
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HARMONICA: HARMONIZING TRAINING AND

INFERENCE FOR BETTER FEATURE CACHE IN DIFFU-
SION TRANSFORMER ACCELERATION

Anonymous authors
Paper under double-blind review

“A tranquil forest clearing bathed in soft, magical light, filled with fairies dancing
among the flowers. The pastel chalk drawing style gives the image a delicate, almost

ethereal quality, with soft, smudged edges and gentle, powdery colors blending seamlessly.”

(a) PIXART-Σ w/o feature cache (b) HarmoniCa (×1.68)

Figure 1: High-resolution 2048 × 2048 images generated using PIXART-Σ (Chen et al., 2024a)
with a 20-step DPM-Solver++ sampler (Lu et al., 2022b). Our proposed feature cache framework
achieves a substantial ×1.68 speedup. More visualization results can be found in Sec. T.

ABSTRACT

Diffusion Transformers (DiTs) have gained prominence for outstanding scalabil-
ity and extraordinary performance in generative tasks. However, their consider-
able inference costs impede practical deployment. The feature cache mechanism,
which involves storing and retrieving redundant computations across timesteps,
holds promise for reducing per-step inference time in diffusion models. Most
existing caching methods for DiT are manually designed. Although the learning-
based approach attempts to optimize strategies adaptively, it suffers from discrep-
ancies 1 between training and inference, which hampers both the performance and
acceleration ratio. Upon detailed analysis, we pinpoint that these discrepancies
primarily stem from two aspects: (1) Prior Timestep Disregard, where training
ignores the effect of cache usage at earlier timesteps, and (2) Objective Mismatch,
where the training target (align predicted noise in each timestep) deviates from the
goal of inference (generate the high-quality image). To alleviate these discrepan-
cies, we propose HarmoniCa, a novel method that harmonizes training and infer-
ence with a novel learning-based caching framework built upon Step-Wise Denois-
ing Training (SDT) and Image Error Proxy-Guided Objective (IEPO). Compared

1In this paper, the discrepancy between training and inference denotes the mismatch or the inconsistency
between these two processes.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to the traditional training paradigm, the newly proposed SDT maintains the con-
tinuity of the denoising process, enabling the model to leverage information from
prior timesteps during training, similar to the way it operates during inference.
Furthermore, we design IEPO, which integrates an efficient proxy mechanism to
approximate the final image error caused by reusing the cached feature. Therefore,
IEPO helps balance final image quality and cache utilization, resolving the issue
of training that only considers the impact of cache usage on the predicted output
at each timestep. Extensive experiments on class-conditional and text-to-image
(T2I) tasks for 8 models and 4 samplers with resolutions ranging from 256× 256
to 2048 × 2048 demonstrate the exceptional performance and speedup capabili-
ties of our HarmoniCa. For example, HarmoniCa is the first feature cache method
applied to the 20-step PIXART-α 1024×1024 that achieves over 1.5× speedup in
latency with an improved FID compared to the non-accelerated model. Remark-
ably, HarmoniCa requires no image data during training and reduces about 25%
of training time compared to the existing learning-based approach.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021) have recently gained increasing pop-
ularity in a variety of generative tasks, such as image (Saharia et al., 2022; Esser et al., 2024) and
video generation (Blattmann et al., 2023; Ma et al., 2024a), due to their ability to produce diverse
and high-quality samples. Among different backbones, Diffusion Transformers (DiTs) (Peebles &
Xie, 2023) stand out for offering exceptional scalability. However, the extensive parameter size and
multi-round denoising nature of diffusion models bring tremendous computational overhead during
inference, limiting their practical applications. For instance, generating one 2048×2048 resolution
image using PixArt-Σ (Chen et al., 2024a) with 0.6B parameters and 20 denoising rounds can take
up to 14 seconds on a single NVIDIA H800 80GB GPU, which is unacceptable.

To accelerate the generation process of diffusion models, previous methods are developed from
two perspectives: reducing the number of sampling steps (Liu et al., 2022; Song et al., 2020b) and
decreasing the network complexity in noise prediction of each step (Fang et al., 2023; He et al.,
2024). Recently, a new branch of research (Selvaraju et al., 2024; Yuan et al., 2024; Chen et al.,
2024b) has started to focus on accelerating sampling time per step by the feature cache mechanism.
This technique takes advantage of the repetitive computations across timesteps in diffusion models,
allowing previously computed features to be cached and reused in later steps. Nevertheless, most
existing methods are either tailored to the U-Net architecture (Ma et al., 2024c; Wimbauer et al.,
2024) or develop their strategy based on empirical observations (Chen et al., 2024b; Selvaraju et al.,
2024), and there is a lack of adaptive and systematic approaches for DiT models. Learning-to-
Cache (Ma et al., 2024b) introduces a learnable router to guide the cache scheme for DiT models.
However, this method induces discrepancies between training and inference, which always leads
to distortion build-up (Ning et al., 2023; Li et al., 2024b; Ning et al., 2024). The discrepancies
arise from two main factors: (1) Prior Timestep Disregard: During training, the model directly
samples a timestep and employs the training images manually added noise akin to DDPM (Hu et al.,
2021), ignoring the impact of the feature cache mechanism from earlier steps, which differs from the
inference process. (2) Objective Mismatch: The training objective minimizes noise prediction error
of each timestep, while the inference goal aims for high-quality final images, causing a misalignment
in objectives. We believe these inconsistencies hinder effective and efficient router learning.

To alleviate the above discrepancies effectively, we present harmonizing training and inference with
HarmoniCa, a novel cache learning framework featuring a unique training paradigm and a distinct
learning objective. Specifically, to mitigate the first disparity, we design Step-Wise Denoising Train-
ing (SDT), which aligns the training process with the full denoising trajectory of inference using a
student-teacher model setup. The student utilizes the cache while the teacher does not, effectively
mimicking the teacher’s outputs across all continuous timesteps. This approach maintains the reuse
and update of the cache at earlier timesteps, similar to inference. Additionally, to address the mis-
alignment in optimization goals, we introduce the Image Error Proxy-Guided Objective (IEPO),
which leverages a proxy to approximate the final image error and reduces the significant costs of
directly utilizing the error to supervise training. This objective helps SDT efficiently balance cache
usage and image quality. By combining SDT and IEPO, extensive experiments for text-to-image

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(T2I) and class-conditioned generation tasks show the promising performance and speedup ratio
of HarmoniCa, e.g., a ×1.51 speedup and even a lower FID (Nash et al., 2021) for PIXART-α
1024 × 1024 (Chen et al., 2023). In addition, HarmoniCa eliminates the requirement of training
with a large amount of image data and reduces about 25% training time compared to the existing
learning-based method (Ma et al., 2024b), further enhancing its applicability.

Our contributions are summarized as follows:

• We uncover two discrepancies between training and inference in the existing learning-based fea-
ture cache method: (1) Prior Timestep Disregard, indicating that the training process overlooks
the influence of preceding timesteps, which is inconsistent with the inference process. (2) Ob-
jective Mismatch, minimizing intermediate outputs error, instead of the final image error. These
discrepancies prevent the method from further performance and acceleration improvements.

• We propose a novel framework called HarmoniCa to alleviate the discovered discrepancies by:
(1) Step-Wise Denoising Training (SDT), which addresses the first discrepancy by capturing the
complete denoising trajectory, ensuring that the model learns to consider the impact of earlier
timesteps. (2) Image Error Proxy-Guided Optimization Objective (IEPO), which mitigates the
second discrepancy by using a proxy for the final image error, and thereby targets aligning the
training objective with the inference.

• Extensive experiments on NVIDIA H800 80GB GPUs for DiT-XL/2, PIXART-α, and PIXART-
Σ series–encompassing 8 models, 4 samplers, and 4 resolutions–proves the substantial efficacy
and universality of HarmoniCa. For instance, it outperforms previous state-of-the-art (SOTA) by
a 6.74 IS increase and 1.24 FID decrease with a higher speedup ratio on DiT-XL/2 256 × 256.
Notably, our image-free framework with much lower training cost exhibits superior efficiency and
applicability than the current learning-based method.

2 RELATED WORK

Diffusion models. Diffusion models, initially conceptualized with the U-Net architecture (Ron-
neberger et al., 2015), have achieved satisfactory performance in image (Rombach et al., 2022;
Podell et al., 2023) and video generation (Ho et al., 2022). Despite their success, U-Net models
struggle with modeling long-range dependencies in complex, high-dimensional data. In response,
the Diffusion Transformer (DiT) (Peebles & Xie, 2023; Chen et al., 2023; 2024a) is introduced,
leveraging the inherent scalability of Transformers to efficiently enhance model capacities and han-
dle more complex tasks with improved performance.

Efficent diffusion. Diverse methods have been proposed to tackle the poor real-time performance
of diffusion models. These techniques fall into two main categories: reducing the number of sam-
pling steps and decreasing the computational load per denoising step. In the first category, sev-
eral works utilize distillation (Salimans & Ho, 2022; Luhman & Luhman, 2021) to obtain reduced
sampling iterations. Furthermore, this category encompasses advanced techniques such as implicit
samplers (Kong & Ping, 2021; Song et al., 2020a; Zhang et al., 2022) and specialized differential
equation (DE) solvers. These solvers tackle both stochastic differential equations (SDE) (Song et al.,
2020b; Jolicoeur-Martineau et al., 2021) and ordinary differential equations (ODE) (Lu et al., 2022a;
Liu et al., 2022; Zhang & Chen, 2022), addressing diverse aspects of diffusion model optimization.
In contrast, the second category mainly focuses on model compression. It leverages techniques like
pruning (Fang et al., 2023; Zhang et al., 2024; Wang et al., 2024b) and quantization (Shang et al.,
2023; Huang et al., 2024; He et al., 2024) to reduce the workload in a static way. Additionally,
dynamic inference compression is also being explored (Liu et al., 2023; Pan et al., 2024), where dif-
ferent models are employed at varying steps of the process. In this work, we focus on the urgently
needed DiT acceleration through feature cache, a method distinct from the above-discussed ones.

Feature cache. Due to the high similarity between activations (Li et al., 2023b; Wimbauer et al.,
2024) across continuous denoising steps in diffusion models, recent studies (Ma et al., 2024c; Wim-
bauer et al., 2024; Li et al., 2023a) have explored caching these features for reuse in subsequent steps
to avoid redundant computations. Notably, their strategies rely heavily on the specialized structure

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of U-Net, e.g., up-sampling blocks 2 or SpatialTransformer blocks 3. Besides, FORA (Sel-
varaju et al., 2024) and ∆-DiT (Chen et al., 2024b) further apply the feature cache mechanism to
DiT. However, both methods select the cache position and lifespan in a handcrafted way. Learning-
to-Cache (Ma et al., 2024b) introduces a learnable cache scheme but fails to harmonize training and
inference. In this work, we design a new training framework, to alleviate the discrepancies between
the training and inference, which further enhances the performance and acceleration ratio for DiT.

