds with uk−1,0
t instead of uk−1

t ,
i.e.,

(
1− 4η2

k−1L
2
)
·
J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1,0

t − uk−1,j
t

∥∥∥2

≤ 2σ2 ·


J−1∑
j=0

η2
k−1,j


+ 4η2

k−1 · E
∥∥∥∇ugkt (uk−1,0

t ,vk−1
t

)∥∥∥2

. (262)

For ηk−1 small enough, in particular for ηk−1 ≤ 1
2
√

2L
, we have

J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1,0

t − uk−1,j
t

∥∥∥2

≤ 8η2
k−1 · E

∥∥∥∇ugkt (uk−1,0
t ,vk−1

t

)∥∥∥2

+ 4σ2 ·


J−1∑
j=0

η2
k−1,j

 (263)

≤ 8η2
k−1 · E

∥∥∥∇ugkt (uk−1,0
t ,vk−1

t

)
−∇ugkt

(
ūk−1,vk−1

t

)
+∇ugkt

(
ūk−1,vk−1

t

)∥∥∥2

+ 4σ2 ·


J−1∑
j=0

η2
k−1,j

 (264)

≤ 16η2
k−1 · E

∥∥∥∇ugkt (uk−1,0
t ,vk−1

t

)
−∇ugkt

(
ūk−1,vk−1

t

)∥∥∥2

+ 16η2
k−1 ·

∥∥∇ugkt (ūk−1,vk−1
t

)∥∥2
+ 4σ2 ·


J−1∑
j=0

η2
k−1,j

 (265)

≤ 16η2
k−1L

2 · E
∥∥uk−1

t − ūk−1
∥∥2

+ 16η2
k−1 ·

∥∥∇ugkt (ūk−1,vk−1
t

)∥∥2

49



+ 4σ2 ·


J−1∑
j=0

η2
k−1,j

 , (266)

where the last inequality follows from the L-smoothness of gkt . Replacing Eq. (266) in Eq. (261), we
have

T3 ≤ 32η2
k−1L

4 · E
∥∥uk−1

t − ūk−1
∥∥2

+ 8L2σ2 ·


J−1∑
j=0

η2
k−1,j


+ 32η2

k−1L
2 · E

∥∥∇ugkt (ūk−1,vk−1
t

)∥∥2
+ 2L2 · E

∥∥ūk−1 − uk−1
t

∥∥2
. (267)

For ηk small enough, in particular if ηk ≤ 1
2
√

2L
we have,

T3 ≤ 6L2E
∥∥uk−1

t − ūk−1
∥∥2

+ 8L2σ2
J−1∑
j=0

η2
k−1,j + 32η2

k−1L
2
∥∥∇ugkt (ūk−1,vk−1

t

)∥∥2
. (268)

Replacing Eq. (268) in Eq. (254), we have

E

[
gk(ūk,vk−1

1:T )− gk(ūk−1,vk−1
1:T )

]
≤

3ηk−1L
2

T
·
T∑
t=1

E
∥∥uk−1

t − ūk−1
∥∥2

+
η2
k−1L

T

4

J−1∑
j=0

TL · η2
k−1,j

ηk−1
+ 1

σ2

− ηk−1

2
E
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2
+

16η3
k−1L

2

T

T∑
t=1

∥∥∇ugkt (ūk−1,vk−1
t

)∥∥2
. (269)

We use now Assumption 7′ to bound the last term in the RHS of the previous equation, leading to

E

[
gk(ūk,vk−1

1:T )− gk(ūk−1,vk−1
1:T )

]
≤

3ηk−1L
2

T
·
T∑
t=1

E
∥∥uk−1

t − ūk−1
∥∥2

+
η2
k−1L

T

4

J−1∑
j=0

TL · η2
k−1,j

ηk−1
+ 1

σ2

−
ηk−1 ·

(
1− 32η2

k−1L
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For ηk−1 small enough, in particular, if ηk−1 ≤ 1
8Lβ , we have
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ūk−1,vk−1

1:T

)∥∥2
+

3ηk−1L
2

T
·
T∑
t=1

E
∥∥uk−1

t − ūk−1
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We use Lemma G.14 to get
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Finally, since gkt is a partial first-order surrogate of ft near
{
uk−1,vk−1

t

}
, we have
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Lemma G.8 (Recursion for consensus distance, part 1). Suppose that Assumptions 5′–7′ and Assump-
tion 8 hold. For k ≥ τ , consider m =

⌊
k
τ

⌋
− 1 and (ηk,j)1≤j≤J−1 such that ηk ,

∑J−1
j=0 ηk,j ≤

min
{

1
4L ,

1
4Lβ

}
then, the updates of fully decentralized federated surrogate optimization (Alg 5)

verify
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Proof. For k ≥ τ , and m =
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⌋
− 1, we have
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≤ E
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, (276)

where we used the fact that
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Thus,
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Since stochastic gradients are unbiased, the last term in the RHS of the previous equation is equal to
zero. Using the following standard inequality for Euclidean norm with α > 0,

‖a + b‖2 ≤ (1 + α) ‖a‖2 +
(
1 + α−1

)
‖b‖2 , (281)

we have
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Since k ≥ (m+ 1)τ and matrices
(
W l
)
l≥0

are doubly stochastic, we have
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where we use the fact that ‖AB‖F ≤ ‖A‖2 ‖B‖F and that ‖A‖ = 1 when A is a doubly stochastic
matrix to obtain the first inequality, and Cauchy-Schwarz inequality to obtain the second one. Using
Assumption 8 to bound the first term of the RHS of the previous equation and the fact that that
k ≤ (m+ 2)τ , it follows that

E
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52



(1 + α)(1− p)E
∥∥Umτ − Ūmτ
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We use the fact that stochastic gradients have bounded variance (Assumption 6′) to bound
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= T · σ2, (291)

where we used Jensen inequality to obtain the first inequality and Assumption 6′ to obtain the second
inequality. Replacing back in Eq. (286), we have
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The last step of the proof consists in bounding E
∥∥Υl

∥∥2

F
for l ∈ {mτ, . . . , k − 1},

E
∥∥Υl

∥∥2

F
=

T∑
t=1

E
∥∥δlt∥∥2

(293)

=

T∑
t=1

E

∥∥∥∥∥∥
J−1∑
j=0

ηl,j
ηl
· ∇ug

l+1
t

(
ul,jt ,v

l
t

)∥∥∥∥∥∥
2

(294)

≤
T∑
t=1

J−1∑
j=0

ηl,j
ηl
· E
∥∥∥∇ug

l+1
t

(
ul,jt ,v

l
t

)∥∥∥2

(295)

≤
T∑
t=1

J−1∑
j=0

ηl,j
ηl
· E
∥∥∥∇ug

l+1
t

(
ul,jt ,v

l
t

)
−∇uft

(
ult,v

l
t

)
+∇uft

(
ult,v

l
t

)∥∥∥2

(296)

≤ 2

T∑
t=1

J−1∑
j=0

ηl,j
ηl
· E
∥∥∥∇ug

l+1
t

(
ul,jt ,v

l
t

)
−∇uft

(
ult,v

l
t

)∥∥∥2

+ 2

T∑
t=1

E
∥∥∇uft

(
ult,v

l
t

)∥∥2
. (297)

53



Since gl+1
t is a first order surrogate of f near
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, we have
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ūl,vlt

)
+∇uft

(
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ūl,vlt

)∥∥2
. (299)

Since f is 2L-smooth w.r.t u (Lemma G.12) and g is L-smooth w.r.t u (Assumption 5′), we have
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We use Eq. (266) to bound the first term in the RHS of the previous equation, leading to
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ūl,j ,vlt

)∥∥2
+ 16L2

(
1 + 2η2

l L
2
)
·
T∑
t=1

E
∥∥ult − ūl
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Using Lemma G.14, we have
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For ηl small enough, in particular, for ηl ≤ 1
4L , we have
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Replacing Eq. (303) in Eq. (292), we have
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Using Lemma G.13 and considering α = p
2 , we have
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Lemma G.9 (Recursion for consensus distance, part 2). Suppose that Assumptions 5′–7′ and As-
sumption 8 hold. Consider m =

⌊
k
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⌋
, then, for (ηk,j)1≤j≤J−1 such that ηk ,
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}
, the updates of fully decentralized federated surrogate optimization (Alg 5) verify
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Proof. We use exactly the same proof as in Lemma G.8, with the only difference that Eq. (284)–
Eq. (286) is replaced by
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resulting from the fact that
{∏(m+1)τ−1

l′=mτ W l′
}

is a doubly stochastic matrix.

