Table 5: qDESS scan acquisition parameters for the SKM-TEA dataset. RO — readout, PE — phase
encode, TE — echo time, TR — repetition time.

Matrix (RO x PE) | 416x512
Resolution (mm?) | 0.38x0.31
TE - Echo 1 (ms) 5.7
TE - Echo 2 (ms) 30.1
Number of Echoes 2

TR (ms) 17.9
Flip Angle (°) 20
Parallel Imaging 2x1

A Dataset: Additional Details

A.1 Acquisition Parameters

All shared scan parameters are shown in Table [5. qDESS scans were acquired with 2x1 parallel
imaging with multiple receiver coils. Scans were acquired with 15 or 16 coils. Number of slices were
varied based on the knee size, ranging from 80 to 88 slices.

A.2  ZIP2 Zero-Padding

K-space data for each scan was zero-padded along the readout dimension to k, x k. matrix size
of 512x512. The data was also zero-padded along the slice dimension so as to double the matrix
size along this dimension, following the ZIP2 convention. The resulting k. x k, X k, matrix size is
512x512x(2s), where s is the number of slices acquired.

The raw data distributed publicly is zero-padded. When undersampling this data, only the true
acquisition region (416x512) should be undersampled to the extent corresponding to the prescribed
acceleration. The undersampling masks are generated such that the undersampling occurs only among
the data acquisition region — i.e. they do not include zero-padded region.

A.3 Gradient-Warping Correction for Segmentations

Scanner-generated DICOM images undergo vendor- and scanner-specific gradient warping to correct
for gradient imperfections (between the nominal and actual magnetic fields) that results in a non-linear
spatial deformation of the reconstructed image. As a result, segmentations annotated on the gradient-
warped DICOM images did not overlap with appropriate regions in the SENSE-reconstructed images.
To correct for this, a regional b-spline registration algorithm (available in DOSMA [12]) was used to
register the DICOM images and the corresponding segmentation masks to SENSE reconstructions
for each scan. We refer to these as the gradient-warp-corrected segmentations. All analysis or
end-to-end inter-operation between SENSE reconstructions and tissue segmentations should use the
gradient-warp-corrected segmentation. From manual inspection, no such process was required for the
coarser bounding box pathology labels.

A.4 Annotator Details

Detection bounding boxes and tissue segmentations were created by two researchers with 3-4 years
experience with knee MR image interpretation, supervised by two board-certified musculoskeletal
radiologists with 26 and 24 years of experience. All four individuals had semi-structured clinical
radiology reports which were used to instruct bounding box labels. Each scan was annotated by a
single annotator, such that no one scan had labels from multiple annotators.

For ground-truth cartilage and meniscus segmentations, annotators used both gDESS echoes that
provide separate image contrasts to distinguish between the neighboring cartilage and meniscus
pixels, as well as additional tissues such as bone, muscle, and joint fluid. Segmentations were
performed slice-by-slice in the sagittal plane and volumetric consistency was enforced by correcting
segmentations in the axial and coronal planes in the ITK-SNAP software. Every image volume
segmentation was quality controlled by the two researchers with 4 and 3 years experience with knee
MR image interpretation.
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Table 6: Available data, whether it is a model input or output, the tracks to be used with, and
corresponding tasks. N/A indicates the data should not be used for benchmarking any task.

Data Data Type Raw Data Track DICOM Track Task

Raw data (k-space) Input v X Recon
Undersampling masks (per-scan) Input v X Recon
Sensitivity maps Input v X Recon
SENSE reconstruction Output v X Recon, Seg, Detection
DICOM images Input X v Seg, Detection
DICOM T5 parametric maps Input X X N/A
DICOM segmentations Output X v Seg
Gradient-warp-corrected segmentations Output v X Seg
Pathology bounding boxes Output v v Detection

A.5 Distribution, Hosting, and Maintenance

All public data is distributed under the Stanford University School of Medicine (http://www,
stanford.edu/site/terms/) license and the terms listed for the Lower Extremity Radiographs
dataset (https://aimi.stanford.edu/lera-lower-extremity-radiographs-2). Data is
hosted and maintained by the authors and Microsoft Azure as part of a partnership with the Stanford
Center for Artificial Intelligence in Medicine and Imaging. All data and corresponding artifacts
(annotations, etc.) will be semantically versioned and available for future use.

Instructions for downloading and using the dataset, versioned data splits and annotations, starter code,
and baselines can be found on the dataset GitHub page: https://github.com/StanfordMIMI/
skm-tea.