3 PRELIMILARIES

Cache granularity. The noise estimation network of DiT (Peebles & Xie, 2023) is built on the
Transformer block (Vaswani, 2017), which is composed of an Attention block and a feed-forward
network (FFN). Each Attention block and FFN is wrapped up in a residual connection (He et al.,
2016). For convenience, we sequentially denote these Attention blocks and FFNs without residual
connections as {b0,b1, . . .bN−1}, where N is their total amount. Following Ma et al. (2024b), we
store the output of bi in cache as ci. The cache, once completely filled, is represented as follows:

cache = [c0,c1, . . . ,cN−1]. (1)

Cache router. The cache scheme for DiT can be formulated with a pre-defined threshold τ (0 ≤
τ < 1) and a customized router matrix:

Router = [rt,i]1≤t≤T,0≤i≤N−1 ∈ RT×N , (2)

where 0 < rt,i ≤ 1 and T is the maximum denoising step. At timestep t during inference, the
residual corresponding to bi is fused with oi defined as follows:

oi =

{
bi(hi, cs), rt,i > τ

ci, rt,i ≤ τ
, (3)

where hi is the image feature and cs represents the conditional inputs 4. Specifically, rt,i > τ
indicates computing bi(hi, cs) as oi. This computed output also replaces ci in the cache. Other-
wise, the model loads ci from cache without computation. Here we present a naive example of the
cache scheme as depicted in Fig. 2. To be noted, RouterT,: is set to [1]1×N by default to pre-fill
the empty cache.

Cache usage ratio (CUR). In addition, we define cache usage ratio (CUR) formulated as∑t=T
t=1

∑N−1
i=0 Irt,i≤τ

N×T in this paper to represent the reduced computation by reusing cached features.
For instance, CUR is roughly equal to 33.33% in Fig. 2.

𝒙! ∼ 𝒩(𝟎, 𝑰)

cache = ∅ ∅ ∅
b"
o"

b#

b$

o#

o$

𝒙%

𝒙%

b"
o"

b$

o#

o$

𝒙$

𝒙$

o"

b$

o#

o$

𝒙#

𝒙#

b"
o"

b$

o#

o$

𝒙"

cache

=
c"
c#
c$

cache

=
c"
c#
c$

cache

=
c"
c#
c$

Router =
0.7 0.2 0.9
0.2 0.3 0.7
0.6
1

0.4
1

0.8
1

𝜏 = 0.5

Forward Data
Flow

Update cache

Use Cached
Feature 𝑡 = 4 𝑡 = 3 𝑡 = 2 𝑡 = 1

Figure 2: Generation process from a random Gaussian noise x4 to an image x0 using feature cache
(T = 4, N = 3). We omit the sampler (Ho et al., 2020; Song et al., 2020a) and conditional inputs.

2https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/
diffusionmodules/openaimodel.py#L626

3https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/
attention.py#L218

4For example, cs represents the time condition and textual condition for text-to-image (T2I) generation.

4

https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/openaimodel.py#L626
https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/openaimodel.py#L626
https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/attention.py#L218
https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/attention.py#L218

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 HARMONICA

In this section, we first observe that the existing learning-based feature cache strategy shows dis-
crepancies between the training and inference (Sec. 4.1). Then, we propose a framework named
HarmoniCa to harmonize them for better feature cache (Sec. 4.2). Finally, our HarmoniCa shows
higher efficiency and better applicability than the previous training-based method (Sec. 4.3).

4.1 DISCREPANCY BETWEEN TRAINING AND INFERENCE

Revealing previous approaches for DiT, most of them (Selvaraju et al., 2024; Chen et al., 2024b)
manually set the value of the Router in a heuristic way. To be adaptive, Learning-to-Cache (Ma
et al., 2024b) employs a learnable Router 5. However, we have identified two discrepancies be-
tween its training and inference phases in the following.

𝒙!

DiT 𝑡 − 1

cacheRouter!"#,:

DiT 𝑡

𝑡 ∼ 𝒰 2, 𝑇

𝝐 ∼ 𝒩(𝟎, 𝑰)

Learnable Frozen Backward Data Flow

ℒ&'(
!"#

DiT 𝑡 − 1

Figure 3: Training paradigm of
Learning-to-Cache. L(t)

LTC denotes the
loss function. In each iteration, this
method manually adds noise to images
to obtain xt as the input of DiT at t.
“∗” in “DiT (∗)” represents the current
timestep.

Prior timestep disregard. As illustrated in Fig. 2, the in-
ference process employing feature cache at timestep t is
subject to the prior timesteps. For example, at timestep
t = 1, the input x1 has the error induced by reusing
the cached features c0 and c1 at preceding timestep t =
2. Furthermore, reusing and updating features at earlier
timesteps also shape the contents of the current cache.

However, Learning-to-Cache is unaffected by prior de-
noising steps during training. Specifically, for each train-
ing iteration, as depicted in Fig. 3 (a), it first uniformly
samples a timestep t akin to DDPM (Ho et al., 2020). It
then pre-fills an empty cache at t and proceeds to train
Routert−1,: at subsequent timestep t− 1, without being
influenced by the feature cache mechanism from timestep
T to t+ 1.

Objective mismatch. Moreover, we also find that Learning-to-Cache (Ma et al., 2024b) solely
focuses on the predicted noise at each denoising step during training. It leverages the following
learning objective at timestep t:

L(t)
LTC = L(t)

MSE + β
∑N−1

i=0 rt,i, (4)

where β is a coefficient for the regularization term of the Routert: and L(t)
MSE represents the Mean

Square Error (MSE) between the predicted noise of the DiT with and without reusing cached features
at t.

In contrast, the target during inference is to generate the high-quality image x0, which also leads to
a discrepancy of objective.

4.2 HARMONIZING TRAINING AND INFERENCE

Existing studies (Ning et al., 2023; Li et al., 2024b; Ning et al., 2024) on diffusion models show that
discrepancies between training and inference phases can lead to error accumulation (Arora et al.,
2022; Schmidt, 2019) and results in performance degradation. Therefore, we harmonize training
and inference with a new learning-based caching framework called HarmoniCa. It is composed of
the following two techniques to alleviate the discrepancies mentioned above. Detailed algorithms of
HarmoniCa can be found in Sec. A.

Step-wise denoising training. To mitigate the first discrepancy, as shown in Fig. 4 (a), we propose
a new training paradigm named Step-Wise Denoising Traning (SDT), which completes the entire
denoising process over T timesteps, thereby accounting for the cache usage and update from all
prior timesteps. Specifically, at timestep T , we randomly sample a Gaussian noise xT and perform
a single denoising step to pre-fill the cache. Over the following T − 1 timesteps, the student
model, which employs the feature cache mechanism, gradually removes noise to generate an image.

5rt,i in the Router is a learnable parameter.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Concurrently, the teacher model executes the same task without utilizing the cache. Requiring the
student to mimic the output representation of its teacher, we compute the loss function and perform
back-propagation to update Routert,: at each timestep t. To ensure that each rt,i is differentiable
during training, distinct from Eq. (3), we proportionally combine the directly computed feature with
the cached one to obtain oi following Ma et al. (2024b):

oi = rt,ibi(hi, cs) + (1− rt,i)ci. (5)
Similar to inference, we also update ci in the cache with bi(hi, cs) when rt,i > τ . To improve
training stability (Wimbauer et al., 2024), we fetch the output from the student as the input to the
teacher for the next iteration. We repeat the above T learning iterations until the end of training.

DiT 𝑡
Teacher

ℒ!"#$
%

Use Cached Feature Update cache

cache

𝒙&

𝒙&
%DiT 1DiT 𝑇

(a) Step-Wise Denoising Training (b) Image Error Proxy-Guided Objective

cache

DiT 𝑡
Student

Router

Update

…DiT 𝑡 DiT 1DiT 𝑇

Router
ℒ!"#
$ + 𝛽$ r$,&

'()

&*+
𝜆 %

𝒙𝑻 ∼ 𝒩(𝟎, 𝑰)

Step-W
ise

𝑥,()

DiT 𝑡 + 1

Student

Output of

𝑥…
𝑥$

𝑇
…

𝑡
𝑡 + 1

Router⊙ℳ % cache

…

… …DiT 𝑡

Figure 4: Overview of HarmoniCa. (a) Step-Wise Denoising Training (SDT) mimics the multi-
timestep inference stage, which integrates the impact of prior timesteps at t. (b) Image-Error Proxy-
Guided Objective (IEPO) incorporates the final image error into the learning objective by an efficient
proxy λ(t), which is updated through gradient-free image generation passes every C training itera-
tions. M(t) masks the Router to disable the impact of the cache mechanism at t. ⊙ denotes the
operation of element-wise multiplication.
As depicted in Fig. 5, by incorporating prior denoising timesteps during training, SDT significantly
reduces error at each timestep and obtains a much more accurate image x0, even with lower com-
putation, compared to Learning-to-Cache.

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
xT 1 x0

0.0

0.1

0.2

0.3

M
SE

LTC (32.68%)
SDT (34.20%)

Figure 5: MSE of xt for DiT-XL/2 256 ×
256 (Peebles & Xie, 2023) (T = 20, N =
56) induced by different feature cache meth-
ods. xt is the noisy image obtained at
timestep t + 1. “LTC” denotes Learning-
to-Cache. For a fair comparison, L(t)

LTC is
employed for SDT. We mark the CUR in the
brackets.

Image error proxy-guided objective. For the sec-
ond discrepancy, a straightforward solution to align
the target with inference involves using the error of
final image x0 caused by cache usage directly with
a regularization term of Router as our training ob-
jective. However, even for DiT-XL/2 256×256 (Pee-
bles & Xie, 2023) with a small training batch size,
this requires approximately 5× GPU memory and
10× time compared to SDT combined with L(t)

LTC
as detailed in Sec. B, making it impractical. There-
fore, we have to identify a proxy for the error of x0

that can be integrated into the learning objective.

Based on the above analysis, we propose an Image
Error Proxy-guided Objective (IEPO). It is defined
at each timestep t as follows:

L(t)
IEPO = λ(t)L(t)

MSE + β
∑N−1

i=0 rt,i, (6)

where λ(t) is our final image error proxy treated as a coefficient of L(t)
MSE . This proxy represents

the final image error caused by the cache usage at t. With a large λ(t), L(t)
MSE prioritizes reduction

of the output error at t. This tends to decrease the cached feature usage rate at the corresponding
timestep, and vice versa. Therefore, our proposed objective considers the trade-off between the error
of x0 and the cache usage at a certain denoising step.

Here, we detail the process to obtain λ(t) as follows. For a given Router, a mask matrix is defined
to disable the use of cached features and force updating the entire cache at t as:

M(t)
j,k =

{
1, j ̸= t
1

rj,k
, j = t

, (7)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where (j, k) 6 denotes the index of M(t) ∈ RT×N . As depicted in Fig. 4 (b), x0 and x
(t)
0 are

final images generated from a randomly sampled Gaussian noise xT using feature cache guided by
(Upper) Router and (Lower) Router element-wise multiplied by M(t), respectively. Then, we
can formulate λ(t) as:

λ(t) = ∥x0 − x
(t)
0 ∥2F , (8)

where ∥ · ∥F denotes the Frobenius norm. To adapt to the training dynamics, we periodically update
all the coefficients {λ(1), . . . , λ(T)} every C iterations 7, instead of employing static ones.

