
Seesaw: High-throughput LLM Inference via Model Re-sharding

A PERFORMANCE MODEL

In this section, we analyze the trade-offs of various paral-
lelism strategies by developing an analytical performance
model. We break down the model’s inference time (a for-
ward pass) into several components and analyze how dif-
ferent forms of parallelism impact each one. The results
demonstrate that the proportion of these components varies
across different workloads, leading to distinct scaling be-
haviors for each parallelism strategy. Table 2 lists the used
notations. We assume the data type is float16.

Table 2. Notations
N number of output tokens T linear

dm time of moving weights
r number of requests T attn

dm time of moving kvcache
b (global) batch size T linear

c time of computation
s average sequence length T attn

c computation of attention
hq number of heads Tnw time of communication
d head dimension hkv number of KV heads
L number of layers W #parameters of one layer
PP pipeline parallel degree DP data parallel degree
TP tensor parallel degree

A.1 Runtime Break-Down

The runtime of each decoding layer can be divided into three
components: 1) data movement (Tdm) from GPU global
memory (HBM) to compute units, which includes transfer-
ring weights (T linear

dm ) and KV cache (T attn
dm ), 2) computation

Tcomp, including T
linear
comp and T

attn
comp, and 3) communication

cost Tnw (nw stands for network), primarily arising from the
all-reduce operation in tensor parallelism. Based on the roof-
line model, the runtime of each layer can be approximated
as TL = max(T linear

dm , T
linear
comp) + max(T attn

dm , T
attn
comp) + Tnw.

Data Movement. The runtime of data movement can be
approximated as transferred data volume divided by the
bandwidth, which is the HBM bandwidth for GPUs. For lin-
ear layers, the transferred data is mostly weight matrices, of
which the size is 2W bytes, which is constant. For attention
layers, the transferred data primarily consists of the Q, K, V
matrices, which is 2bs(hq + 2hkv)d bytes in prefilling and
4bshkvd in decoding.

Compute. The computation time can be approximated as
the number of floating operations (FLOPs) divided by the
number of floating operations per second of the hardware
(FLOP/s). For linear layers, the FLOPs is proportional to
the weight parameters times the number of tokens, which
is 2Wbs in prefilling and 2Wb in decoding. For attention
layers, most operations come from computing the attention
score, which is approximated as bhqs

2
d
2 in prefilling and

2bhqsd
2 in decoding.

Communication. The communication cost mostly comes
from the all-reduce operation in tensor parallelism. It can

Table 3. Different components of the runtime of a forward pass.
The batch size b representing the batching effect is emphasized.

T linear
dm T linear

comp T attn
dm T attn

comp Tnw(TP )

Prefill 2W
BHBM

2bWs
FLOPS

2bs(hq+2hkv)d
BHBM

bhqs
2d2

FLOPS
4bshqd

Bar(TP )

Decode 2W
BHBM

2bW
FLOPS

4bshkvd
BHBM

2bhqsd
2

FLOPS
4bhqd

Bar(TP )

Figure 15. How data parallelism affects the decoding throughput.
Data parallelism has minimal communication overhead but suf-
fers from inefficient memory access caused by duplicating model
weights. Model duplicates occupy more GPU memory, leaving
less space for KV cache and smaller batch sizes. With more data
parallelism, the overhead of loading data from GPU global mem-
ory to compute units significantly increases.

be modeled as the transferred data volume divided by the
bandwidth. We denote it as Tnw(TP), and approximate it
as b · A/Bar(TP) where A is the size of the activation of
one request within a batch and Bar(TP) is the all-reduce
bandwidth. Tnw(TP) is monotonically increasing with TP
as additional GPUs and more replicas of activations are
added to all-reduce. We omit peer-to-peer communication
over in pipeline parallel since it is negligible compared to
the all-reduce operation of tensor parallel.