A.6 Usage

Table [ summarizes the available data and the tracks with which they are compatible.

Raw Data Track: All raw data and artifacts originating from this data (sensitivity maps, SENSE
reconstructions, etc.) should be used solely in the Raw Data Track. For segmentation-related
analysis in this track, gradient-warp-corrected segmentations should be used in place of DICOM
segmentations. For reconstruction, all evaluation results should be reported on data undersampled
using the precomputed undersampling masks (at the appropriate acceleration) that are distributed
with the raw data. Complex-valued SENSE reconstructed images should be used as ground-truth
images for reconstruction evaluation.

DICOM Track: This track pertains to all tasks enabled by DICOM images and their artifacts (e.g.
DICOM segmentations). For segmentation-related analysis, DICOM segmentations should be used.
DICOM images should not be used for any part of the reconstruction task.

A.7 Author Statement

We, the authors, confirm that we bear all responsibility in case of violation of rights, etc. Public
data are distributed under the Stanford University School of Medicine (http://www.stanford,
edu/site/terms/) license and the terms listed for the Lower Extremity Radiographs dataset
(https://aimi.stanford.edu/lera-lower-extremity-radiographs-2).

B Tissue Subregions

In this appendix, we detail the relevance of subregional tissue analysis in gMRI and the method by
which different tissue subregions are extracted.

B.1 Relevant Tissue Subregions

Acute knee injuries and knee degeneration are predominantly localized processes, where specific
subregions of the knee undergo more change than others [[17]]. To quantify local gMRI parameter
profiles, specific subregions of relevant tissues must be precisely segmented. Recent work has shown
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that subregions in articular cartilage and the meniscus are sensitive to early-onset of degenerative
diseases, such as osteoarthritis [[18]. Thus, we include subregional analysis of the segmented tissues
in our proposed gMRI evaluation framework, as was previously described [33].

B.2 Subregion Extraction

Segmentations for each of the four nominal tissues (patellar cartilage, femoral cartilage, tibial
cartilage, and meniscus) served as the base ROIs. These segmentations were then divided into
subregions using shape-based priors and center-of-mass (COM) estimates, which are detailed below.
Subregions were abbreviated based on their anatomical location. For example, a subregion for the
deep cartilage compartment d, anterior part of the knee A, and the lateral condyle L would have the
abbreviation dA-L. All sub-regions were extracted automatically using DOSMA (v0.1.0).

Patellar cartilage: Patellar cartilage was divided into four subregions: deep-lateral (d-L), deep-
medial (d-M), superficial-lateral (s-L), and superficial-medial (s-M). The medial/lateral boundary
was determined by the COM of the patellar cartilage segmentation along the sagittal plane. The
deep/superficial boundary was computed by finding the midpoint of each column in the patellar
cartilage segmentation along the coronal plane.

Femoral cartilage: Femoral cartilage segmentations were divided into a total of 12 regions along the
three primary axes: deep/superficial (d/s), anterior/central/posterior(A/C/P), and medial/lateral (M/L).
Resulting subregions were named following the nomenclature of these axes; for example, dA-M
corresponds to the deep anterior cartilage in the medial compartment. A/C/P and M/L compartments
were delineated based on COM measurements of the base segmentation. The deep-superficial
boundary was computed using the "unrolling technique" [33]], where the boundary is determined by
the midpoint between radii of concentric cylindrical fits to the femoral cartilage shape.

Tibial cartilage: Tibial cartilage was also divided into 12 subregions: inferior/superior (i/sup), A/C/P,
and M/L. A/C/P and M/L compartments were divided based on the COM of the base segmentation.
The inferior/superior (i/sup) boundary was determined by finding the COM for each tibial cartilage
column in the axial direction [9].

Meniscus: The meniscus was divided into medial/lateral compartments using COM between the two
compartments.

C gMRI 7; Pipeline

In this section, we discuss the recommended pipeline for computing ground truth and predicted 75
estimates for benchmarks in the Raw Data Track and DICOM Track. For fairness of comparison,
this pipeline should be used when comparing results from future benchmarks and methods for the
SKM-TEA dataset to results detailed in this work.

Raw Data Track — Reconstruction: Image reconstruction methods were used to generate recon-
structions for echo 1 (E1) and echo 2 (E2). Two 75 parameter maps were computed for each scan,
one using the network reconstruction and the other using the ground-truth SENSE reconstruction.
Ground-truth gradient-warp-corrected segmentations were used to identify relevant tissues in both
parameter maps. Differences in 75 estimates were computed between regional 75 estimates from the
two parameter maps.