(a) DiT w/o feature cache (b) SDT+L(t)
LTC (×1.40) (c) HarmoniCa (×1.44)

Figure 6: Random samples for DiT-XL/2 256×256 (Peebles & Xie, 2023) w/ and w/o feature cache
(T = 20). We mark the speedup ratio in the brackets.

Fig. 6 shows that L(t)
IEPO helps yield much more accurate objective-level traits and significantly

improves the quality of x0 even at a higher speedup ratio than L(t)
LTC . The study in Sec. C justifies

that employing L(t)
LTC incurs the optimization deviating from minimizing the error of x0.

4.3 EFFICIENCY DISCUSSION

Training efficiency. Our HarmoniCa incurs significantly lower training costs than the previous
learning-based method. As shown in Tab. 1, HarmoniCa requires no training images, whereas
Learning-to-Cache utilizes original training datasets. Thus, it is challenging to apply Learning-to-
Cache to models like the PIXART-α (Chen et al., 2023) family, which are trained on large datasets,
limiting its applicability. Moreover, while dynamic update of λ(t) incurs approximately 10% extra
time overhead, HarmoniCa requires only three-quarters of the training hours compared to Learning-
to-Cache, which needs to pre-fill the cache for each training iteration.

Table 1: Training costs of learning-based feature
cache methods for DiT-XL/2 256 × 256 (Peebles
& Xie, 2023) (T = 20). We train with all methods
for 20K iterations using a global batch size 64 on 4
NVIDIA H800 80GB GPUs. For HarmoniCa, we
set C = 500. As in the original paper, we utilize
the full ImageNet training set (Russakovsky et al.,
2015) for Learning-to-Cache.

Method #Images Time(h) Memory(GB/GPU)

Learning-to-Cache 1.22M 2.15 33.33

SDT+L(t)
LTC 0 1.47 33.28

HarmoniCa 0 1.63 33.28

Inference efficiency. Fortunately, our method
with a pre-learned Router has no computa-
tional overhead during runtime. Moreover, less
than 6% extra memory overhead 8 is induced by
cache for DiT-XL/2 256 × 256 with a batch
size of 8. Therefore, the introduced inference
cost is controlled at a small level.

5 EXPERIMENTS

This section begins by outlining the detailed ex-
perimental protocols (Sec. 5.1). Subsequently,
we provide comprehensive comparisons across
different methods to show the superior performance and acceleration ratio of our HarmoniCa
(Sec. 5.2). Finally, we provide ablation studies for the key designs of our method (Sec. 5.3).

5.1 IMPLEMENTATION DETAILS

Models and datasets. We conduct experiments on two different image generation tasks. For class-
conditional task, we employ DiT-XL/2 (Peebles & Xie, 2023) 256 × 256 and 512 × 512 models
pre-trained and accessed on ImageNet dataset (Russakovsky et al., 2015). For text-to-image (T2I)
task, we utilize PIXART-α (Chen et al., 2023) series, known for its outstanding performance. These

61 ≤ j ≤ T and 0 ≤ k ≤ N − 1.
7C mod T = 0.
8The cache occupies 0.49 GB GPU memory and inference without the feature cache mechanism takes

8.18 GB GPU memory.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

models including PIXART-XL/2 at resolutions of 256 × 256 and 512 × 512, along with PIXART-
XL/2-1024-MS at a higher resolution of 1024 × 1024, are tested on MS-COCO dataset (Lin et al.,
2015). We additionally use T5 model (Raffel et al., 2023) as their text encoders.

Training settings. Following Ma et al. (2024b), we set the threshold τ as 0.1 for all the models.
Each of them is trained for 20K iterations employing the AdamW optimizer (Loshchilov & Hutter,
2019) on 4 NVIDIA H800 80GB GPUs. The learning rate is fixed at 0.01, C is set to 500, and global
batch sizes of 64, 48, and 32 are utilized for models with increasing resolutions. Additionally, we
collect 1000 MS-COCO captions for T2I training.

Baselines. For class-conditional experiments, we choose the current state-of-the-art (SOTA)
Learning-to-Cache (Ma et al., 2024b) as our baseline. Due to the limits mentioned in Sec. 4.3, we
employ FORA (Selvaraju et al., 2024) and ∆-DiT (Chen et al., 2024b), excluding Learning-to-Cache
for the T2I task. The results of these methods are obtained either by re-running their open-source
code (if available) or by using the data provided in the original papers, all under the same conditions
as our experiments. We also report the performance of models with reduced denoising steps.

Evaluation. To assess the generation quality, Fréchet Inception Distance (FID) (Nash et al., 2021),
and sFID (Nash et al., 2021) are applied to all experiments. For DiT/XL-2, we additionally provide
Inception Score (IS) (Salimans et al., 2016), Precision, and Recall (Kynkäänniemi et al., 2019) as
reference metrics. For PIXART-α, to gauge the compatibility of image-caption pairs, we calculate
CLIP score (Hessel et al., 2022) using ViT-B/32 (Dosovitskiy et al., 2020) as the backbone. To
evaluate the inference efficiency, we measure the CUR 9 and the inference latency for a batch size
of 8. In detail, we sample 50K images adopting DDIM (Song et al., 2020a) for DiT-XL/2, and
30K images utilizing IDDPM (Nichol & Dhariwal, 2021), DPM-Solver++ (Lu et al., 2022b), and
SA-Solver (Xue et al., 2024) for PIXART-α. All of them use classifier-free guidance (cfg) (Ho &
Salimans, 2022).

More implementation details can be found in Sec. D and the results of PIXART-Σ (Chen et al.,
2024a) family are available in Sec. E, including generation with an extremely high-resolution of
2048 × 2048. In addition, we also present the results of combination with quantization to further
accelerate DiT inference in Sec. F.

5.2 MAIN RESULTS

Table 2: Accelerating image generation on ImageNet for the DiT-XL/2. We mark the speedup ratio
in the brackets and highlight the best score in bold.

Method T IS↑ FID↓ sFID↓ Prec.↑ Recall↑ CUR(%)↑ Latency(s)↓

DiT-XL/2 256× 256 (cfg = 1.5)

DDIM (Song et al., 2020a) 50 240.37 2.27 4.25 80.25 59.77 - 1.767
DDIM (Song et al., 2020a) 39 237.84 2.37 4.32 80.22 59.31 - 1.379(×1.28)

Learning-to-Cache (Ma et al., 2024b) 50 233.26 2.62 4.50 79.40 59.15 23.39 1.419(×1.25)

HarmoniCa 50 238.74 2.36 4.24 80.57 59.68 23.68 1.361(×1.30)

DDIM (Song et al., 2020a) 20 224.37 3.52 4.96 78.47 58.33 - 0.658
DDIM (Song et al., 2020a) 14 201.83 5.77 6.61 75.14 55.08 - 0.466(×1.41)

Learning-to-Cache (Ma et al., 2024b) 20 201.37 5.34 6.36 75.04 56.09 35.60 0.468(×1.41)

HarmoniCa 20 206.57 4.88 5.91 75.20 58.74 37.50 0.456(×1.44)

DDIM (Song et al., 2020a) 10 159.93 12.16 11.31 67.10 52.27 - 0.332
DDIM (Song et al., 2020a) 9 140.37 16.54 14.44 62.63 50.08 - 0.299(×1.11)

Learning-to-Cache (Ma et al., 2024b) 10 145.09 14.59 11.58 64.03 52.06 19.11 0.279(×1.19)

HarmoniCa 10 151.83 13.35 11.13 65.22 52.18 22.86 0.270(×1.23)

DiT-XL/2 512× 512 (cfg = 1.5)

DDIM (Song et al., 2020a) 20 184.47 5.10 5.79 81.77 54.50 - 3.356
DDIM (Song et al., 2020a) 16 173.31 6.47 6.67 81.10 51.30 - 2.688(×1.25)

Learning-to-Cache (Ma et al., 2024b) 20 178.11 6.24 7.01 81.21 53.30 23.57 2.633(×1.28)

HarmoniCa 20 179.84 5.72 6.61 81.33 55.80 25.98 2.574(×1.30)

Class-conditional generation. We begin our evaluation with DiT-XL/2 on ImageNet and com-
pare it with current SOTA Learning-to-Cache (Ma et al., 2024b) and the approach employing fewer

9Definition can be found in Sec. 3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

timesteps. The results are presented in Tab. 2, where our HarmoniCa surpasses baseline methods.
Notably, with a higher speedup ratio for a 10-step DiT-XL/2 256 × 256, HarmoniCa achieves an
FID of 13.35 and an IS of 151.83, outperforming Learning-to-Cache by 1.24 and 6.74, respectively.
Moreover, the superiority of our HarmoniCa increases as the number of timesteps decreases. We
conjecture that it is because the difficulty to learn a Router rises as the timestep goes up. Addi-
tionally, we further conduct experiments with a lower CUR for this task in Sec. H.

T2I generation. We also present PixArt-α results in Tab. 3, comparing our HarmoniCa against
FORA (Selvaraju et al., 2024) and the method using fewer timesteps. HarmoniCa outperforms
these benchmarks across all metrics. For example, with the 20-step DPM-Solver++, PIXART-α
256 × 256 employing HarmoniCa achieves an FID of 27.61 and speeds up by 1.52×, surpassing
the non-accelerated model’s FID of 27.68. In contrast, DPM-Solver++ with 15 steps and FORA
only achieves FIDs of 31.68 and 38.20, respectively, with speed increases under 1.32×. Notably,
HarmoniCa also cuts about 36% off processing time without dropping performance when using
the IDDPM sampler, while FORA results in over a 20 FID increase and a 15.67% CUR decrease.
Overall, our method consistently delivers superior performance and speedup improvements across
different resolutions and samplers, demonstrating its efficacy. HarmoniCa also significantly outper-
forms ∆-DiT (Chen et al., 2024b), which can be found in Sec. I.

Table 3: Accelerating image generation on MS-COCO for the PIXART-α.

Method T CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

PIXART-α 256× 256 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 30.96 27.68 36.39 - 0.553
DPM-Solver++ (Lu et al., 2022b) 15 30.77 31.68 38.92 - 0.418(×1.32)

FORA (Selvaraju et al., 2024) 20 - 38.20 - 50.00 0.424(×1.30)

HarmoniCa 20 30.93 27.61 37.48 65.02 0.364(×1.52)

IDDPM (Nichol & Dhariwal, 2021) 100 31.25 24.15 33.65 - 2.572
IDDPM (Nichol & Dhariwal, 2021) 75 31.25 24.17 33.73 - 1.868(×1.37)

FORA (Selvaraju et al., 2024) 100 - 55.30 - 50.00 1.889(×1.36)

HarmoniCa 100 31.23 23.79 32.49 65.67 1.641(×1.56)

SA-Solver (Xue et al., 2024) 25 31.31 23.76 34.93 - 0.891
SA-Solver (Xue et al., 2024) 20 31.28 23.96 35.63 - 0.677(×1.31)

HarmoniCa 25 31.29 23.85 35.56 54.31 0.665(×1.34)

PIXART-α 512× 512 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.30 23.96 40.34 - 1.759
DPM-Solver++ (Lu et al., 2022b) 15 31.29 25.12 40.37 - 1.291(×1.36)

HarmoniCa 20 31.30 24.99 40.36 55.01 1.168(×1.51)

PIXART-α 1024× 1024 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.10 25.01 37.80 - 9.470
DPM-Solver++ (Lu et al., 2022b) 15 31.07 25.77 42.50 - 7.141(×1.32)

HarmoniCa 20 31.08 24.76 41.83 59.65 6.289 (×1.51)

5.3 ABLATION STUDIES

In this subsection, we employ a 20-step DDIM (Song et al., 2020a) sampler for DiT-XL/2 256×256
and settings in Sec. 5.1 without special claim.