A.2 Batching Analysis

Batching is critical in decoding. It significantly affects the
latency and throughput. Batch size represents how many
requests are processed in one forward pass, and larger batch
sizes can amortize the cost of transferring weights, thus
improving the throughput.

Global and micro batch size. In distributed inference
such, we define the global batch size b as the number of
requests being actively processed by the whole cluster. It is
a tunable hyper-parameter that represents the overall work-
load of the system. It is bounded by the memory budget and
thus has a upper bound maximal batch size.

On the other side, the micro batch size is defined from the
perspective of each device as the batch size of each forward
pass. Tensor parallelism does not affect the micro batch size
while DP and DP shrink the micro batch size.



Seesaw: High-throughput LLM Inference via Model Re-sharding

A.3 Parallelism Analysis

We consider three types of parallelism: data parallelism,
tensor parallelism, and pipeline parallelism, and denote their
degree of parallelism as DP, TP, and PP respectively.

Tensor parallelism can accelerate both data moving
(T linear

dm and T
attn
dm are reduced to 1/TP) and computation

Tcomp (reduced to Tcomp/TP), at the cost of all reduce over-
head Tnw.

Data parallelism distributes the global batch size b onto
DP micro-batches processed in parallel. The model is du-
plicated so T

linear
dm remains unchanged. T attn

dw , T linear
comp, T attn

comp,
Tnw are reduced as the batch size is smaller. Due to the
need to duplicate model weights, the GPU memory left for
the KV cache is smaller. The spare space for KV cache on
each GPU is Mkv = M → 2LW

TP ·PP . The maximal batch size
is

bmax = DP · Mkv · TP · PP
4Lhkvds

= DP · M · TP · PP → 2LW

4Lhkvds

While TP and PP can super-linearly scale the batch size, DP
can only linearly scale the batch size. The trade-off between
limited batch sizes and reduced communication overhead is
shown in Figure 15.

Pipeline parallelism distributes different layers to dif-
ferent devices, and each device will have L/PP layers. It
cannot reduce single-request latency but is more suitable for
throughput-oriented scenarios as it introduces less commu-
nication overhead. However, it is not the ultimate answer
of high-throughput applications because of an important
observation that pipeline parallelism harms maximal batch
size. A tricky nuance is that given a batch size b, pipeline
parallelism can only process b/PP of them simultaneously
in order to utilize and pipeline all PP GPUs, which is harm-
ful to batching. If the workload is not uniformly distributed
across GPUs, there will be bubbles, or in the worst case,
some GPUs might be idle. When the pipeline is fully and
stably pipelining, each time the last pipeline stage finishes
its L/PP layers of forward pass, a micro-batch of b/PP will
be finished.

Throughput. The micro-batch size on each GPU is
b/(PP · DP). The total runtime of generating one micro
batch with size b/(PP · DP) on one DP replica (or more
specifically, the time of the last pipeline stage finishing a
micro-batch) is

Tstage =
L

PP
·
[
max(

T
linear
dm

TP
,

T
linear
comp

DP · TP · PP
)+

+
max(T attn

dm , T
attn
comp)

DP · TP · PP
+

Tnw(TP)
PP · DP

]

(a) prompt length=1000 (b) prompt length=4000

Figure 16. Decoding throughput in different scenarios. The opti-
mal parallelism strategy depends on both hardware specifications
and workloads. Some observations can be drawn such as 1) TP is
efficient with smaller batch sizes, but degenerates with growing
batch sizes; 2) The degeneration of TP depends on the ratio be-
tween GPU performance and network bandwidth; 3) As the batch
size is bounded by the GPU memory and cannot scale infinitely,
TP can achieve higher throughput in many cases.