DICOM Track — Segmentation: For each scan, a single 75 parameter map was computed from the
DICOM images. Image segmentatation methods were used to generate predicted masks for relevant
tissues. Differences in 75 estimates were computed between regional 75 estimates extracted using
the ground truth mask and the predicted mask.

D Training Details

In this section, we cover details pertaining to the model architecture, training setup, and compute
resources used for the Raw Data Track reconstruction and DICOM Track segmentation benchmarks.
Model training and evaluation was conducted in PyTorch. Code to reproduce all results with detailed
instructions and evolving benchmarks are available at https://github.com/StanfordMIMI/
skm-tea.
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D.1 Raw Data Track — Reconstruction

Training setup: In this problem, models are trained to reconstruct complex-valued, 2D undersampled
axial (k, x k) slices for both qDESS echoes. Scans are undersampled using 2D Poisson Disc
undersampling at acceleration factors of R=6x, 8x. Models are trained separately at each acceleration
and evaluated on simulated undersampled scans at the respective acceleration. All models were
trained with the complex-L1 loss with a fixed random seed.

Data normalization: Input data is normalized by dividing by the 95" percentile of the magnitude
image. Outputs are re-normalized by undoing the scaling operation prior to computation of evaluation
metrics. Outputs are not re-normalized during training, prior to computing the training loss.

Undersampling masks: During training, 100,000 undersampling masks are precomputed and cached
to ensure all training runs use the same set of undersampling masks. For evaluation, each scan in the
test dataset is prescribed a fixed undersampling mask (for the specific acceleration) that is distributed
as part of the dataset. All masks are generated such that only the acquisition region is undersampled -
i.e. all zero-padded regions in the kspace are not included in the generated undersampling mask.

U-Net baseline: We consider a 2D U-Net model, a popular model for fully convolutional and
image-to-image tasks, following the implementation in [24]] as one baseline architecture. This U-Net
implementation has four max pooling layers with compounding number of channels (32, 64, 128,
256, 512), instance normalization, and leaky-relu activation with slope a=-0.2. All U-Net models
were trained for 20 epochs using the Adam optimizer with the following hyperparameters: batch size
24, learning rate n=1e-3, weight decay le-4.

Unrolled baseline: We consider the 2D proximal-gradient unrolled network, which has achieved
state-of-the-art performance on MRI reconstruction tasks, as another baseline architecture. We follow
the unrolled network in [44] with minimal hyperparameter changes. Each unrolled block consists of
a shallow residual network with two, 128-channel residual blocks with relu activation. The network
consists of a total of eight sequential unrolled blocks with weighted data consistency between each
block. All unrolled models were trained for 20 epochs using the Adam optimizer. Due to hardware
memory constraints, the same batch size as the U-Net could not be used. Instead a smaller batch size
of 4 with 6 gradient accumulation steps was used so that the effective batch size is the same as that of
U-Net baselines. A learning rate of n=8e-4 and weight decay of le-4 were used.

Hardware: All models were trained on Titan RTX (24GB) or GCP-supported Titan V100 (16GB)
GPUs. Models trained on Titan RTX GPUs were constrained so that the total available memory was
identical to the Titan V100 GPU (16GB).

D.2 DICOM Track — Segmentation

Training setup: In this problem, models are trained segment patellar cartilage, femoral cartilage,
tibial cartilage, and the meniscus from 2D sagittal slices of the DICOM images. All models were
trained with a soft Dice loss with a fixed random seed.

Input normalization: All inputs are zero-mean, unit standard deviation normalized by mean and
standard deviation values computed over the full volume of the echo. For multi-channel inputs
(i.e. E1@E2), each channel is normalized independently. Root-sum-of-squares (RSS) inputs are
normalized by mean and standard deviation values computed on the RSS volume.

V-Net baseline: Another baseline used a 2D V-Net architecture as implemented in MONAI [32].
This network has 4 pooling layers with doubling number of channels after each pooling step (16, 32,
64, 128, 256). Neither dropout nor early stopping was not used.

U-Net baseline: One baseline used a 2D U-Net architecture as implemented in [14]]. This network
has 5 pooling layers with doubling number of channels after each pooling step (32, 64, 128, 256, 512,
1024). Convolutional blocks at each encoder and decoder level are composed of two convolutional
layers each with relu activations followed by a batch normalization layer.