Table 4: Ablation results of different components. The first row denotes the model w/o feature
cache. The second and last rows denote Learning-to-Cache and HarmoniCa, respectively.

Training Paradigm Learning Objective
IS↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

Learning-to-Cache SDT L(t)
LTC L(t)

IEPO

224.37 3.52 4.96 - 0.658

✔ ✔ 115.00 18.57 16.18 32.68 0.483(×1.36)

✔ ✔ 203.41 5.20 6.07 36.70 0.458(×1.44)

✔ ✔ 166.65 8.01 7.62 34.20 0.471(×1.40)

✔ ✔ 206.67 4.88 5.91 37.50 0.456(×1.44)

Effect of different components. To show the effectiveness of components involved in HarmoniCa,
we apply different combinations of training techniques and show the results in Tab. 4. For the train-
ing paradigm, equipped with L(t)

LTC , our SDT significantly decreases FID by 10 compared to that of
Learning-to-Cache. For the learning objective, our IEPO achieves nearly a 40 IS improvement and a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

3.13 FID reduction for SDT compared with L(t)
LTC . Moreover, both SDT and IEPO can help signifi-

cantly enhance performance for the counterparts in the table. For a fair comparison, we modify the
implementation of Learning-to-Cache to train the entire Router in Tab. 4. A detailed discussion
of this can be found in Sec. J.

200 400 500 600 800 1K 20K
Interval C

4

5

6

7

8

FI
D

0.30

0.35

0.40

0.45

La
te

nc
y

(s
)

Figure 7: Ablation results of iteration inter-
val C. ∅ denotes the model employing L(t)

LTC
as its loss function.

Effect of iteration interval C. As illustrated in
Fig. 7, we carry out experiments to evaluate the im-
pact of varying C values on updating λ(t) in Eq. (8).
Despite similar speedup ratios, using an extreme
C value leads to notable performance degradation.
Specifically, a large C means the proxy λ(t) fails to
accurately and timely reflect the cache mechanism’s
effect on the final image. Conversely, a small C re-
sults in overly frequent updates, complicating train-
ing convergence. Hence, we choose a moderate value of 500 as C in this paper based on its superior
performance, as demonstrated in the figure.

3e 8 5e 8 8e 8 1e 7 1.2e 7 1.5e 7

4

6

8

10

12

FI
D

 Sharp

Gradual

0.3

0.4

0.5

0.6

0.7

La
te

nc
y

(s
)

Figure 8: Ablation results of coefficient β
in Eq. (6). ∅ denotes the model w/o feature
cache.

Effect of coefficient β. We also explore the trade-off
between inference speed and performance for differ-
ent values of β in Eq. (6). As shown in Fig. 8, a
higher β leads to greater acceleration but at the cost
of more pronounced performance degradation, and
vice versa. Notably, performance declines gradu-
ally when β ≤ 8e−8 and more sharply outside this
range. This observation suggests the potential for
autonomously finding an optimal β to balance speed
and performance, which we aim to address in future research.

Effect of different metrics for λ(t). In Tab. 5, we conduct experiments to explore the effect of λ(t)

with different metrics. Both ∥·∥2F and DKL(·) lead to notable performance enhancements compared
to using only the output error (i.e., λ(t) = 1) at each time step. Due to the insensitivity to outliers,∑

| · | is generally less effective for image reconstruction and inferior to the others in Tab. 5.

Table 5: Ablation results of different metrics for λ(t). The first and second columns represent the
model w/o feature cache and SDT+L(t)

LTC , respectively. DKL(·) denotes Kullback–Leibler (KL)
divergence.

λ(t) +∞ 1
∑

|x0 − x
(t)
0 | ∥x0 − x

(t)
0 ∥2F DKL(x0,x

(t)
0)

IS↑ 224.37 166.65 172.08 206.57 205.91

FID↓ 3.52 8.01 6.95 4.88 5.25

sFID↓ 4.96 7.62 7.79 5.91 5.51

CUR(%)↑ - 34.20 34.82 37.50 36.79

Latency(s)↓ 0.658 0.471(×1.40) 0.470(×1.40) 0.456(×1.44) 0.458(×1.44)

6 CONCLUSION

In this research, we focus on accelerating Diffusion Transformers (DiTs) through the cache mech-
anism in a learning-based way. We first identify two discrepancies between training and inference
of the previous method: (1) Prior Timestep Disregard in which earlier step influences are neglected,
leading to inconsistency with inference, and (2) Objective Mismatch, where training focuses on in-
termediate results, misaligning with the final image quality target. To alleviate these discrepancies,
we harmonize training and inference by introducing a novel feature cache framework dubbed Har-
moniCa, which consists of the Step-wise Denoising Training (SDT) and the Image Error-Aware
Optimization Objective (IEPO). SDT captures the influence of all timesteps during training, closing
the gap with the inference stage, while IEPO introduces an efficient proxy for final image error,
ensuring that optimization objectives remain aligned with inference requirements. With the com-
bination of the two components, extensive experiments demonstrate that our framework achieves
superior performance and efficiency with significantly lower training cost compared to the existing
training-based method.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Cheung. Why exposure bias matters:
An imitation learning perspective of error accumulation in language generation. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Findings of the Association for Computa-
tional Linguistics: ACL 2022, pp. 700–710, Dublin, Ireland, May 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.findings-acl.58. URL https://aclanthology.
org/2022.findings-acl.58.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models, 2023. URL https://arxiv.org/abs/2209.
12152.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-\alpha: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. Pixart-\sigma: Weak-to-strong training of diffusion trans-
former for 4k text-to-image generation. arXiv preprint arXiv:2403.04692, 2024a.

Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis,
Yiren Zhao, and Tao Chen. δ-dit: A training-free acceleration method tailored for diffusion
transformers, 2024b. URL https://arxiv.org/abs/2406.01125.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models, 2023. URL
https://arxiv.org/abs/2305.10924.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yefei He, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Efficientdm: Efficient quantization-
aware fine-tuning of low-bit diffusion models, 2024. URL https://arxiv.org/abs/
2310.03270.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium, 2018. URL
https://arxiv.org/abs/1706.08500.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

11

https://aclanthology.org/2022.findings-acl.58
https://aclanthology.org/2022.findings-acl.58
https://arxiv.org/abs/2209.12152
https://arxiv.org/abs/2209.12152
https://arxiv.org/abs/2406.01125
https://arxiv.org/abs/2305.10924
https://arxiv.org/abs/2310.03270
https://arxiv.org/abs/2310.03270
https://arxiv.org/abs/1706.08500

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models, 2022. URL https://arxiv.org/abs/2204.03458.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Yushi Huang, Ruihao Gong, Jing Liu, Tianlong Chen, and Xianglong Liu. Tfmq-dm: Temporal fea-
ture maintenance quantization for diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7362–7371, 2024.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,
2021.

Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. Cutlass: Fast linear algebra in cuda
c++. NVIDIA Developer Blog, 2017.

Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. arXiv preprint
arXiv:2106.00132, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. Commun. ACM, 60(6):84–90, May 2017. ISSN 0001-0782. doi:
10.1145/3065386. URL https://doi.org/10.1145/3065386.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation, 2024a. URL
https://arxiv.org/abs/2402.17245.

Mingxiao Li, Tingyu Qu, Ruicong Yao, Wei Sun, and Marie-Francine Moens. Alleviating exposure
bias in diffusion models through sampling with shifted time steps, 2024b. URL https://
arxiv.org/abs/2305.15583.

Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming
Cheng, and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models.
arXiv preprint arXiv:2312.09608, 2023a.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 17535–17545, 2023b.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015. URL https://arxiv.org/abs/1405.0312.

Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. Oms-dpm: Optimizing the
model schedule for diffusion probabilistic models. In International Conference on Machine
Learning, pp. 21915–21936. PMLR, 2023.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. arXiv preprint arXiv:2202.09778, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

12

https://arxiv.org/abs/2204.03458
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.1145/3065386
https://arxiv.org/abs/2402.17245
https://arxiv.org/abs/2305.15583
https://arxiv.org/abs/2305.15583
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen,
and Yu Qiao. Latte: Latent diffusion transformer for video generation. arXiv preprint
arXiv:2401.03048, 2024a.

Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating
diffusion transformer via layer caching, 2024b. URL https://arxiv.org/abs/2406.
01733.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15762–15772, 2024c.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and
Tijmen Blankevoort. A white paper on neural network quantization, 2021. URL https://
arxiv.org/abs/2106.08295.

Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
sparse representations. arXiv preprint arXiv:2103.03841, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Mang Ning, Enver Sangineto, Angelo Porrello, Simone Calderara, and Rita Cucchiara. Input pertur-
bation reduces exposure bias in diffusion models, 2023. URL https://arxiv.org/abs/
2301.11706.

Mang Ning, Mingxiao Li, Jianlin Su, Albert Ali Salah, and Itir Onal Ertugrul. Elucidating the
exposure bias in diffusion models, 2024. URL https://arxiv.org/abs/2308.15321.

Zizheng Pan, Bohan Zhuang, De-An Huang, Weili Nie, Zhiding Yu, Chaowei Xiao, Jianfei Cai,
and Anima Anandkumar. T-stitch: Accelerating sampling in pre-trained diffusion models with
trajectory stitching. arXiv preprint arXiv:2402.14167, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/2307.01952.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

13

https://arxiv.org/abs/2406.01733
https://arxiv.org/abs/2406.01733
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2301.11706
https://arxiv.org/abs/2301.11706
https://arxiv.org/abs/2308.15321
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/1910.10683

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Florian Schmidt. Generalization in generation: A closer look at exposure bias. In Alexandra Birch,
Andrew Finch, Hiroaki Hayashi, Ioannis Konstas, Thang Luong, Graham Neubig, Yusuke Oda,
and Katsuhito Sudoh (eds.), Proceedings of the 3rd Workshop on Neural Generation and Transla-
tion, pp. 157–167, Hong Kong, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-5616. URL https://aclanthology.org/D19-5616.

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
caching in diffusion transformer acceleration. arXiv preprint arXiv:2407.01425, 2024.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1972–1981, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Jack Urbanek, Florian Bordes, Pietro Astolfi, Mary Williamson, Vasu Sharma, and Adriana Romero-
Soriano. A picture is worth more than 77 text tokens: Evaluating clip-style models on dense
captions, 2024. URL https://arxiv.org/abs/2312.08578.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deep-
net: Scaling transformers to 1,000 layers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024a.