Lemma G.10. Under Assum. 5′-7′ and Assum 8. For ηk,j = η
J with

η ≤ min

{
1

4L
,

p

92τL
,

1

4βL
,

1

32
√

2
· p
τβ

}
,

the iterates of Alg. 5 verifies
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for some constant A > 0 and K > 0.
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Proof. Note that for k > 0, ηk =
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,A

+
16τ

p
β2η2

k−1∑
l=mτ

E
∥∥∇uf

(
ūl,vl1:T

)∥∥2
. (309)

and for m =
⌊
k
τ

⌋
,

E
∥∥Uk − Ūk

∥∥2

F
≤ (1 +

p

2
)E
∥∥Umτ − Ūmτ

∥∥2

F
+

132τ

p
L2η2

k−1∑
l=mτ

E
∥∥Ul − Ūl

∥∥2

F

+η2 2τ

{
Tσ2

(
1 +

16τL2

J

(
1 +

2

p

))
+ 16τ

(
1 +

2

p

)
G2

}
︸ ︷︷ ︸

,A

+
16τ

p
β2︸ ︷︷ ︸

,D

η2
k−1∑
l=mτ

E
∥∥∇uf

(
ūl,vl1:T

)∥∥2
. (310)

Using the fact that η ≤ p
92τL , it follows that for m =

⌊
k
τ

⌋
− 1

E
∥∥Uk − Ūk

∥∥2

F
≤ (1− p

2
)E
∥∥Umτ − Ūmτ

∥∥2

F
+

p

64τ

k−1∑
l=mτ

E
∥∥Ul − Ūl

∥∥2

+η2A+Dη2
k−1∑
l=mτ

E
∥∥∇uf

(
ūl,vl1:T

)∥∥2
, (311)

and for m =
⌊
k
τ

⌋
,

E
∥∥Uk − Ūk

∥∥2

F
≤ (1 +

p

2
)E
∥∥Umτ − Ūmτ

∥∥2

F
+

p

64τ

k−1∑
l=mτ

E
∥∥Ul − Ūl

∥∥2

F

+η2A+Dη2
k−1∑
l=mτ

E
∥∥∇uf

(
ūl,vl1:T

)∥∥2
. (312)

The rest of the proof follows using [31, Lemma 14] with B = (12+T )L2

4T , b = 1
8 , constant (thus

8τ
p -slow7) steps-size η ≤ 1

32
√

2

p
τβ = 1

16

√
p/8
Dτ and constant weights ωk = 1.

Theorem 3.3′. Under Assumptions 4′–7′ and Assumption 8, when clients use SGD as local solver
with learning rate η = a0√

K
, after a large enough number of communication rounds K, the iterates of

fully decentralized federated surrogate optimization (Alg. 5) satisfy:

1

K

K∑
k=1

E
∥∥∇uf

(
ūk,vk1:T

)∥∥2 ≤ O
(

1√
K

)
, (313)

7The notion of τ -slow decreasing sequence is defined in [31, Defintion 2].
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and,
1

K

K∑
k=1

T∑
t=1

ωt · E dV
(
vkt , v

k+1
t

)
≤ O

(
1

K

)
, (314)

where ūk = 1
T

∑T
t=1 u

k
t . Moreover, local estimates

(
ukt
)

1≤t≤T converge to consensus, i.e., to ūk:

1

K

K∑
k=1

T∑
t=1

E
∥∥ukt − ūk

∥∥2 ≤ O
(

1√
K

)
. (315)

Proof. We prove first the convergence to a stationary point in u, i.e. Eq. (313), using [31, Lemma
17], then we prove Eq. (314) and Eq. (315).

Note that for K large enough, η ≤ min
{

1
4L ,

p
92τL ,

1
4βL ,

1
32
√

2
· pτβ

}
.

Proof of Eq. 313. Rearranging the terms in the result of Lemma G.7 and dividing it by η we have

1

η
· E

[
f(ūk,vk1:T )− f(ūk−1,vk−1

1:T )

]
≤ −1

8
E
∥∥∇uf

(
ūk−1,vk−1

1:T

)∥∥2

+
(12 + T )L2

4T
· E
∥∥Uk−1 − Ūk−1

∥∥2
+
ηL

T

(
4L

J
+ 1

)
σ2 +

16η2L2

T
G2. (316)

Summing over k ∈ [K + 1], we have

1

η
· E

[
f(ūK+1,vK+1

1:T )− f(ū0,v0
1:T )

]
≤ −1

8

K∑
k=0

E
∥∥∇uf

(
ūk,vk1:T

)∥∥2

+
(12 + T )L2

4T
·
K∑
k=0

E
∥∥Uk − Ūk

∥∥2
+

(K + 1)ηL

T

(
4L

J
+ 1

)
σ2

+
16(K + 1) · η2L2

T
G2. (317)

Using Lemma G.10, we have

1

η
· E

[
f(ūK+1,vK+1

1:T )− f(ū0,v0
1:T )

]
≤ − 1

16

K∑
k=0

E
∥∥∇uf

(
ūk,vk1:T

)∥∥2

+ 16A · 12 + T

T
· τL

2

p
(K + 1)η2 +

(K + 1)ηL

T

(
4L

J
+ 1

)
σ2

+
16(K + 1)η2L2

T
G2. (318)

Using Assumption 4′, it follows that

1

16

K∑
k=0

E
∥∥∇uf

(
ūk,vk1:T

)∥∥2 ≤ f(ū0,v0
1:T )− f∗

η

+ 16A · 12 + T

T
· τL

2

p
(K + 1)η2 +

(K + 1)ηL

T

(
4L

J
+ 1

)
σ2 +

16(K + 1)η2L2

T
G2.

(319)

We divide by K + 1 and we have

1

16(K + 1)

K∑
k=0

E
∥∥∇uf

(
ūk,vk1:T

)∥∥2 ≤ f(ū0,v0
1:T )− f∗

η(K + 1)

+ 16A · 12 + T

T
· τL

2

p
η2 +

ηL

T

(
4L

J
+ 1

)
σ2 +

16η2L2

T
G2. (320)

The final result follows from [31, Lemma 17].
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Proof of Eq. 315. We multiply Eq. (308) (Lemma G.10) by 1
K+1 , and we have

1

K + 1

K∑
k=0

E
∥∥Uk − Ūk

∥∥2

F
≤ 1

16(K + 1)

K∑
k=0

E
∥∥∇uf

(
ūk,vk1:T

)∥∥2

F
+

64Aτ

p(K + 1)
Kη2, (321)

since η ≤ O
(

1√
K

)
, using Eq. (313), it follows that

1

K

K∑
k=1

E
∥∥Uk − Ūk

∥∥2

F
≤ O

(
1√
K

)
. (322)

Thus,
1

K

K∑
k=1

T∑
t=1

E
∥∥ukt − ūk

∥∥2

F
≤ O

(
1√
K

)
. (323)

Proof of Eq. 314. Using the result of Lemma G.7 we have

1

T

T∑
t=1

E
[
dV
(
vkt ,v

k−1
t

)]
≤ E

[
f(ūk−1,vk−1

1:T )− f(ūk,vk1:T )

]

+
(12 + T ) ηk−1L

2

4T
·
T∑
t=1

E
∥∥uk−1

t − ūk−1
∥∥2

+
η2
k−1L

T

4

J−1∑
j=0

L · η2
k−1,j

ηk−1
+ 1

σ2 +
16η3

k−1L
2

T
G2. (324)

The final result follows from the fact that η = O
(

1√
K

)
and Eq. (315).

G.2.3 Proof of Theorem 3.3

We state the formal version of Theorem 3.3, for which only an informal version was given in the
main text.
Theorem 3.3. Under Assumptions 1–8, when clients use SGD as local solver with learning rate
η = a0√

K
, D-FedEM’s iterates satisfy the following inequalities after a large enough number of

communication rounds K:

1

K

K∑
k=1

E
∥∥∇Θf

(
Θ̄k,Πk

)∥∥2

F
≤ O

(
1√
K

)
,

1

K

K∑
k=1

T∑
t=1

nt
n
KL

(
πkt , π

k−1
t

)
≤ O

(
1

K

)
, (325)

where Θ̄k =
[
Θk

1 , . . .Θ
k
T

]
· 11

ᵀ

T . Moreover, individual estimates
(
Θk
t

)
1≤t≤T converge to consensus,

i.e., to Θ̄k:

min
k∈[K]

E
T∑
t=1

∥∥Θk
t − Θ̄k

∥∥2

F
≤ O

(
1√
K

)
.