Default training hyperparameters: Models were trained using the Adam optimizer with initial
learning rate 7p=1e-3, minimum learning rate 7,,;,=1e-8, and step decay by 0.9x every 2 epochs.
A maximum training length of 100 epochs was prescribed with early stopping (d=1e-5, 7=12
epochs). Training batch size was set to 16 without gradient accumulation. All benchmarks used these
hyperparameters unless otherwise mentioned.
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Table 7: Performance of U-Net segmentation models measured by standard ML pixel and surface
segmentation metrics with absolute 75 error. Models were trained with echo 1 only (E1), echo 2 only
(E2), multi-channel echol and echo2 (E16E?2), and the root-sum-of-squares (RSS) of both echoes.

Metric Tissue El E2 E1®E2 RSS
Patellar Cartilage  0.87 (0.097) 0.85 (0.11) _ 0.87 (0.088)  0.87 (0.10)
bse Femoral Cartilage  0.88 (0.035) 0.86(0.032) 0.88 (0.033) 0.8 (0.032)
Tibial Cartilage  0.86 (0.036) 0.82 (0.049) 0.86 (0.041) 0.86 (0.037)
Meniscus 0.84(0.062) 0.82(0.047) 0.84(0.067) 0.84 (0.065)
Patellar Cartilage  0.86 (1.4)  0.58 (0.82)  0.84(1.6)  1.52(2.0)
ASSD (mm) Femoral Cartilage  0.36 (0.25)  0.36(0.20) 040 (0.60)  0.33 (0.19)
Tibial Cartilage  0.46 (0.29) 045 (0.18)  0.66(12)  0.66 (0.70)
Meniscus 0.63(042) 064029  091(15)  124(1.4)
Patellar Cartilage  0.70 (0.59)  0.92(0.95)  0.71(0.63)  0.75 (0.59)
Femoral Cartilage  0.50 (0.36) 092 (0.50)  0.53 (037)  0.51 (0.36)
Abs T2 Brror (ms) -y i) Cartilage. 0.49 (0.47)  0.98 (0.66) 051 (0.53) 050 (0.52)
Meniscus 0.60(0.78)  1.07(1.0)  096(1.0)  0.65(0.74)

Hardware: All models were trained on Quadro RTX 8000 (48GB) GPUs, but were constrained to
only use 24GB memory.

E Additional Results

E.1 Additional Segmentation Baselines

In addition to the V-Net models, we trained baseline segmentation models with the U-Net architecture.
Dice, ASSD, and absolute 75 error are reported in Table |z Like V-Net, U-Net models trained on
only the second echo (E2) performed considerably worse across all metrics. V-Net models achieved
slightly higher performance among standard ML segmentation metrics for patellar cartilage, but had
similar performance among 75 error metrics.

Following the convention of previous segmentation challenges [[13| 22} 27]], we also compute volu-
metric overlap error (VOE) and coefficient of variation (CV). A summary of segmentation model
performance on these metrics is shown in Table[8. Top performing models — U-Net (E1), U-Net
(E1 @ E2), U-Net (RSS) — achieved similar performance and outperformed U-Net (E2) across both
metrics.

E.2 Ts Error

In addition to absolute 75 error, we measure the standard 75 error, which can help characterize the
bias and variance of the errors in 75 estimates.

Raw Data Track - Reconstruction: Table E]summarizes T error for all benchmarked reconstruction
models. All models except U-Net (E1+E2) underestimate 75 across all tissues. While unrolled
networks have lower variance in 75 estimates than U-Net models, the bias of unrolled networks is
often larger that that of U-Net models. Thus, unrolled models may be more precise in estimating 7%,
but may still need to be optimized to reduce bias in these estimates.

DICOM Track - Segmentation: 75 error profiles for different segmentation models are summarized
in Table 8] Top performing models have low bias for femoral cartilage and tibial cartilage compared
to the patellar cartilage and meniscus. Segmentations from all models overestimate 75 for articular
cartilage but underestimate 75 for the meniscus. Variance in 75 estimates is also the highest for
patellar cartilage and the meniscus. Thus, 75 estimates in both patellar cartilage and meniscus may
be more sensitive to changes in segmentation quality than estimates in femoral cartilage or tibial
cartilage.
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Table 8: Performance [mean (standard deviation)] of segmentation models on the DICOM Track
as measured by volumetric overlap error (VOE), coefficient-of-variation (CV), and 75 error (in
milliseconds). 75 error values are not bolded as it is unclear if better performance is characterized by
smaller bias or lower variance.