The throughput (number of processed requests per unit time)
is b/PP/T . For simplicity, we calculate the inverse of it as

throughput→1 =
Tstage

b/PP
=

L

b
·
[
max(

T
linear
dm

TP
,

T
linear
comp

DP · TP · PP
)

+
max(T attn

dm , T
attn
comp)

DP · TP · PP
+

Tnw(TP)
PP · DP

]
(1)

If we approximate the roof-line model with a simplified
additional model, this expression can be simplified as:

throughput→1 ↑ T
linear
dm

TP
+

T
linear
comp + T

attn
dm + T

attn
comp

DP · TP · PP
+

Tnw(TP)
PP · DP

(2)

B ARTIFACT APPENDIX

B.1 Abstract

The artifact includes an example where the LLM inference
engine transitions between two parallelization strategies
(PP=4 for prefilling and TP=2 for decoding, respectively).
We provide a Dockerfile for building the Docker image
used in the experiments. The experiments require a multi-
GPU machine with a CUDA-enabled environment. We
include an example configuration that has been tested on a
2↓L4 instance on GPU. Once the Docker image is built, a
benchmark script can be executed within it to demonstrate
the artifact’s functionality.

B.2 Artifact check-list (meta-information)
• Program: Python library called cgen.

• Compilation: DockerFile

• Data set: ShareGPT, arxiv-summarization



Seesaw: High-throughput LLM Inference via Model Re-sharding

• Run-time environment: Ubuntu 22.04 + CUDA 12.1 + Py-
Torch 2.4.0, built as a docker image

• Hardware: Single-node-multi-GPU machine. Tested on GCP
g2-standard-24 with two L4 GPUs.

• Experiments: Transition between TP=2 and PP=2

• How much disk space required (approximately)?: 64 GiB

• How much time is needed to prepare workflow (approxi-
mately)?: 30 min

• How much time is needed to complete experiments (approxi-
mately)?: 15 min

• Publicly available?: Yes

• Archived (provide DOI)?: 10.5281/zenodo.14991055

B.3 Description
More information can be found in the readme.md file.

B.3.1 How delivered

This artifact can be found on Zenodo: https://zenodo.org/
records/14991055

B.3.2 Hardware dependencies

The example configuration has been tested on a Google Cloud Plat-
form (GCP) g2-standard-24 instance with two L4 GPUs (24
GiB) and 96 GiB RAM (64 GiB is required). For smaller hardware
configurations, the configuration file needs to be modified to fit the
hardware.

B.3.3 Software dependencies

The dependencies are included in the Dockerfile and the Python
package, which will be automatically installed. A docker envi-
ronment and NVIDIA container toolkits need to be set up. More
specifically, this artifact depends on

• Ubuntu 22.04

• CUDA 12.1

• PyTorch 2.4.0

• vLLM 0.5.5

B.3.4 Data sets

We include two different datasets for benchmarking, namely
ShareGPT and arxiv-summarization. We provide a script to down-
load ShareGPT, which is done during building the docker im-
age. The arxiv-summarization dataset can be downloaded directly
through the Huggingface datasets library.

B.4 Installation
First, install docker and NVIDIA Container Toolkit. Then, build
the docker image from Dockerfile under the cgen directory.

$ docker build -t cgen:latest .

If you are using GPU architectures other than the default one
(8.9+PTX), a building argument can be used to assign this value:

$ docker build -t cgen:latest . \
--build-arg TORCH_CUDA_ARCH_LIST="8.9+PTX"

B.5 Experiment workflow
Before the experiment, ensure the access to the Huggingface model
meta-llama/Llama-2-7b-hf. Then save your Hugging-
Face token as an environment variable HF TOKEN:

$ export HF_TOKEN=<your hf_token>

We provide a script to launch the experiment through Docker:

$ bash benchmark/run_benchmark.sh

Use sudo to run docker if necessary.

B.6 Evaluation and expected result
An offline text generation task is launched. You can observe from
the log that the system is transitioning between two phases, and
the change of the number of sequences in CPUs and GPUs.

B.7 Experiment customization
More description of customizable parameters can be found in the
readme.md file or the codebase.

https://zenodo.org/records/14991055
https://zenodo.org/records/14991055