Proof. We prove this result as a particular case of Theorem 3.3′. To this purpose, we consider that
V , ∆M , u = Θ ∈ RdM , vt = πt, and ωt = nt/n for t ∈ [T ]. For k > 0, we define gkt as follow,

gkt

(
Θ, πt

)
=

1

nt

nt∑
i=1

M∑
m=1

qkt

(
z

(i)
t = m

)
·
(
l
(
hθm(x

(i)
t ), y

(i)
t

)
− log pm(x

(i)
t )− log πt

+ log qkt

(
z

(i)
t = m

)
− c
)
, (326)

where c is the same constant appearing in Assumption 3, Eq. (3). With this definition, it is easy
to check that the federated surrogate optimization algorithm (Alg. 5) reduces to D-FedEM (Alg. 4).
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Theorem 3.3 then follows immediately from Theorem 3.3′, once we verify that
(
gkt
)

1≤t≤T satisfy
the assumptions of Theorem 3.3′.

Assumption 4′, Assumption 6′, and Assumption 7′ follow directly from Assumption 4, Assumption 6,
and Assumption 7, respectively. Lemma G.3 shows that for k > 0, gk is smooth w.r.t. Θ and then
Assumption 5′ is satisfied. Finally, Lemmas G.4–G.6 show that for t ∈ [T ] gkt is a partial first-order
surrogate of ft near

{
Θk−1
t , πt

}
with dV(·, ·) = KL(·‖·).

G.3 Supporting Lemmas

Lemma G.11. Consider J ≥ 2 and positive real numbers ηj , j = 0, . . . , J − 1, then:

1∑J−1
j=0 ηj

·
J−1∑
j=0

{
ηj ·

j−1∑
l=0

ηl

}
≤
J−2∑
j=0

ηj ,

1∑J−1
j=0 ηj

·
J−1∑
j=0

{
ηj ·

j−1∑
l=0

η2
l

}
≤
J−2∑
j=0

ηj
2,

1∑J−1
j=0 ηj

·
J−1∑
j=0

ηj ·
(
j−1∑
l=0

ηl

)2
 ≤

J−1∑
j=0

ηj ·
J−2∑
j=0

ηj .

Proof. For the first inequality,

1∑J−1
j=0 ηj

·
J−1∑
j=0

{
ηj ·

j−1∑
l=0

ηl

}
≤ 1∑J−1

j=0 ηj
·
J−1∑
j=0

{
ηj ·

J−2∑
l=0

ηl

}
=

J−2∑
l=0

ηl. (327)

For the second inequality

1∑J−1
j=0 ηj

·
J−1∑
j=0

{
ηj ·

j−1∑
l=0

η2
l

}
≤ 1∑J−1

j=0 ηj
·
J−1∑
j=0

{
ηj ·

J−2∑
l=0

η2
l

}
=

J−2∑
l=0

η2
l . (328)

For the third inequality,

1∑J−1
j=0 ηj

·
J−1∑
j=0

ηj ·
(
j−1∑
l=0

ηl

)2
 ≤ 1∑J−1

j=0 ηj
·
J−1∑
j=0

ηj ·
(
J−2∑
l=0

ηl

)2
 (329)

≤

J−2∑
j=0

ηj

2

(330)

≤
J−1∑
j=0

ηj ·
J−2∑
j=0

ηj . (331)

Lemma G.12. Suppose that g is a partial first-order surrogate of f , and that g is L-smooth, where
L is the constant appearing in Definition 1, then f is 2L-smooth.

Proof. The difference between f and g is L-smooth, and g is L-smooth, thus f is 2L-smooth as the
sum of two L-smooth functions.

Lemma G.13. Consider f =
∑T
t=1 ωt · ft, for weights ω ∈ ∆T . Suppose that for all (u,v) ∈

Rdu × V , and t ∈ [T ], ft admits a partial first-order surrogate g{u,v}t near {u,v}, and that
g{u,v} =

∑T
t=1 ωt · g

{u,v}
t verifies Assumption 7′ for t ∈ [T ]. Then f also verifies Assumption 7′.
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Proof. Consider arbitrary u,v ∈ Rdu × V , and for t ∈ [T ], consider g{u,v} to be a partial first-order
surrogate of ft near {u,v}. We write Assumption 7′ for g{u,v},

T∑
t=1

ωt ·
∥∥∥∇ug

{u,v}
t (u,v)

∥∥∥2

≤ G2 + β2
∥∥∥ T∑
t=1

ωt · ∇ug
{u,v}
t (u,v)

∥∥∥2

. (332)

Since g{u,v}t is a partial first-order surrogate of ft near {u, v}, it follows that

T∑
t=1

ωt ·
∥∥∥∇uft(u,v)

∥∥∥2

≤ G2 + β2
∥∥∥ T∑
t=1

ωt · ∇uft(u,v)
∥∥∥2

. (333)

Remark 4. Note that the assumption of Lemma G.13 is implicitly verified in Alg. 3 and Alg. 5, where
we assume that every client t ∈ T canfunction compute a partial first-order surrogate of its local
objective ft near any iterate (u,v) ∈ Rdu × V .
Lemma G.14. For k > 0, the iterates of Alg. 5, verify the following inequalities:

gk
(
ūk−1,vk−1

1:T

)
≤ f

(
ūk−1,vk−1

1:T

)
+
L

2

T∑
t=1

ωt
∥∥ūk−1 − uk−1

t

∥∥2
,

∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥2 ≤ 2
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2
+ 2L2

T∑
t=1

ωt
∥∥ūk−1 + uk−1

t

∥∥2
,

and, ∥∥∇ug
k
(
ūk−1,vk−1

1:T

)∥∥2 ≤ 2
∥∥∇uf

(
ūk−1,vk−1

1:T

)∥∥2
+ 2L2

T∑
t=1

ωt
∥∥ūk−1 − uk−1

t

∥∥2
,

Proof. For k > 0 and t ∈ [T ], we have

gkt

(
ūk−1,vk−1

t

)
=

gkt
(
ūk−1,vk−1

t

)
+ ft

(
ūk−1,vk−1

t

)
− ft

(
ūk−1,vk−1

t

)
(334)

= ft
(
ūk−1,vk−1

t

)
+ rkt

(
ūk−1,vk−1

t

)
(335)

= ft
(
ūk−1,vk−1

t

)
+ rkt

(
ūk−1,vk−1

t

)
− rkt

(
uk−1
t ,vk−1

t

)
+ rkt

(
uk−1
t ,vk−1

t

)
. (336)

Since gkt
(
ukt ,v

k−1
t

)
= ft

(
ukt ,v

k−1
t

)
(Definition 1), it follows that

gkt
(
ūk−1,vk−1

t

)
= ft

(
ūk−1,vk−1

t

)
+ rkt

(
ūk−1,vk−1

t

)
− rkt

(
uk−1
t ,vk−1

t

)
. (337)

Because rkt is L-smooth in u (Definition 1), we have

rkt
(
ūk−1,vk−1

t

)
−rkt

(
uk−1
t ,vk−1

t

)
≤
〈
∇ur

k
t

(
uk−1
t ,vk−1

t

)
, ūk−1 − uk−1

t

〉
+
L

2

∥∥ūk−1 − uk−1
t

∥∥2
. (338)

Since gkt is a partial first order surrogate of We have∇ur
k
t

(
uk−1
t ,vk−1

t

)
= 0, thus

gkt
(
ūk−1,vk−1

t

)
≤ ft

(
ūk−1,vk−1

t

)
+
L

2

∥∥ūk−1 − uk−1
t

∥∥2
. (339)

Multiplying by ωt and summing for t ∈ [T ], we have

gk
(
ūk−1,vk−1

1:T

)
≤ f

(
ūk−1,vk−1

1:T

)
+
L

2

T∑
t=1

ωt
∥∥ūk−1 − uk−1

t

∥∥2
, (340)

and the first inequality is proved.
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Writing the gradient of Eq. (337), we have