Metric Tissue V-Net (E1) V-Net (E2) V-Net (E1®E2) V-Net (RSS)
Patellar Cartilage ~ 0.205 (0.108)  0.242 (0.127) 0.193 (0.102) 0.201 (0.114)
VOE Femoral Cartilage  0.214 (0.0551) 0.237 (0.0496)  0.205 (0.0457)  0.210 (0.0511)
Tibial Cartilage 0.241 (0.0547)  0.288 (0.0675)  0.238 (0.0516)  0.238 (0.0515)
Meniscus 0.259 (0.0818)  0.289 (0.071) 0.257 (0.0769)  0.256 (0.0829)
Patellar Cartilage ~ 0.078 (0.0854) 0.077 (0.0558)  0.066 (0.0913)  0.078 (0.0964)
cv Femoral Cartilage 0.085 (0.0613)  0.077 (0.059) 0.076 (0.0539)  0.080 (0.0573)
Tibial Cartilage 0.095 (0.0691)  0.092 (0.084) 0.094 (0.0726)  0.092 (0.0645)
Meniscus 0.084 (0.0707)  0.081 (0.0661)  0.074 (0.0698)  0.074 (0.0662)
Patellar Cartilage  0.486 (0.637)  0.873 (0.928) 0.531 (0.934) 0.474 (0.673)
T2 Error (ms) Femoral Cartilage 0.172 (0.632)  0.772 (0.657) 0.287 (0.532) 0.282 (0.624)
Tibial Cartilage 0.215 (0.681)  0.805 (0.831) 0.208 (0.669) 0.243 (0.698)
Meniscus -0.121 (0.813)  -0.911 (1.01) -0.666 (0.857) -0.325 (0.821)
Metric Tissue U-Net (E1) U-Net (E1E2) U-Net (E2) U-Net (RSS)
Patellar Cartilage  0.219 (0.121)  0.216 (0.110) 0.245 (0.131) 0.222 (0.118)
VOE Femoral Cartilage 0.220 (0.054)  0.217 (0.052) 0.246 (0.048) 0.216 (0.050)
Tibial Cartilage 0.245 (0.053)  0.246 (0.060) 0.297 (0.067) 0.247 (0.055)
Meniscus 0.271 (0.084)  0.274 (0.089) 0.300 (0.066) 0.275 (0.088)
Patellar Cartilage ~ 0.0641 (0.085) 0.0835 (0.101)  0.0640 (0.081)  0.0724 (0.083)
cv Femoral Cartilage 0.0754 (0.060) 0.0772 (0.057)  0.0746 (0.058)  0.0757 (0.057)
Tibial Cartilage 0.0811 (0.058) 0.0882 (0.076)  0.0799 (0.076)  0.0848 (0.064)
Meniscus 0.0716 (0.067) 0.0803 (0.082)  0.0816 (0.063)  0.0824 (0.076)
Patellar Cartilage  0.468 (0.790)  0.510 (0.805) 0.484 (1.23) 0.441 (0.854)
T2 Error (ms) Femoral Cartilage 0.152 (0.596)  0.388 (0.522) 0.837 (0.639) 0.237 (0.585)
Tibial Cartilage 0.147 (0.666)  0.179 (0.714) 0.887 (0.783) 0.180 (0.698)
Meniscus -0.360 (0.923)  -0.954 (1.048) -1.06 (1.05) -0.499 (0.847)
Table 9: Performance [mean (standard deviation)] of qDESS reconstruction models with respect to
T, estimates (in milliseconds) for articular cartilage and the meniscus localized with ground truth
segmentations. Typical cartilage T3 values are 30-40ms, while meniscus 75 values are 10-15ms.
Tissue Patellar Cartilage Femoral Cartilage Tibial Cartilage Meniscus
Acc  Model
U-Net (E1/E2) -1.93 (1.98) -0.228 (1.42) -1.17 (1.48) -2.70 (1.35)
U-Net (E1+E2) -0.231 (3.46) 1.83 (2.51) 0.201 (1.73) -1.88 (1.59)
6x U-Net (E16E2) -1.25 (1.96) -0.838 (1.08) -1.44 (1.16) -1.78 (1.03)
Unrolled (E1/E2)  -0.516 (0.327) -0.765 (0.283) -1.03 (0.419) -2.48 (0.786)
Unrolled (E1+E2)  -0.555 (0.269) -0.836 (0.319) -1.12 (0.444) -2.52 (0.780)
Unrolled (E1®E2)  -0.639 (2.09) -2.01 (0.917) -1.30 (0.650) -1.25 (0.910)
U-Net (E1/E2) -3.48 (1.74) -2.71 (1.38) -3.21 (1.24) -3.76 (1.10)
U-Net (E1+E2) 0.335(3.38) 2.75 (2.42) 0.153 (1.89) -2.24 (1.55)
8x U-Net (E16E2) -0.247 (1.68) -0.889 (1.29) -1.93 (1.39) -1.88 (2.45)
Unrolled (E1/E2)  -0.702 (0.340) -0.866 (0.415) -1.20 (0.618) -2.78 (0.868)
Unrolled (E1+E2)  -0.971 (0.419) -0.977 (0.421) -1.26 (0.590) -2.86 (0.882)
Unrolled (E1GE2) -0.482 (0.449) -0.817 (0.717) -1.15(0.931) -2.69 (0.998)
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Table 10: Concordance between standard reconstruction (pSNR, SSIM) and segmentation (DSC,
ASSD) metrics versus absolute error in 75 estimates across different tissue sub-regions as measured
by absolute value of the Pearson’s correlation coefficient (|p|). Tissue subregions are defined in
Appendix [B.2. Values are averaged over all baseline reconstruction and segmentation models.