Kafeng Wang, Jianfei Chen, He Li, Zhenpeng Mi, and Jun Zhu. Sparsedm: Toward sparse efficient
diffusion models. arXiv preprint arXiv:2404.10445, 2024b.

Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for image quality
assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003,
volume 2, pp. 1398–1402. Ieee, 2003.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom
Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerat-
ing diffusion models through block caching. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6211–6220, 2024.

Junyi Wu, Haoxuan Wang, Yuzhang Shang, Mubarak Shah, and Yan Yan. Ptq4dit: Post-training
quantization for diffusion transformers, 2024. URL https://arxiv.org/abs/2405.
16005.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
Advances in Neural Information Processing Systems, 36, 2024.

Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhi-Ming
Ma. Sa-solver: Stochastic adams solver for fast sampling of diffusion models. Advances in Neural
Information Processing Systems, 36, 2024.

Zhihang Yuan, Pu Lu, Hanling Zhang, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan,
Guohao Dai, and Yu Wang. Ditfastattn: Attention compression for diffusion transformer models.
arXiv preprint arXiv:2406.08552, 2024.

14

https://aclanthology.org/D19-5616
https://arxiv.org/abs/2312.08578
https://arxiv.org/abs/2405.16005
https://arxiv.org/abs/2405.16005

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Dingkun Zhang, Sijia Li, Chen Chen, Qingsong Xie, and Haonan Lu. Laptop-diff: Layer pruning
and normalized distillation for compressing diffusion models. arXiv preprint arXiv:2404.11098,
2024.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

Qinsheng Zhang, Molei Tao, and Yongxin Chen. gddim: Generalized denoising diffusion implicit
models. arXiv preprint arXiv:2206.05564, 2022.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric, 2018. URL https://arxiv.org/abs/
1801.03924.

15

https://arxiv.org/abs/1801.03924
https://arxiv.org/abs/1801.03924

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendix
We organize the appendix as follows.

• In Sec. A, we provide the detailed procedure of HarmoniCa.
• In Sec. B, we analyze why directly employing the final image error with a regularization term as

the loss function is not feasible.
• In Sec. C, we investigate the optimization deviation of overlooking the final image error during

training.
• In Sec. D, we introduce more details about implementation and other hyper-parameters.
• In Sec. E, we adapt HarmoniCa to PIXART-Σ and show the promising performance.
• In Sec. F, we combine the quantization with HarmoniCa to show further acceleration.
• In Sec. G, we introduce the implementation details of model quantization employed in Sec. F.
• In Sec. H, we compare HarmoniCa with Learning-to-Cache under a relatively low CUR(%).
• In Sec. I, we compare HarmoniCa with ∆-DiT.
• In Sec. J, we compare HarmoniCa with Learning-to-Cache with different sampling strategies.
• In Sec. K, we conduct experiments comparing HarmoniCa with additional caching-based acceler-

ation methods.
• In Sec. L, we compare HarmoniCa with quantization and pruning methods.

• In Sec. M, we conduct more experiments on different metrics for image error proxy λ(t).
• In Sec. N, we study the effect of applying the trained Router to a different sampler.
• In Sec. O, we compare HarmoniCa with Learning-to-Cache as the speedup ratio increases.
• In Sec. P, we conduct more experiments with SA-Solver under different configurations to show

the effectiveness of HarmoniCa.
• In Sec. Q, we show the remarkable performance and acceleration ratio achieved by HarmoniCa

on more high-quality datasets with additional metrics.
• In Sec. R, we provide ablation results of HarmoniCa across different thresholds τ .
• In Sec. S, we show quantitative comparison (Fig. C and D) with some analysis.
• In Sec. T, we show more visualization results (Fig. E to K) across different model series and

resolutions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A ALOGRITHM OF HARMONICA

As described in Alg. 1, we provide a detailed algorithm of our HarmoniCa. For clarity, we omit the
pre-fill stage (i.e., denoising at T), where RouterT : is forced to be set to {1}1×N . The conds for
T2I tasks and class-conditional generation are pre-prepared text prompts and class labels, respec-
tively.

Algorithm 1 HarmoniCa: the upper snippet describes the full procedure, and the lower side contains
the subroutine for computing the proxy of the final image error.
func HARMONICA(ϕ, ϵθ,iters,conds, τ, β, T,C)
Require: ϕ(·) — diffusion sampler

ϵθ(·) — DiT model
iters — amount of training iterations
conds — conditional inputs
τ — threshold
β — constraint coefficient
T — maximum denoising step
C — iteration interval

1: Initialize Router with a normal distribution
2: cache = ∅ ▷ Initialize cache
3: for i in 0 to iters

T
− 1 do:

4: xT ∼ N (0, I)
5: if i% C

T
= 0 then

6: {λ(1), . . . , λ(T)} = gen proxy(ϕ, ϵθ,xT ,conds[i], τ,Router)
7: end if
8: for t in T to 1 do:
9: ϵ(t)

′
= ϵθ(xt, t,conds[i],Routert,:, τ,cache) ▷ Fig. 2

10: ϵ(t) = ϵθ(xt, t,conds[i])

11: L(t)
IEPO = λ(t)∥ϵ(t)

′
− ϵ(t)∥2F + β

∑N−1
i=0 r(t)

i ▷ Eq. (6)
12: Tune Routert,: by back-propagation
13: xt−1 = ϕ(xt, t, ϵ

(t)′)
14: end for
15: end for
16: return Router
func gen proxy(ϕ, ϵθ,xT ,cond, τ,Router)
1: cache = ∅ ▷ Initialize cache
2: Employ feature cache guided by Router to generate x0

3: for t in T to 1 do:
4: Generate M(t) ▷ Eq. (7)
5: Employ feature cache guided by Router⊙M(t) to generate x

(t)
0

6: λ(t) = ∥x0 − x
(t)
0 ∥2F ▷ Eq. (8)

7: end for
8: return {λ(1), λ(2), . . . , λ(T)}

B IMAGE ERROR WITH ROUTER REGULARIZATION TERM AS TRAINING
OBJECTIVE

In Tab. A, SDT+L(t)
x0 requires t − 1 additional denoising passes per training iteration at t to com-

pute the error of x0. Consequently, this approach consumes about ×9.73 GPU hours compared to
SDT+L(t)

LTC . Due to the extensive intermediate activations stored from timestep t to 1 for back-
propagation, it also costs ×4.90 GPU memory. This estimation is conducted with small batch sizes
and limited iterations. Therefore, SDT+L(t)

x0 is less feasible for models with larger latent spaces
or higher token counts per image, such as DiT-XL/2 512 × 512, particularly in large-batch, com-
plete training scenarios. Additionally, the network effectively becomes T ×N stacked Transformer
blocks under this strategy, making it difficult (Wang et al., 2024a) to optimize the Router with
even a moderate T value, such as 50 or 100.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table A: Training costs estimation across different methods for DiT-XL/2 256×256 (Peebles & Xie,
2023) (T = 20). We only employ 5K iterations with a global batch size of 8 on 4 NVIDIA H800
80G GPUs. L(t)

x0 denotes the loss function replacing L(t)
MSE in Eq. (4) with the final image error.

Method #Images Time(h) Memory(GB/GPU)

SDT+L(t)
x0 0 1.46 65.36

SDT+L(t)
LTC 0 0.15 13.33

C OPTIMIZATION DEVIATION

135791113151719
T 1 1

10 5

10 4

10 3

10 2

10 1

(t) M
SE

0th Epoch

200th Epoch

400th Epoch

600th Epoch

800th Epoch

999th Epoch 10 7

10 6

10 5

10 4

10 3

10 2

(t)

FID: 8.01, CUR(%): 34.20

0 55b0 bN 1

1

20

T
1

(a) SDT+L(t)
LTC

FID: 4.88, CUR(%): 37.50

0 55b0 bN 1

1

20

T
1

(b) HarmoniCa

Figure A: (Left) Variations of L(t)
MSE and λ(t) for SDT+L(t)

LTC . (Right) Router visualization
across different methods. The gray grid (t, i) represents using the feature in cache at t with-
out computing oi. The white grid indicates computing and updating cache. We also mark
their FID (Heusel et al., 2018) and CUR. All the above experiments employ DiT-XL/2 256 × 256
(T = 20, N = 56).

To generate high-quality x0 and accelerate the inference phase, we believe only considering the
output error at a certain timestep can cause a deviated optimization due to its gap w.r.t the error of
x0. To validate this, we plot the values of L(t)

MSE in Eq. (4) and λ(t) in Eq. (8) during the training
phase of SDT+L(t)

LTC in Fig. A (Left). Comparing L(t)
MSE and λ(t) across different denoising steps,

their results present a significant discrepancy. For instance, L(t)
MSE at t = 14 is several orders of

magnitude smaller than that at t = 1 during the entire training process, and the opposite situation
happens for λ(t). Intuitively, this indicates that we could increase the cache usage rate at t = 1, and
vice versa at t = 14 for higher performance while keeping the same speedup ratio according to the
value of the proxy λ(t). However, only considering the output error at each timestep (i.e., L(t)

MSE)
can optimize towards a shifted direction. In practice, the learned Router with the guidance of λ(t)

in Fig. A (Right) (b) caches less in large timesteps like t = 14 and reuses more in small timesteps
as t = 1 compared to that in Fig. A (Right) (a) achieving significant performance enhancement.

D MORE IMPLEMENTATION DETAILS

In this section, we present more details on the implementation of our HarmoniCa. First, following
Ma et al. (2024b), we also perform a sigmoid function 10 to each rt,i before it is passed to the model.
Moreover, unless specified otherwise, the hyper-parameter β in Eq. (6) for all experiments is given
in Tab. B; any exceptions are noted in the relevant tables.

10σ(x) = 1
1+e−x

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table B: Hyper-parameter β for training the Router.

Model DiT-XL/2 PIXART-α PIXART-Σ

Resolution 256× 256 512× 512 256× 256 512× 512 1024× 1024 512× 512 1024× 1024 2048× 2048

T 10 20 50 20 20 100 25 20 20 20 20 20

β 7e−8 8e−8 5e−8 4e−8 1e−3 8e−4 8e−4 8e−4 8e−4 1e−3 8e−4 8e−4

E RESULTS FOR PIXART-Σ

In this section, we present the results for the PIXART-Σ family, including PIXART-Σ-XL/2-512-MS,
PIXART-Σ-XL/2-1024-MS, and PIXART-Σ-XL/2-2K-MS. For the latter one, we test by sampling
10K images. Additionally, we train the Router with a batch size of 16 and measure latency using
a batch size of 1. All other settings are consistent with those described in Sec. 5.1.

As shown in Table C, HarmoniCa achieves a ×1.51 speedup along with improved CLP scores and
sFID compared to the non-accelerated model for PIXART-Σ 2048 × 2048. Notably, this is the
first time for the feature cache mechanism to accelerate image generation with such a super-high
resolution of 2048× 2048.