∇ug
k
t

(
ūk−1,vk−1

t

)
= ∇uft

(
ūk−1,vk−1

t

)
+∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1
t ,vk−1

t

)
. (341)

Multiplying by ωt and summing for t ∈ [T ], we have

∇ug
k
(
ūk−1,vk−1

1:T

)
= ∇uf

(
ūk−1,vk−1

1:T

)
+

+

T∑
t=1

ωt
[
∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1
t ,vk−1

t

)]
. (342)

Thus,∥∥∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

) ∥∥∥∥∥
2

=

∥∥∥∥∥∇uf
(
ūk−1,vk−1

1:T

)
+

T∑
t=1

ωt
[
∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1
t ,vk−1

t

)]∥∥∥∥∥
2

(343)

≥1

2

∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥2 −

∥∥∥∥∥
T∑
t=1

ωt
[
∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1
t ,vk−1

t

)]∥∥∥∥∥
2

(344)

≥1

2

∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥2 −
T∑
t=1

ωt
∥∥∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1
t ,vk−1

t

)∥∥2
(345)

≥1

2

∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥2 − L2
T∑
t=1

ωt
∥∥ūk−1 − uk−1

t

∥∥2
, (346)

where (344) follows from ‖a‖2 = ‖a+ b− b‖2 ≤ 2 ‖a+ b‖2 + 2 ‖b‖2. Thus,

∥∥∇uft
(
ūk−1,vk−1

t

)∥∥2 ≤ 2
∥∥∇ug

k
t

(
ūk−1,vk−1

t

)∥∥2
+ 2L2

T∑
t=1

ωt
∥∥ūk−1 − uk−1

t

∥∥2
. (347)

The proof of the last inequality is similar, it leverages ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖a‖2 to upper bound
(343).

Lemma G.15. Consider u1, . . . ,uM ∈ Rd and α = (α1, . . . , αM ) ∈ ∆M . Define the block matrix
H with {

Hm,m = −αm · (1− αm) · um · uᵀ
m

Hm,m′ = αm · αm′ · um · uᵀ
m′ ; m′ 6= m,

(348)

then H is a semi-definite negative matrix.

Proof. Consider x = [x1, . . . ,xM ] ∈ RdM , we want to prove that

xᵀ ·H · x ≤ 0. (349)

We have:

Xᵀ ·H ·X =

M∑
m=1

M∑
m′=1

xᵀ
m ·Hm,m′ · xm′ (350)

=

M∑
m=1

xᵀ
m ·Hm,m · xm +

M∑
m′=1
m′ 6=m

xᵀ
m ·Hm,m · xm′

 (351)

=

M∑
m=1

(−αm · (1− αm) · xᵀ
m · um · uᵀ

m · xm) (352)
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+

M∑
m=1

 M∑
m′=1
m′ 6=m

(αm · αm′ · xᵀ
m · um · u

ᵀ
m′ · xm′)

 (353)

=

M∑
m=1

−αm · (1− αm) · 〈xm,um〉2 + αm · 〈xm,um〉
M∑

m′=1
m′ 6=m

αm′ · 〈xm′ ,um′〉

 .
(354)

Since α ∈ ∆M ,

∀m ∈ [M ],

M∑
m′=1
m′ 6=m

αm′ = (1− αm) , (355)

thus,

xᵀ ·H · x =

M∑
m=1

αm · 〈xm,um〉 ·
M∑

m′=1
m′ 6=m

αm′
(
〈xm′ ,um′〉 − 〈xm,um〉

)
(356)

=

M∑
m=1

αm · 〈xm,um〉 ·
M∑

m′=1

αm′
(
〈xm′ ,um′〉 − 〈xm,um〉

)
(357)

=

(
M∑
m=1

αm · 〈xm,um〉

)2

−
M∑
m=1

αm · 〈xm,um〉2. (358)

Using Jensen inequality, we have xᵀ ·H · x ≤ 0.
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H Distributed Surrogate Optimization with Black-Box Solver

In this section, we cover the scenario where the local SGD solver used in our algorithms (Alg. 3 and
Alg. 5) is replaced by a (possibly non-iterative) black-box solver that is guaranteed to provide a local
inexact solution of

∀m ∈ [M ], minimize
θ∈Rd

nt∑
i=1

qk(zit = m) · l(hθ(x(i)
t ), y

(i)
t ), (359)

with the following approximation guarantee.

Assumption 9 (Local α-approximate solution). There exists 0 < α < 1 such that for t ∈ [T ],
m ∈ [M ] and k > 0,
nt∑
i=1

qk(zit = m)·
{
l(hθkm,t(x

(i)
t ), y

(i)
t )− l(hθkm,t,∗(x

(i)
t ), y

(i)
t )
}
≤

α ·
nt∑
i=1

qk(zit = m) ·
{
l(hθk−1

m
(x

(i)
t ), y

(i)
t )− l(hθkm,t,∗(x

(i)
t ), y

(i)
t )
}
, (360)

where θkm,t,∗ ∈ arg minθ∈Rd
∑nt
i=1 q

k(zit = m) · l(hθ(x(i)
t ), y

(i)
t ), θkm,t is the output of the local

solver at client t and θk−1
m is its starting point (see Alg. 2).

We further assume strong convexity.

Assumption 10. For t ∈ [T ] and i ∈ [nt], we suppose that θ 7→ l
(
hθ

(
x

(i)
t

)
, y

(i)
t

)
is µ-strongly

convex.

Assumption 9 is equivalent to the γ-inexact solution used in [37] (Lemma. H.2), when local functions
(Φt)1≤t≤T are assumed to be convex. We also need to have G2 = 0 in Assumption 7 as in [38,
Definition 3], in order to ensure the convergence of Alg. 2 and Alg. 4 to a stationary point of f , as
shown by [66, Theorem. 2].8

Theorem H.1. Suppose that Assumptions 1–7, 9 and 10 hold with G2 = 0 and α < 1
β2κ4 , then the

updates of federated surrogate optimization converge to a stationary point of f , i.e.,

lim
k→+∞

∥∥∇Θf(Θk,Πk)
∥∥2

F
= 0, (361)

and

lim
k→+∞

T∑
t=1

nt
n
KL

(
πkt , π

k−1
t

)
= 0. (362)

As in App. G, we provide the analysis for the general case of federated surrogate optimization (Alg. 3)
before showing that FedEM (Alg. 2) is a particular case.

We suppose that, at iteration k > 0, the partial first-order surrogate functions gkt , t ∈ [T ] used
in Alg. 3 verifies, in addition to Assumptions 4′–7′, the following assumptions that generalize
Assumptions 9 and 10,

Assumption 9′ (Local α-inexact solution). There exists 0 < α < 1 such that for t ∈ [T ] and k > 0,

∀v ∈ V, gkt (ukt ,v)− gkt (ukt,∗,v) ≤ α ·
{
gkt
(
uk−1,v

)
− gkt

(
ukt,∗,v

)}
, (363)

where ukt,∗ ∈ arg minu∈Rdu g
k
t

(
u,vkt

)
.

Assumption 10′. For t ∈ [T ] and k > 0, gkt is µ-strongly convex in u.

Under these assumptions a parallel result to Theorem. H.1 holds.

8As shown by [66, Theorem. 2], the convergence is guaranteed in two scenarios: 1) G2 = 0, 2) All clients
use take the same number of local steps using the same local solver. Note that we allow each client to use an
arbitrary approximate local solver.
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Theorem H.1′. Suppose that Assumptions 4′–7′, Assumptions 9′ and 10′ hold with G2 = 0 and
α < 1

β2κ4 , then the updates of federated surrogate optimization converges to a stationary point of f ,
i.e.,

lim
k→+∞

∥∥∇uf(uk,vk1:T )
∥∥2

= 0, (364)

and

lim
k→+∞

T∑
t=1

ωt · dV
(
vkt ,v

k−1
t

)
= 0. (365)

H.1 Supporting Lemmas

First, we prove the following result.

Lemma H.2. Under Assumptions 5′, 9′ and 10′, the iterates of Alg. 2 verify for k > 0 and t ∈ [T ],

∀v ∈ V,
∥∥∇ug

k
t

(
ukt ,v

)∥∥ ≤ √ακ · ∥∥∇ug
k
t

(
uk−1,v

)∥∥ , (366)

where κ = L/µ.