Base ASSD (mm) DSC SSIM pSNR (dB)
MainTissue Subregion
Patellar Cartilage  d-L 0.31 0.67 0.16 0.36
d-M 021 059 023 0.53
s-L 029 064 025 0.46
s-M 0.11 029  0.30 0.49
Femoral Cartilage dA-L 0.36 0.68 0.32 0.37
dA-M 0.15 029 0.27 0.36
dC-L 0.08 020  0.08 0.22
dC-M 0.10 0.21 0.10 0.30
dP-L 0.03 0.06 021 0.37
dP-M 0.02 0.05 025 0.31
sA-L 020 044 032 0.37
sA-M 0.12 029 0.34 0.42
sC-L 0.03 0.04 0.27 0.44
sC-M 0.03 0.08 042 0.54
sP-L 0.02 0.02 040 0.46
sP-M 0.10 0.09 035 0.31
Tibial Cartilage iA-L 0.14 031 0.21 0.35
iA-M 0.01 0.10 0.19 0.34
iC-L 0.10 022 0.23 0.32
iC-M 0.17 041 0.13 0.28
iP-L 0.00 0.19 0.25 0.38
iP-M 0.03 0.14 0.24 0.36
supA-L 0.11 035 031 0.40
supA-M 0.00 0.01 0.40 0.48
supC-L 0.12 036 041 0.47
supC-M 0.05 0.16 0.39 0.49
supP-L 0.03 0.18 0.35 0.41
supP-M 0.03 0.05 0.36 0.45
Meniscus L 0.08 0.17 0.20 0.18
M 0.05 025 0.17 0.13

E.3 ML-T; Metric Concordance in Tissue Sub-Regions

As mentioned in §B.T] subregional qMRI analysis is a pivotal tool for understanding localized changes
in tissue structure. To understand sensitivity of ML metrics to these biomarker-driven metrics, we
quantify the concordance between standard ML metrics for image reconstruction and segmentation
and subregional absolute 75 error using Pearson’s correlation coefficient. For reconstruction, the
global pSNR and SSIM, which are standard metrics computed for image quality, were compared to
subregional T, estimate errors. For segmentation, subregional 75 estimate errors were compared
to segmentation metrics computed on the corresponding parent tissue structure. For example, T5
error in the deep-superficial-lateral compartment of femoral cartilage was compared to DSC and
ASSD of femoral cartilage. Tissue subregions are computed using methods detailed in Table
summarizes the results.

SSIM and pSNR have very weak correlation with subregional T5 error (|p| < 0.42, 0.54 respectively).
Because these metrics measure the global image quality, they are likely not sensitive to local regional
changes in image quality, and thus, may be even less sensitive to subregional 75 error. ASSD is
also very weakly correlated with T error across all subregions (|p| < 0.36). Because ASSD is a
surface metric, it may not capture the changes in volumetric subregions of the image over which
these estimates are computed. DSC is a volumetric metric, which may explain why the average
correlation is stronger with DSC than with ASSD. However, despite its volumetric nature, DSC is
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weakly correlated with T, error among almost all subregions. In particular, it is weakly correlated
along the subregions in the medial compartment, which are the most likely to undergo degeneration
in chronic degenerative diseases such as osteoarthritis [31}[35]].

This may further warrant the need for direct biomarker-based evaluation metrics that the gMRI
evaluation framework enables.
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