Table C: Accelerating image generation on MS-COCO for the PIXART-Σ.

Method T CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

PIXART-Σ 512× 512 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.20 26.81 42.79 - 1.912

DPM-Solver++ (Lu et al., 2022b) 15 31.23 25.99 42.08 - 1.435(×1.34)

HarmoniCa 20 31.31 24.30 42.73 65.43 1.206(×1.59)

PIXART-Σ 1024× 1024 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.37 20.98 27.47 - 9.467

DPM-Solver++ (Lu et al., 2022b) 15 31.34 21.63 28.68 - 7.100(×1.33)

HarmoniCa 20 31.36 20.94 27.25 59.52 6.432(×1.47)

PIXART-Σ 2048× 2048 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.19 23.61 51.12 - 14.198

DPM-Solver++ (Lu et al., 2022b) 15 31.26 24.40 53.34 - 9.782(×1.45)

HarmoniCa 20 31.36 23.88 53.25 58.29 9.410(×1.51)

F COMBINATION WITH QUANTIZATION

In this section, we conduct experiments to show the high compatibility of our HarmoniCa with the
model quantization technique. In Tab. D, our method boosts a considerable speedup ratio from
×1.18 to ×1.77 with only a 0.16 FID increase for PIXART-α 256× 256. In the future, we will ex-
plore combining our HarmoniCa with other acceleration techniques, such as pruning and distillation,
to further reduce the computational demands for DiT.

G EXPERIMENTAL DETAILS FOR QUANTIZATION

In Sec. F, we employ 8-bit channel-wise weight quantization and 8-bit layer-wise activation quanti-
zation for full-precision (FP32) DiT-XL/2 and half-precision (FP16) PIXART-α. The former uses a
20-step DDIM sampler (Song et al., 2020a), while the latter employs a DPM-Solver++ sampler (Lu
et al., 2022b) with the same steps. More specifically, we use MSE initialization (Nagel et al., 2021)
for quantization parameters. For the quantization-aware fine-tuning stage, we set the learning rate of
LoRA (Hu et al., 2021) and activation quantization parameters to 1e−6 and that of weight quantiza-
tion parameters to 1e−5, respectively. Additionally, we employ 3.2K iterations for DiT-XL/2 (Pee-
bles & Xie, 2023) and 9.6K iterations for PIXART-α (Chen et al., 2023) on a single NVIDIA H800

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table D: Results of the combination of our framework and an advanced quantization method: Effi-
cientDM (He et al., 2024). IS↑ is for the former and CLIP↑ is for the latter in the table. Experimental
details for quantization can be found in Sec. G. We mark the speedup ratio and the compression ratio
in the brackets.

Method IS↑/CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓ #Size(GB)↓

DiT-XL/2 256× 256 (cfg = 1.5)

EfficientDM (He et al., 2024) 172.70 6.10 4.55 - 0.591(×1.11) 0.64(×3.93)

+HarmoniCa (β = 4e−8) 168.16 6.48 4.32 26.25 0.473(×1.40) 0.64(×3.93)

PIXART-α 256× 256 (cfg = 4.5)

EfficientDM (He et al., 2024) 30.09 34.84 30.34 - 0.469(×1.18) 0.59(×1.98)

+HarmoniCa 30.23 35.00 31.38 53.34 0.301(×1.77) 0.59(×1.98)

PIXART-α 512× 512 (cfg = 4.5)

EfficientDM (He et al., 2024) 30.71 25.82 41.64 - 0.461(×1.20) 0.59(×1.98)

+HarmoniCa 30.65 26.90 42.82 54.31 0.296(×1.80) 0.59(×1.98)

80G GPU. Other settings are the same as those from the original paper (He et al., 2024). Leverag-
ing NVIDIA CUTLASS (Kerr et al., 2017) implementation, we evaluate the latency of quantized
models employing the 8-bit multiplication for all the linear layers and convolutions.

H COMPARISON BETWEEN LEARNING-TO-CACHE AND HARMONICA WITH
A LOW CUR(%)

In this section, we compare HarmoniCa with Learning-to-Cache (Ma et al., 2024b) at a relatively
low CUR(%). As shown in Tab. E, both methods achieve a similar speedup ratio and even better
performance than non-accelerated models. Therefore, we employ higher CUR in Tab. 2 to show our
pronounced superiority.

Table E: Comparison results between Learning-to-Cache and HarmoniCa for the DiT-XL/2 with a
low CUR(%).

Method T IS↑ FID↓ sFID↓ Prec.↑ Recall↑ CUR(%)↑ Latency(s)↓

DiT-XL/2 256× 256 (cfg = 1.5)

DDIM (Song et al., 2020a) 20 224.37 3.52 4.96 78.47 58.33 - 0.658

DDIM (Song et al., 2020a) 15 214.77 4.17 5.54 77.43 56.30 - 0.564(×1.17)

Learning-to-Cache (Ma et al., 2024b) 20 228.19 3.49 4.66 79.32 59.10 22.05 0.545(×1.21)

HarmoniCa (β = 3e−8) 20 228.79 3.51 4.76 79.43 59.32 21.07 0.547(×1.20)

DiT-XL/2 512× 512 (cfg = 1.5)

DDIM (Song et al., 2020a) 20 184.47 5.10 5.79 81.77 54.50 - 3.356

DDIM (Song et al., 2020a) 18 180.06 5.62 6.13 81.37 53.90 - 3.021(×1.11)

Learning-to-Cache (Ma et al., 2024b) 20 183.57 5.45 6.05 82.10 54.90 14.64 2.927(×1.15)

HarmoniCa (β = 2e−8) 20 183.71 5.32 5.84 81.83 55.80 16.61 2.863(×1.17)

I COMPARISON BETWEEN ∆-DIT AND HARMONICA

In this section, we compare HarmoniCa with ∆-DiT (Chen et al., 2024b). Given that the code and
implementation details of ∆-DiT 11 are not open source, we report results derived from the original
paper. Additionally, we evaluate performance sampling 5000 images as used in that study. As
depicted in Tab F, our framework further decreases 20% latency and gains 3.52 IS improvement
compared with ∆-DiT for PIXART-α with a 20-step DPM-Solver++ sampler (Lu et al., 2022b).

11∆-DiT presents the speedup ratio based on multiply-accumulate operates (MACs). Here we report the
results according to the latency in that study.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table F: Comparison results between ∆-DiT and HarmoniCa on on MS-COCO for PIXART-α 1024
× 1024.

Method T CLIP↑ FID↓ IS↑ CUR(%)↑ Speedup↑

PIXART-α 1024× 1024 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.07 31.98 41.30 - -

DPM-Solver++ (Lu et al., 2022b) 13 31.04 33.29 39.15 - ×1.54

∆-DiT (Chen et al., 2024b) 20 30.40 35.88 32.22 37.49 ×1.49

HarmoniCa (β = 1e−3) 20 31.08 32.97 40.67 62.31 ×1.63

J COMPARISON BETWEEN LEARNING-TO-CACHE WITH DIFFERENT
SAMPLING STRATEGIES

For the implementation details 12, Learning-to-Cache uniformly samples an even timestep t during
each training iteration 13, as opposed to sampling any timestep from the set {1, . . . , T} as mentioned
in Alg. 1 of its original paper. Consequently, according to Fig. 3, only rt,i, where t is an odd
timestep, is learnable, while the remaining values are set to one. We compare Learning-to-Cache
under different sampling strategies (i.e., sampling an even timestep or without this constraint for each
training iteration) against HarmoniCa. As shown in Tab. G, our framework—whether training the
entire Router or only parts of it (similar to the Learning-to-Cache implementation)—consistently
outperforms Learning-to-Cache regardless of the sampling strategy.

It should be noted that the experiments in Sec. 5, with the exception of those in Tab. 4, use an imple-
mentation that uniformly samples an even timestep t during each training iteration. This approach
achieves significantly higher performance compared to sampling without constraints.

Table G: Comparison results between Learning-to-Cache with different sampling strategies and Har-
moniCa for the DiT-XL/2 256 × 256. “♣” denotes that only parts of the Router corresponding
to odd timesteps are learnable and the remaining values are set to one (i.e., disable reusing cached
features).

Method T IS↑ FID↓ sFID↓ Prec.↑ Recall↑ CUR(%)↑ Latency(s)↓

DiT-XL/2 256× 256 (cfg = 1.5)

DDIM (Song et al., 2020a) 20 224.37 3.52 4.96 78.47 58.33 - 0.658

Learning-to-Cache (Ma et al., 2024b) 20 115.00 18.57 16.18 60.35 62.98 32.68 0.483(×1.36)

Learning-to-Cache♣ (Ma et al., 2024b) 20 201.37 5.34 6.36 75.04 56.09 35.60 0.468(×1.41)

HarmoniCa♣ (β = 3.5e−8) 20 205.39 4.86 5.92 75.06 57.97 36.07 0.463(×1.42)

HarmoniCa 20 206.57 4.88 5.91 75.20 58.74 37.50 0.456(×1.44)

K COMPARISON BETWEEN HARMONICA AND ADDITIONAL
CACHING-BASED METHODS

To highlight HarmoniCa’s advantages, we compare it with DeepCache (Ma et al., 2024c) and Faster
Diffusion (Li et al., 2023a) on a single A6000 GPU. Due to the partial open-sourcing of the compared
methods and the lack of implementation details, we directly report their results from Learning-
to-Cache. As shown in Tab. H, HarmoniCa achieves a minimal FID increase of less than 0.05,
while providing a 1.65× speedup, outperforming both Faster Diffusion and DeepCache. Notably,
DeepCache is constrained by the U-shaped structure, making it unsuitable for DiTs.

12Let T be an even number here.
13https://github.com/horseee/learning-to-cache/blob/main/DiT/train_

router.py#L244-L247

21

https://github.com/horseee/learning-to-cache/blob/main/DiT/train_router.py#L244-L247
https://github.com/horseee/learning-to-cache/blob/main/DiT/train_router.py#L244-L247

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table H: Comparison between different caching-based approaches. We use U-ViT (Bao et al., 2023)
on ImageNet 256×256 here.

Method T FID↓ Latency(s)↓

DPM-Solver (Lu et al., 2022a) 20 2.57 7.60

Faster Diffusion (Li et al., 2023a) 20 2.82 5.95(×1.28)

DeepCache (Ma et al., 2024c) 20 2.70 4.68(×1.62)

HarmoniCa 20 2.61 4.60(×1.65)

L COMPARISON BETWEEN HARMONICA AND ADDITIONAL ACCELERATION
METHODS

As shown in Tab. I, we compare our HarmoniCa with advanced quantization and pruning methods.
Our method significantly outperforms these methods, demonstrating the substantial benefit of feature
cache for accelerating DiT models. It is important to note that the speedup ratio for quantization
is partially determined by hardware support which we do not rely on and the current customized
CUDA kernel often lacks optimization on H800’s Hopper architecture. Additionally, our method
is orthogonal to these approaches, meaning it can be combined with them for further acceleration
(results of EfficientDM + HarmoniCa have been presented in Sec. F). We believe the significant
performance drop of PTQ4DiT here results from a small-sampling-step DDIM sampler. A 50/250-
step DDPM sampler is used in the original paper.