Proof. Consider v ∈ V . Since gkt is L-smooth in u (Assumption 5′), we have using Assumption 9′,∥∥∇ug
k
t

(
ukt ,v

)∥∥2

F
≤ 2L

(
gkt
(
ukt ,v

)
− gkt

(
ukt,∗,v

))
≤ 2Lα

(
gkt
(
uk−1,v

)
− gkt

(
ukt,∗,v

))
.

(367)
Since Φkt is µ-strongly convex (Assumption 10′), we can use Polyak-Lojasiewicz (PL) inequality,

gkt
(
uk−1
t ,v

)
− 1

2µ

∥∥∇ug
k
t

(
uk−1,v

)∥∥2 ≤ gkt
(
uk−1
t,∗ ,v

)
, (368)

thus,

2µ
(
gkt
(
uk−1
t ,v

)
− gkt

(
ukt,∗,v

))
≤
∥∥∇ug

k
t

(
uk−1,v

)∥∥2
. (369)

Combining Eq. (367) and Eq. (369), we have∥∥∇ug
k
t

(
uk−1,v

)∥∥2 ≤ L

µ
α
∥∥∇ug

k−1
t

(
uk−1,v

)∥∥2
, (370)

thus, ∥∥∇ug
k
t (ukt ,v)

∥∥ ≤ √ακ∥∥∇ug
k
t (uk−1,v)

∥∥ . (371)

Lemma H.3. Suppose that Assumptions 5′, 7′, 9′ and 10′ hold with G2 = 0. Then,

gk
(
uk,vk

)
− gk

(
uk∗,v

k
)
≤ α̃×

{
gk
(
uk−1,vk−1

)
− gk

(
uk∗,v

k
)}
, (372)

where α̃ = β2κ4α, and uk∗ , arg minu g
k
(
u,vk1:T

)
where gk is defined in (98)

Proof. Consider k > 0 and t ∈ [T ]. Since gt is µ-convex in u (Assumption 10′), we write∥∥ukt − uk∗
∥∥
F
≤ 1

µ

∥∥∇ug
k
t

(
ukt ,v

k
t

)
−∇ug

k
t

(
uk∗,v

k
t

)∥∥ (373)

≤ 1

µ

∥∥∇ug
k
t

(
ukt ,v

k
t

)∥∥+
1

µ

∥∥∇ug
k
t

(
uk∗,v

k
t

)∥∥ (374)

≤
√
ακ

µ

∥∥∇ug
k
t

(
uk−1,vkt

)∥∥+
1

µ

∥∥∇ug
k
t

(
uk∗,v

k
t

)∥∥ , (375)

where the last inequality is a result of Lemma H.2. Using Jensen inequality, we have

∥∥uk − uk∗
∥∥
F

=

∥∥∥∥∥
T∑
t=1

ωt ·
(
ukt − uk∗

)∥∥∥∥∥ (376)
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≤
T∑
t=1

ωt ·
∥∥ukt − uk∗

∥∥ (377)

≤
T∑
t=1

ωt ·
{√

ακ

µ

∥∥∇ug
k
t

(
uk−1,vkt

)∥∥+
1

µ

∥∥∇ug
k
t

(
uk∗,v

k
t

)∥∥} . (378)

Using Assumption 7′ and Jensen inequality with the "
√
·" function, it follows that∥∥uk − uk∗

∥∥ ≤ √ακβ
µ

∥∥∇ug
k
(
uk,vk1:T

)∥∥+
β

µ

∥∥∇ug
k
(
uk∗,v

k
1:T

)∥∥ (379)

=
√
ακ

β

µ

∥∥∇ug
k
(
uk−1,vk1:T

)∥∥ . (380)

Since gk is L-smooth in u as a convex combination of L-smooth function, we have∥∥∇ug
k
(
uk,vk1:T

)∥∥ =
∥∥∇ug

k
(
uk−1,vk1:T

)
−∇ug

k
(
uk∗,v

k
1:T

)∥∥ (381)

≤ L
∥∥uk − uk∗

∥∥ (382)

≤ β
√
ακ3

∥∥∇ug
k
(
uk−1,vk1:T

)∥∥ . (383)

Using Polyak-Lojasiewicz (PL), we have

gk
(
uk,vk1:T

)
− gk

(
uk∗,v

k
1:T

)
≤ 1

2µ

∥∥∇ug
k
(
uk,vk1:T

)∥∥2 ≤ β2ακ3

2µ

∥∥∇ug
k
(
uk−1,vk1:T

)∥∥2
.

(384)
Using the L-smoothness of gk in u, we have∥∥∇ug

k
(
uk−1,vk1:T

)∥∥2 ≤ 2L
[
gk
(
uk−1,vk1:T

)
− gk

(
uk∗,v

k
1:T

)]
. (385)

Thus,

gk
(
uk,vk1:T

)
− gk

(
uk∗,v

k
1:T

)
≤ β2κ4α︸ ︷︷ ︸

,α̃

(
gk
(
uk−1,vk1:T

)
− gk

(
uk∗,v

k
1:T

))
. (386)

Since vkt = arg minv∈V g
k
t

(
uk−1,v

)
, it follows that

gkt
(
uk−1,vkt

)
≤ gkt

(
uk−1,vk−1

t

)
. (387)

Thus,
gk
(
uk,vk1:T

)
− gk

(
uk∗,v

k
1:T

)
≤ α̃×

{
gk
(
uk−1,vk−1

1:T

)
− gk

(
uk∗,v

k
1:T

)}
. (388)

For t ∈ [T ] and k > 0, we introduce rkt , gkt − ft and rk , gk − f =
∑T
t=1 ωt

(
gkt − ft

)
. Since gkt

is a partial first-order surrogate of ft, it follows that rkt
(
uk−1,vk−1

t

)
= 0 and that rkt is non-negative

and L-smooth in u.
Lemma H.4. Suppose that Assumptions 4′ and 5′ hold and that

gk(uk,vk1:T ) ≤ gk(uk−1,vk−1
1:T ), ∀k > 0, (389)

then

lim
k→∞

rk(uk,vk1:T ) =0 (390)

lim
k→∞

∥∥∇ur
k(uk,vk1:T )

∥∥2
=0 (391)

If we moreover suppose that Assumption 10′ holds and that there exists 0 < α̃ < 1 such that for all
k > 0,

gk(uk,vk1:T )− gk(uk∗,v
k
1:T ) ≤ α̃×

(
gk(uk−1,vk−1

1:T )− gk(uk∗,v
k
1:T )

)
, (392)

then,

lim
k→∞

∥∥uk − uk∗
∥∥2

= 0 (393)

where uk∗ is the minimizer of u 7→ gk
(
u,vk1:T

)
.
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Proof. Since gt is a partial first-order surrogate of f near
{
uk−1,vk−1

t

}
for t ∈ [T ] and k > 0, it

follows that gk is a majorant of f and that gk(uk−1,vk−1) = f(uk−1,vk−1). Thus, the following
holds,

f(uk,vk) ≤ gk(uk,vk) ≤ gk(uk−1,vk−1) = f(uk−1,vk−1), (394)

It follows that the sequence
(
f
(
uk,vk

))
k≥0

is a non-increasing sequence. Since f is bounded below
(Assum. 4′), it follows that

(
f
(
uk,vk

))
k≥0

is convergent. Denote by f∞ its limit. The sequence(
gk(uk,vk)

)
k≥0

also converges to f∞.

Proof of Eq. 390 Using the fact that gk(uk,vk) ≤ gk(uk−1,vk), we write for k > 0,

f(uk,vk1:T ) + rk(uk,vk1:T ) = gk(uk,vk1:T ) ≤ gk(uk−1,vk−1
1:T ) = f(uk−1,vk−1

1:T ), (395)

Thus,
rk(uk,vk1:T ) ≤ f(uk−1,vk−1

1:T )− f(uk,vk), (396)

By summing over k then passing to the limit when k → +∞, we have
∞∑
k=1

rk(uk,vk1:T ) ≤ f(u0,v0
1:T )− f∞, (397)

Finally since rk(uk,vk1:T ) is non negative for k > 0, the sequence
(
rk(uk,vk1:T )

)
k≥0

necessarily
converges to zero, i.e.,

lim
k→∞

rk(uk,vk1:T ) = 0. (398)

Proof of Eq. 391 Because the L-smoothness of u 7→ rk
(
u,vk1:T

)
, we have

rk
(
uk − 1

L
∇ur

k
(
uk,vk1:T

)
,vk1:T

)
≤ rk

(
uk,vk1:T

)
− 1

2L

∥∥∇ur
k
(
uk,vk1:T

)∥∥2
(399)

Thus,∥∥∇ur
k
(
uk,vk1:T

)∥∥2

F
≤ 2L

(
rk
(
uk,vk1:T

)
− rk

(
uk − 1

L
∇ur

k
(
uk,vk1:T

)
,vk1:T

))
(400)

≤ 2Lrk
(
uk,vk1:T

)
, (401)

because rk is a non-negative function (Definition 1). Finally, using Eq. (390), it follows that

lim
k→∞

∥∥∇ur
k(uk,vk1:T )

∥∥2
= 0. (402)

Proof of Eq. 393 We suppose now that there exists 0 < α̃ < 1 such that

∀k > 0, gk(uk,vk1:T )− gk(uk∗,v
k
1:T ) ≤ α̃

(
gk(uk−1,vk−1

1:T )− gk(uk∗,v
k
1:T )

)
, (403)

It follows that,

gk(uk,vk1:T )− α̃gk(uk−1,vk−1
1:T ) ≤ (1− α̃)gk(uk∗,v

k
1:T ), (404)

then,

gk(uk∗,v
k
1:T ) ≥ 1

1− α̃
×
[
gk(uk,vk1:T )− α̃× gk(uk−1,vk−1

1:T )
]
, (405)

and by using the definition of gk we have,

gk(uk∗,v
k
1:T ) ≥ 1

1− α̃
×
[
gk(uk,vk1:T )− α̃× f(uk−1,vk−1

1:T )
]
, (406)

Since gk
(
uk∗,v

k
1:T

)
≤ gk

(
uk,vk1:T

)
≤ gk

(
uk−1,vk−1

1:T

)
, we have

gk(uk∗,v
k
1:T ) ≤ gk(uk−1,vk−1

1:T ) = f(uk−1,vk−1
1:T ). (407)
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From Eq. (406) and Eq. (407), it follows that,

1

1− α̃
×
[
gk(uk,vk1:T )− α̃× f(uk−1,vk−1

1:T )
]
≤ gk(uk∗,v

k
1:T ) ≤ f(uk−1,vk−1

1:T ), (408)

Finally, since f
(
uk−1,vk−1

1:T

)
−−−−−→
k→+∞

f∞ and gk
(
uk,vk1:T

)
−−−−−→
k→+∞

f∞, it follows from Eq. (408)

that,
lim
k→∞

gk
(
uk∗,v

k
1:T

)
= f∞. (409)

Since gk is µ-strongly convex in u (Assumption 10), we write
µ

2

∥∥uk − uk∗
∥∥2 ≤ gk

(
uk,vk1:T

)
− gk

(
uk∗,v

k
1:T

)
, (410)

It follows that,
lim

k→+∞

∥∥uk − uk∗
∥∥2

= 0. (411)

H.2 Proof of Theorem H.1′

Combining the previous lemmas we prove the convergence of Alg. 3 with a black box solver.
Theorem H.1′. Suppose that Assumptions 4′–7′, Assumptions 9′ and 10′ hold with G2 = 0 and
α ≤ 1

β2κ4 , then the updates of federated surrogate optimization (Alg. 3) converge to a stationary
point of f , i.e.,

lim
k→+∞

∥∥∇uf(uk,vk1:T )
∥∥2

= 0, (412)

and,

lim
k→+∞

T∑
t=1

ωt · dV
(
vkt ,v

k−1
t

)
= 0. (413)

Proof.
f(uk,vk1:T ) = gk(uk,vk1:T )− rk(uk,vk1:T ). (414)

Computing the gradient norm, we have,∥∥∇uf(uk,vk1:T )
∥∥ =

∥∥∇ug
k(uk,vk1:T )−∇ur

k(uk,vk1:T )
∥∥ (415)

≤
∥∥∇ug

k(uk,vk1:T )
∥∥+

∥∥∇ur
k(uk,vk1:T )

∥∥ . (416)

Since gk is L-smooth in u, we write∥∥∇ug
k(uk,vk1:T )

∥∥ =
∥∥∇ug

k(uk,vk)−∇ug
k(uk∗,v

k
1:T )

∥∥ (417)

≤ L
∥∥uk − uk∗

∥∥ . (418)

Thus by replacing Eq. (418) in Eq. (416), we have∥∥∇uf(uk,vk1:T )
∥∥ ≤ L2

∥∥uk − uk∗
∥∥2

+
∥∥∇ur

k(uk,vk1:T )
∥∥ . (419)

Using Lemma H.3, there exists 0 < α̃ < 1, such that[
gk(uk,vk1:T )− gk(uk∗,v

k
1:T )

]
≤ α̃×

[
gk(uk−1,vk−1

1:T )− gk(uk∗,v
k
1:T )

]
. (420)

Thus, the conditions of Lemma H.4 hold, and we can use Eq. (391) and (393), i.e.∥∥∇ur
k(uk,vk1:T )

∥∥2 −−−−−→
k→+∞

0 (421)∥∥uk − uk∗
∥∥2 −−−−−→

k→+∞
0. (422)

Finally, combining this with Eq. (419), we get the final result

lim
k→+∞

∥∥∇uf(uk,vk1:T )
∥∥ = 0. (423)
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Since gkt is a partial first-order surrogate of ft near
{
uk−1,vk−1

t

}
for k > 0 and t ∈ [T ], it follows

that
T∑
t=1

ω · dV
(
vkt ,v

k−1
t

)
= gk

(
uk−1,vk−1

1:T

)
− gk

(
uk−1,vk1:T

)
(424)

≤ gk
(
uk−1,vk−1

1:T

)
− gk

(
uk,vk1:T

)
(425)

Thus,
T∑
t=1

ωt · dV
(
vkt ,v

k−1
t

)
≤ f

(
uk−1,vk−1

1:T

)
− f

(
uk,vk1:T

)
(426)

Since dV
(
vkt ,v

k−1
t

)
is non-negative for k > 0 and t ∈ [T ], it follows that

lim
k→+∞

T∑
t=1

ωt · dV
(
vkt ,v

k−1
t

)
= 0 (427)

H.3 Proof of Theorem H.1

Theorem H.1. Suppose that Assumptions 1–7 and Assumptions 9, 10 hold with G2 = 0 and
α ≤ 1

β2κ5 , then the updates of FedEM (Alg. 2) converge to a stationary point of f , i.e.,

lim
k→+∞

∥∥∇Θf(Θk,Πk)
∥∥2

F
= 0, (428)

and,

lim
k→+∞

T∑
t=1

nt
n
KL

(
πkt , π

k−1
t

)
= 0. (429)

Proof. We prove this result as a particular case of Theorem H.1′. To this purpose, we consider that
V , ∆M , u = Θ ∈ RdM , vt = πt, and ωt = nt/n for t ∈ [T ]. For k > 0, we define gkt as follow,

gkt

(
Θ, πt

)
=

1

nt

nt∑
i=1

M∑
m=1

qkt

(
z

(i)
t = m

)
·
(
l
(
hθm(x

(i)
t ), y

(i)
t

)
− log pm(x

(i)
t )− log πt

+ log qkt

(
z

(i)
t = m

)
− c
)
, (430)

where c is the same constant appearing in Assumption 3, Eq. (3). With this definition, it is easy
to check that the federated surrogate optimization algorithm (Alg. 3) reduces to FedEM (Alg. 2).
Theorem H.1 then follows immediately from Theorem H.1′, once we verify that

(
gkt
)

1≤t≤T satisfy
the assumptions of Theorem H.1′.