Experimental details: We employ the bit-width of w8a8 for quantization. Specifically, the im-
plementation details for EfficientDM can be found in Sec. G. For PTQ4DiT, we implemented the
DDIM sampler and re-run the open-source code, which originally only supported DDPM. For Diff-
pruning, we re-implement the method for the DiT model (which originally only supported U-Net
models) and follow the settings specified in the original paper. For quantization, latency tests were
conducted with the w8a8 multiplication from He et al. (2024).

Table I: Comparison between different acceleration approaches. We use DiT-XL/2 on ImageNet
256×256 here. “*” denotes the latency was tested on one A100 GPU.

Method T IS↑ FID↓ sFID↓ Latency(s)↓ Latency(s)↓*

DDIM (Zhang et al., 2022) 20 224.37 3.52 4.96 0.658 1.217

EfficientDM (He et al., 2024) 20 172.70 6.10 4.55 0.591(×1.11) 0.842(×1.45)

PTQ4DIT (Wu et al., 2024) 20 17.06 71.82 23.16 0.577(×1.14) 0.839(×1.45)

Diff-pruning (Fang et al., 2023) 20 168.10 8.22 6.20 0.458(×1.44) 0.813(×1.50)

HarmoniCa 20 206.57 4.88 5.91 0.456(×1.44) 0.815(×1.49)

M ADDITIONAL METRICS FOR THE IMAGE-ERROR PROXY λ(t)

As shown in Tab. J, under the same speedup ratio, we further test MS-SSIM (Wang et al., 2003)
and LPIPS (Zhang et al., 2018) (AlexNet (Krizhevsky et al., 2017) to extract image features) which
are designed to evaluate natural image quality as metrics for λ(t). These metrics exhibit comparable
performance compared with ∥·∥2F . For instance, LPIPS slightly outperforms in FID and sFID, while
∥ · ∥2F marginally excels in IS.

Table J: Effect of additional different metrics for λ(t). We use DiT-XL/2 on ImageNet 256×256
with a 20-step DDIM sampler here.

λ(t) ∥x0 − x
(t)
0 ∥2F 1− MS-SSIM(x0, x

(t)
0) LPIPS(x0, x

(t)
0)

IS↑ 206.57 204.72 205.83

FID↓ 4.88 4.91 4.83

sFID↓ 5.91 5.83 5.57

CUR(%)↑ 37.50 37.68 37.32

Latency↓ 0.456(×1.44) 0.456(×1.44) 0.456(×1.44)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

N APPLY THE TRAINED ROUTER TO A DIFFERENT SAMPLER FROM
TRAINING DURING INFERENCE

As shown in Tab. K, the Router trained with one diffusion sampler can indeed be applied to
a different sampler, such as DPM-Solver++→Sa-Solver (6th row) and IDDPM→DPM-Solver++
(10th row). However, the performance of these trials is much worse than the standard HarmoniCa.
We believe this is due to the discrepancies in sampling trajectories and noise scheduling between
the two samplers, which need to be accounted for during the Router training. In other words, the
sampler used for training should match the one used during inference to improve the performance.

Table K: Results of applying the trained Router to a different sampler from training during infer-
ence. “A→B” denotes the Router trained with the sampler “A” is directly used during inference
with the sampler “B”.

Method T CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

PIXART-α 256× 256 (cfg = 4.5)

SA-Solver (Xue et al., 2024) 20 31.28 23.96 35.63 - 0.677

SA-Solver (Xue et al., 2024) 16 31.16 26.27 39.28 - 0.520(×1.30)

HarmoniCa 20 31.23 24.17 35.98 42.12 0.516(×1.31)

HarmoniCa (DPM-Solver++→ SA-Solver) 20 31.18 25.99 37.94 40.98 0.523(×1.29)

DPM-Solver++ (Lu et al., 2022b) 100 31.30 25.01 35.42 - 2.701

DPM-Solver++ (Lu et al., 2022b) 73 31.27 25.16 36.11 - 2.005(×1.35)

HarmoniCa 100 31.35 24.96 35.19 51.89 1.998(×1.35)

HarmoniCa (IDDPM→DPM-Solver++) 100 31.22 25.43 39.84 50.98 2.002(×1.35)

O PERFORMANCE COMPARISON WITH THE INCREASE OF THE SPEEDUP
RATIO

1.1 1.2 1.3 1.4 1.5 1.6
Speedup Ratio

80

100

120

140

160

IS

Learning-to-Cache
HarmoniCa

1.1 1.2 1.3 1.4 1.5 1.6
Speedup Ratio

15

20

25

30

35

40

FI
D

Figure B: IS/FID with the increase of the speedup ratio for different methods. We employ DiT-XL/2
with a 10-step DDIM sampler on ImageNet 256× 256.

To emphasize the significant advantage of our method over Learning-to-Cache, we present the IS and
FID results as the speedup ratio increases for both Learning-to-Cache and our HarmoniCa in Fig. B.
As the speedup ratio grows, the gap between Learning-to-Cache and our approach widens substan-
tially. Specifically, with a speedup ratio of approximately 1.6, HarmoniCa achieves substantially
higher IS and lower FID scores, 30.90 and 12.34, respectively, compared to Learning-to-Cache.
Furthermore, our method consistently outperforms Learning-to-Cache across all speedup ratios.

P ADDITIONALLY RESULTS OF HARMONICA WITH SA-SOLVER

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Regarding the comparison with SA-Solver, we conducted additional experiments to highlight Har-
moniCa’s advantages. In Tab. K, we use fewer denoising steps (20 steps, compared to 25 in the main
texts). With a similar latency, our method outperforms the 16-step Sa-Solver by 2.10 FID and 3.30
sFID (4th row vs. 5th row). In Tab. L, we test our method with higher resolutions. As resolution in-
creases, HarmoniCa delivers more pronounced benefits than the fewer-step Sa-Solver. Specifically,
HarmoniCa achieves lower FID and sFID, and a higher CLIP score with a 1.46× speedup over the
non-accelerated model. In contrast, the 20-step Sa-Solver performs worse than the non-accelerated
model, with a 1.30× speedup.

Table L: HarmoniCa +SA-Solver for high resolution image generation on MS-COCO captions.

Method T CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

PIXART-α 512× 512 (cfg = 4.5)

SA-Solver (Xue et al., 2024) 25 31.23 25.43 39.84 - 2.263

SA-Solver (Xue et al., 2024) 20 31.19 25.85 40.08 - 1.738(×1.30)

HarmoniCa 25 31.24 24.44 39.87 52.04 1.611(×1.40)

PIXART-α 1024× 1024 (cfg = 4.5)

SA-Solver (Xue et al., 2024) 25 31.05 23.65 38.12 - 11.931

SA-Solver (Xue et al., 2024) 20 31.02 23.88 39.41 - 9.209(×1.30)

Harmonica 25 31.10 23.52 37.89 52.46 8.151(×1.46)

Q RESULTS OF T2I GENERATION ON ADDITIONAL DATASETS AND METRICS

Table M: Accelerating image generation on MJHQ-30K (Li et al., 2024a) and sDCI (Urbanek et al.,
2024) for the PIXART-α. We sample 30K images for MJHQ-30K and 5K images for sDCI. “IR”
denotes Image Reward.

Method T

MJHQ sDCI

Latency (s)↓Quality Similarity Quality Similarity

FID↓ IR↑ CLIP↑ LPIPS↓ PSNR↑ FID↓ IR↑ CLIP↑ LPIPS↓ PSNR↑

PIXART-α 512× 512 (cfg = 4.5)

DPM-Solver 20 7.04 0.947 26.04 - - 11.47 0.994 25.22 - - 1.759

DPM-Solver 15 7.45 0.899 26.02 0.138 21.41 11.55 0.876 25.19 0.178 19.85 1.291(×1.36)

HarmoniCa 20 7.01 0.955 26.04 0.129 22.09 11.49 0.951 25.22 0.171 20.01 1.168(×1.51)

PIXART-α 1024× 1024 (cfg = 4.5)

DPM-Solver 20 6.24 0.966 26.23 - - 10.96 0.986 25.56 - - 9.470

DPM-Solver 15 6.49 0.921 26.18 0.107 23.98 11.22 0.942 25.51 0.186 18.44 7.141(×1.32)

HarmoniCa 20 6.31 0.944 26.21 0.101 25.01 11.09 0.979 25.54 0.175 20.42 6.289(×1.51)

In addition to the evaluations on ImageNet and MS-COCO, we conducted further tests using the
high-quality MJHQ-30K (Li et al., 2024a) and sDCI (Urbanek et al., 2024) datasets with PixArt-α
models. We added several metrics, including Image Reward (Xu et al., 2024), LPIPS (Learned Per-
ceptual Image Patch Similarity) (Zhang et al., 2018), and PSNR (Peak Signal-to-Noise Ratio). The
results, summarized in the following table, demonstrate that HarmoniCa consistently outperforms
DPM-Solver across all metrics on both the MJHQ and sDCI datasets. For instance, at the 512×512
resolution, HarmoniCa achieves an FID of 7.01 on the MJHQ dataset, which is lower than the 7.04
FID of DPM-Solver with 20 steps, indicating better image quality. Additionally, under the same
configuration, HarmoniCa achieves a PSNR of 22.09, compared to DPM-Solver’s 21.41 with 15
steps, reflecting better numerical similarity.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

R SENSITIVITY OF HARMONICA TO THE VALUE OF THE THRESHOLD τ

We conduct an ablation study on different values of the caching threshold τ ∈ [0, 1), as shown in
Tab. N. The results demonstrate that HarmoniCa is robust w.r.t variations in τ .

Table N: Performance of HarmoniCa across different values of τ ∈ [0, 1) (τ is the router threshold
as described in Sec. 3). We employ DiT-XL/2 on ImageNet 256× 256 here.

τ T IS↑ FID↓ sFID↓ Latency(s)↓

0.1 10 151.83 13.35 11.13 0.270(×1.23)

0.5 10 151.80 13.41 11.09 0.269(×1.23)

0.9 10 151.78 13.37 11.08 0.270(×1.23)

S QUALITATIVE COMPARISON & ANALYSES

As shown in Fig. C and D, we provide qualitative comparison between HarmoniCa and other base-
lines, e.g., Learning-to-Cache (Ma et al., 2024b), FORA (Selvaraju et al., 2024), and the fewer-step
sampler. Our HarmoniCa with a higher speedup ratio can generate more accurate details, e.g., 2nd
column of Fig. D (d) vs. (b) and objective-level traits, e.g., 2nd column of Fig. C (d) vs. (c).

(a) 20-step DDIM sampler

(b) 14-step DDIM sampler (×1.41)

(c) Learning-to-Cache (×1.41)

(d) HarmoniCa (×1.44)

Figure C: Random samples from DiT-XL/2 256×256 (Chen et al., 2023) with different acceleration
methods. The resolution of each sample is 256 × 256. We employ cfg = 4 here for better visual
results. Key differences are highlighted using rectangles with various colors.

T VISUALIZATION RESULTS

As demonstrated in Figures E to K, we present random samples from both the non-accelerated
DiT models and ones equipped with HarmoniCa, using a fixed random seed. Other settings are
the same as mentioned in the former experiments. Our approach not only significantly accelerates
inference but also produces results that closely resemble those of the original model. For a detailed
comparison, zoom in to closely examine the relevant images.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

“Hello kitty cake surrounded
by strawberries and kukohon,

in the style of camille
pissarro, yanjun cheng, bella
kotak, iso 200, oshare kei,

caninecore, meticulous design”

“The small fluffy Corgi is
sitting among some flowers
and mountains background ,

in the style of matte
painting, happy facial

expression, gongbi, white
and cyan, movie still, eye
catching detail, textured
shading culture infused”

“Landscape photography, clean
sharp focus, hyperrealist

photography, real photography,
wide full body angle,

editorial, luxury reort pool
in Positano, Italy, 24mm

Kodak film. dramatic
backlighting, sunny, bright,
vibrant and colorful, soft

body, portra 800 ISO, medium
format grain, realistic,

sharp focus, vintage feel”

“Simple 8bit pixel art, an
astronomical observatory with
open dome slit on the peak of
a mountain at dusk, lit by

the glow of stars and planets
emerging at the retreat of

the setting sun, a beautiful
landscape on the valley below,
in the style of video game
detailed 8bit pixel art,

photography”

(a) 20-step DPM-Solver

(b) 15-step DPM-Solver (×1.36)

(c) FORA (×1.34)

(d) HarmoniCa (×1.51)

Figure D: Random samples from PIXART-α 512×512 (Chen et al., 2023) with different acceleration
methods. The resolution of each sample is 512× 512.

(a) DiT-XL/2 w/o feature cache

(b) HarmoniCa (×1.44)

Figure E: Random samples from (a) non-accelerated and (b) accelerated DiT-XL/2 256×256 (Chen
et al., 2023) with a 20-step DDIM sampler (Song et al., 2020a). The resolution of each sample is
256× 256. We mark the speedup ratio in the brackets.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) DiT-XL/2 w/o feature cache

(b) HarmoniCa (×1.30)

Figure F: Random samples from (a) non-accelerated and (b) accelerated DiT-XL/2 512×512 (Chen
et al., 2023) with a 20-step DDIM sampler (Song et al., 2020a). The resolution of each sample is
512× 512.

“A cozy wooden
cabin perched on
the side of a

mountain,
overlooking a vast
valley. The sun is
setting, casting a
golden glow over
the cabin and the

surrounding
landscape. Smoke
rises from the

chimney, and the
scene feels warm
and inviting.”

“A peaceful oasis
in the middle of an

endless desert,
with palm trees

reflecting in the
crystal-clear water.
The early morning
sun is rising,

casting a golden
glow over the sand
dunes, while the
sky transitions

from deep blue to
vibrant orange.”

“A nighttime scene
of a festival where
hundreds of glowing
lanterns float down
a river, their warm
light reflecting on
the water. People

stand on the banks,
watching the

lanterns drift by,
with fireworks

lighting up the sky
above.”

“A dense forest at
night, illuminated
by the glow of the

full moon.
Fireflies dance in
the air, creating
soft, flickering
lights among the
trees. The forest

floor is covered in
moss and ferns, and

the scene feels
magical and
tranquil.”

“An old, grand
Victorian library

with tall
bookshelves filled
with leather-bound
books. Sunlight

streams in through
large stained-glass
windows, casting
colorful patterns
on the floor. A
sense of history

and knowledge fills
the air.”

(a) PIXART-α w/o feature cache

(b) HarmoniCa (×1.52)

Figure G: Random samples from (a) non-accelerated and (b) accelerated PIXART-α 256×256 (Chen
et al., 2023) with a 20-step DPM-Solver++ sampler (Lu et al., 2022b). The resolution of each sample
is 256× 256. Text prompts are exhibited above the corresponding images

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

“A floating crystal
palace high above the
clouds, with intricate
spires and towers made

of transparent,
glowing crystals. The
sky is filled with

radiant sunlight, and
the clouds below

reflect the palace's
brilliance, creating a

heavenly, magical
scene.”

“Two samurais clad in
futuristic, neon-

infused armor face off
in a high-tech dojo.
Their glowing katanas
clash as electric

sparks fly. The scene
is set against a

backdrop of towering
city buildings and a

bright, cyberpunk night
sky.”

“A massive dragon with
shimmering scales

glides over a dense,
enchanted forest. Its
wings create powerful

gusts of wind,
rustling the treetops
below. The dragon’s
scales reflect the
sunlight, creating a
dazzling, majestic

spectacle.”

“In the depths of a
dark, shadowy forest,
a glowing portal of
swirling blue and
purple energy opens
between ancient,

twisted trees. A faint
light emanates from

the portal, casting an
otherworldly glow on
the forest floor
covered in fallen
leaves and mist.”

(a) PIXART-α w/o feature cache

(b) HarmoniCa (×1.51)

Figure H: Random samples from (a) non-accelerated and (b) accelerated PIXART-α 512×512 (Chen
et al., 2023) with a 20-step DPM-Solver++ sampler (Lu et al., 2022b). The resolution of each sample
is 512× 512.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

“A medieval knight in full
armor standing in a castle
courtyard, holding a sword

with both hands. His face is
solemn as he prepares for
battle, while the flags of
the kingdom flutter behind

him in the wind.”

“A ballet dancer mid-
pirouette on an empty stage,

her elegant movements
illuminated by a single

spotlight. Her tutu swirls
around her as she leaps

gracefully through the air,
capturing the essence of

motion and grace.”

“An ancient, majestic castle
nestled atop a mountain peak,
surrounded by swirling clouds,

illuminated by golden
sunlight. A dragon circles
above, while knights stand
guard below. The scene is
full of magical realism,
detailed stone walls, and

elaborate banners flapping in
the wind.”

“A curious red fox exploring
a snow-covered forest, its
fur blending with the white
landscape. Its sharp eyes

scan the surroundings as it
sniffs the ground, leaving
delicate paw prints in the

snow.”

“A futuristic space station
orbiting a colorful planet,
surrounded by glowing stars

and nebulae. Astronauts float
near the station, with sleek
spacecraft docking. The image

captures the vastness and
wonder of space, with

intricate details on the
station’s metallic structure.”

“A sleek, advanced city at
dawn, with shimmering glass

towers, floating gardens, and
high-tech transportation

systems. The sky is painted
with pastel colors as the sun
rises, casting a golden glow

over the futuristic
landscape.”

(a) PIXART-α w/o feature cache

(b) HarmoniCa (×1.51)

Figure I: Random samples from (a) non-accelerated and (b) accelerated PIXART-α 1024 ×
1024 (Chen et al., 2023) with a 20-step DPM-Solver++ sampler (Lu et al., 2022b). The resolu-
tion of each sample is 1024× 1024.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

“Two colossal mechas, each
covered in intricate armor
plating and glowing power
cores, engage in battle in
the middle of a futuristic
city. Skyscrapers crumble

around them as they exchange
powerful blows, and the

energy radiating from their
weapons lights up the night

sky.”

“A gargantuan sea creature
with towering spines and

glowing eyes rises from the
ocean, water cascading off
its massive form. Lightning

illuminates the stormy sky as
ships scramble to escape its

wrath, emphasizing the
creature’s immense size and

power.”

“A colossal, ancient citadel
made of shining marble and

gold, perched atop the clouds.
Massive towers and archways
reach towards a sky filled

with radiant sunlight, while
a staircase of light descends
from the heavens, hinting at
the citadel’s divine origins.”

“A majestic phoenix, its
wings spread wide, emerges

from a massive pillar of fire.
The flames swirl around it in

a dance of red, gold, and
blue, while sparks and embers

fill the air. Its form is
both terrifying and beautiful,

a symbol of rebirth and
eternal power.”

“A vast army of warriors clad
in glistening armor charging
across an icy battlefield
under a stormy, dark sky.

Blizzards rage around them,
and the ground shakes as they
clash with their enemies. The
scene is filled with motion,
energy, and the raw power of

war.”

“A titanic clash between two
massive, glowing deities in
the sky, with thunderbolts
and energy waves exploding

around them. Below, mountains
crumble and oceans churn as
their power shakes the very

fabric of reality, creating a
breathtaking cosmic

spectacle.”

(a) PIXART-Σ w/o feature cache

(b) HarmoniCa (×1.47)

Figure J: Random samples from (a) non-accelerated and (b) accelerated PIXART-Σ 1024 ×
1024 (Chen et al., 2024a) with a 20-step DPM-Solver++ sampler (Lu et al., 2022b). The resolu-
tion of each sample is 1024× 1024.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

“Two samurais locked in a fierce duel under a cherry blossom tree, depicted in the
traditional Japanese Ukiyo-e style. The bold outlines, flat colors, and exaggerated poses

capture the intensity of the moment, while the delicate cherry blossoms fall gently
around them.”

“A peaceful alpine village nestled in the shadow of towering, snow-capped mountains,
painted in a detailed realism oil painting style. The wooden houses have sloping roofs
covered in snow, and smoke rises gently from their chimneys. The brushwork captures the

texture of the wood and the soft shadows cast by the evening light.”

“A studio photograph of an elegant Asian woman in a flowing silk dress. Her hair is
styled in soft waves, and the smooth fabric of her dress reflects the studio lights

gently. The high-definition shot focuses on the intricate textures of her skin and hair,
as well as the subtle glint of light in her eyes.”

(a) PIXART-Σ w/o feature cache (b) HarmoniCa (×1.51)

Figure K: Random samples from (Left) non-accelerated and (Right) accelerated PIXART-Σ-
2K (Chen et al., 2024a) with a 20-step DPM-Solver++ sampler (Lu et al., 2022b). The resolution of
each sample is 2048× 2048.

31

	Introduction
	Related Work
	Prelimilaries
	HarmoniCa
	Discrepancy between Training and Inference
	Harmonizing Training and Inference
	Efficiency Discussion

	Experiments
	Implementation Details
	Main Results
	Ablation Studies

	Conclusion
	Alogrithm of HarmoniCa
	Image Error with Router Regularization Term as Training Objective
	Optimization Deviation
	More Implementation Details
	Results for PixArt-Sigma
	Combination with Quantization
	Experimental Details for Quantization
	Comparison between Learning-to-Cache and HarmoniCa with a low CUR(%)
	Comparison between Delta-DiT and HarmoniCa
	Comparison between Learning-to-Cache with Different Sampling Strategies
	Comparison between HarmoniCa and Additional Caching-based Methods
	Comparison between HarmoniCa and Additional Acceleration Methods
	Additional Metrics for the Image-Error Proxy lambda
	Apply the Trained Router to a Different Sampler from Training During Inference
	Performance Comparison with the Increase of the Speedup Ratio
	Additionally Results of HarmoniCa with SA-Solver
	Results of T2I Generation on Additional Datasets and Metrics
	Sensitivity of HarmoniCa to the Value of the Threshold tau
	Qualitative Comparison & Analyses
	Visualization Results