Assumption 4′, Assumption 6′, Assumption 7′, Assumption 9′ and Assumption 10′ follow directly
from Assumption 4, Assumption 6, Assumption 7, Assumption 9 and Assumption 10, respectively.
Lemma G.3 shows that for k > 0, gk is smooth w.r.t. Θ and then Assumption 5′ is satisfied. Finally,
Lemmas G.4–G.6 show that for t ∈ [T ] gkt is a partial first-order surrogate of ft w.r.t. Θ near{

Θk−1, πt
}

with dV(·, ·) = KL(·‖·).
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I Details on Experimental Setup

I.1 Datasets and Models

In this section we provide detailed description of the datasets and models used in our experiments.
We used a synthetic dataset, verifying Assumptions 1-3, and five "real" datasets (CIFAR-10/CIFAR-
100 [33], sub part of EMNIST [8], sub part of FEMNIST [7, 47] and Shakespeare [7, 47]) from
which, two (FEMNIST and Shakespeare) has natural client partitioning. Below, we give a detailed
description of the datasets and the models / tasks considered for each of them.

I.1.1 CIFAR-10 / CIFAR-100

CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They both
share the same 60, 000 input images. CIFAR-100 has a finer labeling, with 100 unique labels, in
comparison to CIFAR-10, having 10 unique label. We used Dirichlet allocation [65], with parameter
α = 0.4 to partition CIFAR-10 among 80 clients. We used Pachinko allocation [54] with parameters
α = 0.4 and β = 10 to partition CIFAR-100 on 100 clients. For both of them we train MobileNet-
v2 [55] architecture with an additional linear layer. We used TorchVision [45] implementation of
MobileNet-v2.

I.1.2 EMNIST

EMNIST (Extended MNIST) is a 62-class image classification dataset, extending the classic MNIST
dataset. In our experiments, we consider 10% of the EMNIST dataset, that we partition using
Dirichlet allocation of parameter α = 0.4 over 100 clients. We train the same convolutional network
as in [54]. The network has two convolutional layers (with 3× 3 kernels), max pooling, and dropout,
followed by a 128 unit dense layer.

I.1.3 FEMNIST

FEMNIST (Federated Extended MNIST) is a 62-class image classification dataset built by partitioning
the data of Extended MNIST based on the writer of the digits/characters. In our experiments, we
used a subset with 15% of the total number of writers in FEMNIST. We train the same convolutional
network as in [54]. The network has two convolutional layers (with 3× 3 kernels), max pooling, and
dropout, followed by a 128 unit dense layer.

I.1.4 Shakespeare

This dataset is built from The Complete Works of William Shakespeare and is partitioned by the
speaking roles [47]. In our experiments, we discarded roles with less than two sentences. We consider
character-level based language modeling on this dataset. The model takes as input a sequence of
200 English characters and predicts the next character. The model embeds the 80 characters into
a learnable 8-dimensional embedding space, and uses two stacked-LSTM layers with 256 hidden
units, followed by a densely-connected layer. We also normalized each character by its frequency of
appearance.

I.1.5 Synthetic dataset

Our synthetic dataset has been generated according to Assumptions 1–3 as follows:

1. Sample weight πt ∼ Dir (α) , t ∈ [T ] from a symmetric Dirichlet distribution of parameter
α ∈ R+

2. Sample θm ∈ Rd ∼ U
(

[−1, 1]
d
)
, m ∈ [M ] for uniform distribution over [−1, 1]

d.

3. Sample mt, t ∈ [T ] from a log-normal distribution with mean 4 and sigma 2, then set
nt = min (50 +mt, 1000).

4. For t ∈ [T ] and i ∈ [nt], draw x
(i)
t ∼ U

(
[−1, 1]

d
)

and ε(i)t ∼ N (0, Id).

5. For t ∈ [T ] and i ∈ [nt], draw z
(i)
t ∼M (πt).
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Table 4: Average computation time and used GPU for each dataset.

Dataset GPU Simulation time

Shakespeare [7, 47] Quadro RTX 8000 4h42min
FEMNIST [7] Quadro RTX 8000 1h14min
EMNIST [8] GeForce GTX 1080 Ti 46min
CIFAR10 [33] GeForce GTX 1080 Ti 2h37min
CIFAR100 [33] GeForce GTX 1080 Ti 3h9min
Synthetic GeForce GTX 1080 Ti 20min

Table 5: Learning rates η used for the experiments in Table 2. Base-10 logarithms are reported.

Dataset FedAvg [47] FedProx [38] FedAvg+ [27] Clustered FL [56] pFedMe [16] FedEM (Ours)

FEMNIST −1.5 −1.5 −1.5 −1.5 −1.5 −1.0
EMNIST −1.5 −1.5 −1.5 −1.5 −1.5 −1.0
CIFAR10 −1.5 −1.5 −1.5 −1.5 −1.0 −1.0
CIFAR100 −1.0 −1.0 −1.0 −1.0 −1.0 −0.5
Shakespeare −1.0 −1.0 −1.0 −1.0 −1.0 −0.5
Synthetic −1.0 −1.0 −1.0 −1.0 −1.0 −1.0

6. For ∈ [T ] and i ∈ [nt], draw y
(i)
t ∼ B

(
sigmoid

(
〈x(i)
t , θ

z
(i)
t
〉+ ε

(i)
t

))
.

I.2 Implementation Details

I.2.1 Machines

We ran the experiments on a CPU/GPU cluster, with different GPUs available (e.g., Nvidia Tesla
V100, GeForce GTX 1080 Ti, Titan X, Quadro RTX 6000, and Quadro RTX 8000). Most experiments
with CIFAR10/CIFAR-100 and EMNIST were run on GeForce GTX 1080 Ti cards, while most
experiments with Shakespeare and FEMNIST were run on the Quadro RTX 8000 cards. For each
dataset, we ran around 30 experiments (not counting the development/debugging time). Table 4
gives the average amount of time needed to run one simulation for each dataset. The time needed
per simulation was extremely long for Shakespeare dataset, because we used a batch size of 128.
We remarked that increasing the batch size beyond 128 caused the model to converge to poor local
minima, where the model keeps predicting a white space as next character.

I.2.2 Libraries

We used PyTorch [53] to build and train our models. We also used Torchvision [45] implementation
of MobileNet-v2 [55], and for image datasets preprossessing. We used LEAF [7] to build FEMNIST
dataset and the federated version of Shakespeare dataset.

I.2.3 Hyperparameters

For each method and each task, the learning rate was set via grid search on the set{
10−0.5, 10−1, 10−1.5, 10−2, 10−2.5, 10−3

}
. FedProx and pFedMe’s penalization parameter µ was

tuned via grid search on
{

101, 100, 10−1, 10−2, 10−3
}

. For Clustered FL, we used the same values
of tolerance as the ones used in its official implementation [56]. We found tuning tol1 and tol2

particularly hard: no empirical rule is provided in [56], and the few random setting we tried did not
show any improvement in comparison to the default ones. For each dataset and each method, Table 5
reports the learning rate η that achieved the corresponding result in Table 2.
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Table 6: Test accuracy: average across clients.

Dataset Local FedAvg [47] FedAvg+ [27] Clustered FL [56] pFedMe [16] FedEM (Ours) D-FedEM (Ours)

FEMNIST 71.0 78.6 75.3 73.5 74.9 79.9 77.2
EMNIST 71.9 82.6 83.1 82.7 83.3 83.5 83.5
CIFAR10 70.2 78.2 82.3 78.6 81.7 84.3 77.0
CIFAR100 31.5 40.9 39.0 41.5 41.8 44.1 43.9
Shakespeare 32.0 46.7 40.0 46.6 41.2 46.7 45.4
Synthetic 65.7 68.2 68.9 69.1 69.2 74.7 73.8

J Additional Experimental Results

J.1 Fully Decentralized Federated Expectation-Maximization

D-FedEM considers the scenario where clients communicate directly in a peer-to-peer fashion instead
of relying on the central server mediation. In order to simulate D-FedEM, we consider a binomial
Erdős-Rényi graph [18] with parameter p = 0.5, and we set the mixing weight using Fast Mixing
Markov Chain [5] rule. We report the result of this experiment in Table 6, showing the average
weighted accuracy with weight proportional to local dataset sizes. We observe that D-FedEM often
performs better than other FL approaches and slightly worst than FedEM, except on CIFAR-10 where
it has low performances.

J.2 Comparison with MOCHA

In the case of synthetic dataset, for which train a linear model, we compare FedEM with
MOCHA [59]. We implemented MOCHA in Python following the official implementation 9 in MATLAB.
We tuned the parameter λ of MOCHA on a holdout validation set via grid search in
{101, 100, 10−1, 10−2, 10−3}, and we found that the optimal value of λ is 100. For this value, we
ran MOCHA on the synthetic dataset with three different seeds, and we found that the average accuracy
is 73.4± 0.05 in comparison to 74.7± 0.01 achieved by FedEM. Note that MOCHA is the second best
method after FedEM on this dataset. Unfortunately, MOCHA only works for linear models.

J.3 Generalization to Unseen Clients

Table 3 shows that FedEM allows new clients to learn a personalized model at least as good as FedAvg’s
global one and always better than FedAvg+’s one. Unexpectedly, new clients achieve sometimes a
significantly higher test accuracy than old clients (e.g., 47.5% against 44.1% on CIFAR100).

In order to better understand this difference, we looked at the distribution of FedEM personalized
weights for the old clients and new ones. The average distribution entropy equals 0.27 and 0.92 for
old and new clients, respectively. This difference shows that old clients tend to have more skewed
distributions, suggesting that some components may be overfitting the local training dataset leading
the old clients to give them a high weight.

We also considered a setting where unseen clients progressively collect their own dataset. We
investigate the effect of the number of samples on the average test accuracy across unseen clients,
starting from no local data (and therefore using uniform weights to mix the M components) and
progressively adding more labeled examples until the full local labeled training set is assumed to be
available. Figure 2 shows that FedEM achieves a significant level of personalization as soon as clients
collect a labeled dataset whose size is about 20% of what the original clients used for training.

As we mentioned in the main text, it is not clear how the other personalized FL algorithms (e.g.,
pFedMe and Clustered FL) should be extended to handle unseen clients. For example, the global
model learned by pFedMe during training can then be used to perform some “fine-tuning” at the
new clients, but how exactly? The original pFedMe paper [16] does not even mention this issue. For
example, the client could use the global model as initial vector for some local SGD steps (similarly to
what done in FedAvg+ or the MAML approaches) or it could perform a local pFedMe update (lines
6-9 in [16, Alg. 1]). The problem is even more complex for Clustered FL (and again not discussed
in [56]). The new client should be assigned to one of the clusters identified. One can think to compute

9https://github.com/gingsmith/fmtl
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Figure 2: Effect of the number of samples on the average test accuracy across clients unseen at
training on CIFAR100 dataset.

the cosine distances of the new client from those who participated in training, but this would require
the server to maintain not only the model learned, but also the last-iteration gradients of all clients
that participated in the training. Moreover, it is not clear which metric should be considered to
assign the new client to a given cluster (perhaps the average cosine similarity from all clients in the
cluster?). This is an arbitrary choice as [56] does not provide a criterion to assign clients to a cluster,
but only to decide if a given cluster should be split in two new ones. It appears that many options
are possible and they deserve separate investigation. Despite these considerations, we performed an
additional experiment extending pFedMe to unseen clients as described in the second option above on
CIFAR-100 dataset with a sampling rate of 20%. pFedMe achieves a test accuracy of 40.5%± 1.66%,
in comparison to 38.9%± 0.97% for FedAvg and 42.7%± 0.33% for FedEM. FedEM thus performs
better on unseen clients, and pFedMe’s accuracy shows a much larger variability.

J.4 FedEM and Clustering

We performed additional experiments with synthetic datasets to check if FedEM recovers clusters
in practice. We modified the synthetic dataset generation so that the mixture weight vector πt
of each client t has a single entry equal to 1 that is selected uniformly at random. We consider
two scenarios both with T = 300 client, the first with M = 2 component and the second with
M = 3 components. In both cases FedEM recovered almost the correct Π∗ and Θ∗: we have
cosine_distance

(
Θ∗, Θ̆

)
≤ 10−2 and cosine_distance

(
Π∗, Π̆

)
≤ 10−8. A simple cluster-

ing algorithm that assigns each client to the component with the largest mixture weight achieves
100% accuracy, i.e., it partitions the clients in sets coinciding with the original clusters.

J.5 Effect of M in Time-Constrained Setting

Recall that in FedEM, each client needs to update and transmitM components at each round, requiring
roughly M times more computation and M times larger messages than the competitors in our study.
In this experiment, we considered a challenging time-constrained setting, where FedEM is limited to
run one third (= 1/M ) of the rounds of the other methods. The results in Table 7 show that even if
FedEM does not reach its maximum accuracy, it still outperforms the other methods on 3 datasets.

We additionally compared FedEM with a model having the same number of parameters in order to
check if FedEM’s advantage comes from the additional model parameters rather than by its specific
formulation. To this purpose, we trained Resnet-18 and Resnet-34 on CIFAR10. The first one has
about 3 times more parameters than MobileNet-v2 and then roughly as many parameters as FedEM
with M = 3. The second one has about 6 times more parameters than FedEM with M = 3. We
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Table 7: Test and train accuracy comparison across different tasks. For each method, the best test
accuracy is reported. For FedEM we run only K

M rounds, where K is the total number of rounds
for other methods–K = 80 for Shakespeare and K = 200 for all other datasets–and M = 3 is the
number of components used in FedEM.

Dataset Local FedAvg [47] FedProx [38] FedAvg+ [27] Clustered pFedMe [16] FedEM (Ours)FL [56]

FEMNIST [7] 71.0 (99.2) 78.6 (79.5) 78.6 (79.6) 75.3 (86.0) 73.5 (74.3) 74.9 (91.9) 74.0 (80.9)
EMNIST [8] 71.9 (99.9) 82.6 (86.5) 82.7 (86.6) 83.1 (93.5) 82.7 (86.6) 83.3 (91.1) 82.7 (89.4)
CIFAR10 [33] 70.2 (99.9) 78.2 (96.8) 78.0 (96.7) 82.3 (98.9) 78.6 (96.8) 81.7 (99.8) 82.5 (92.2)
CIFAR100 [33] 31.5 (99.9) 41.0 (78.5) 40.9 (78.6) 39.0 (76.7) 41.5 (78.9) 41.8 (99.6) 42.0 (72.9)
Shakespeare [7] 32.0 (95.3) 46.7 (48.7) 45.7 (47.3) 40.0 (93.1) 46.6 (48.7) 41.2 (42.1) 43.8 (44.6)
Synthetic 65.7 (91.0) 68.2 (68.7) 68.2 (68.7) 68.9 (71.0) 69.1 (85.1) 69.2 (72.8) 73.2 (74.7)

observed that both architectures perform even worse than MobileNet-v2, so the comparison with these
larger models does not suggest that FedEM’s advantage comes from the larger number of parameters.

We note that there are many possible choices of (more complex) model architectures, and finding one
that works well for the task at hand is quite challenging due to the large search space, the bias-variance
trade-off, and the specificities of the FL setting.
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Table 8: Test accuracy under 20% client sampling: average across clients with +/- standard deviation
over 3 independent runs. All experiments with 1200 communication rounds.

Dataset FedAvg [47] FedAvg+ [27] pFedMe [16] APFL [14] FedEM (Ours)

CIFAR10 [33] 73.1± 0.14 77.7± 0.16 77.8± 0.07 78.2± 0.27 82.1± 0.13
CIFAR100 [33] 40.6± 0.17 39.7± 0.75 39.9± 0.08 40.3± 0.71 43.2± 0.23
Synthetic 68.2± 0.02 69.0± 0.03 69.1± 0.03 69.1± 0.04 74.7± 0.01

Figure 3: Train loss, train accuracy, test loss, and test accuracy for CIFAR10 [33]. .

J.6 Additional Results under Client Sampling

In our experiments, except for Figure 1, we considered that all clients participate at each round. We
run extra experiments with client sampling, by allowing only 20% of the clients to participate at each
round. We also incorporate APFL [14] into the comparison. Table 8 summarizes our findings, giving
the average and standard deviation of the test accuracy across 3 independent runs.

J.7 Convergence Plots

Figures 3 to 8 show the evolution of average train loss, train accuracy, test loss, and test accuracy
over time for each experiment shown in Table 2.
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Figure 4: Train loss, train accuracy, test loss, and test accuracy for CIFAR100 [33].

Figure 5: Train loss, train accuracy, test loss, and test accuracy for EMNIST [8].
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Figure 6: Train loss, train accuracy, test loss, and test accuracy for FEMNIST [7, 47].

Figure 7: Train loss, train accuracy, test loss, and test accuracy for Shakespeare [7, 47].
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Figure 8: Train loss, train accuracy, test loss, and test accuracy for synthetic dataset.

77


