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ABSTRACT

To improve the performance of Graph Neural Networks (GNNs), Graph Struc-
ture Learning (GSL) has been extensively applied to reconstruct or refine original
graph structures. While GSL is generally thought to improve GNN performance,
it often leads to longer training times and more hyperparameter tuning. Besides,
the distinctions among current GSL methods remain ambiguous from the perspec-
tive of GNN training, and there is a lack of theoretical analysis to quantify their
effectiveness. Recent studies further suggest that GSL does not consistently out-
perform baseline GNNs under the same hyperparameter tuning. This motivates us
to ask a critical question: Is GSL really useful for improving GNN performance?
To address this question, we first propose a new GSL framework, which includes
three steps: GSL bases (i.e., node representations used to construct new graphs)
construction, new structure construction, and view fusion, to better understand
GSL. Then, our empirical studies and theoretical analysis show that the mutual
information (MI) between node representations and labels does not increase af-
ter applying graph convolution on GSL graphs that are constructed by similarity,
indicating GSL could be unnecessary in most cases. Our experiments fairly re-
assess the performance of GSL and reveal that adding GSL to GNN baselines or
removing GSL in state-of-the-art models has negligible impact on node classifi-
cation accuracy. We also report that pretrained GSL bases, parameter separation,
and early fusion are effective designs within GSL. Our findings challenge the ne-
cessity of complex GSL methods and underscore the value of simplicity in GNN
design.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2016) are effective in capturing structural infor-
mation from non-Euclidean data, which can be used in many applications such as recommendation
(Wu et al., 2022; 2019b), telecommunication (Lu et al., 2024a), bio-informatics (Zhang et al., 2021;
Hua et al., 2024), and social networks (Li et al., 2023b; Luan et al., 2019). However, conventional
GNNs suffer from issues including heterophily (Lu et al., 2024b; Luan et al., 2024a), over-squashing
(Brody et al., 2021), adversarial attacks (Jin et al., 2020; Li et al., 2022a), and missing or noisy struc-
tures (Lao et al., 2022; Liu et al., 2022b). To address these issues, Graph Structure Learning (GSL)
has been widely used (Zhu et al., 2021a), which reconstructs or refines the original graph structures
to enhance the performance of GNNs. However, GSL brings more hyperparameters and adds plenty
of computational cost in both the construction process and the learning process. In addition, recent
studies (Luo et al., 2024; Platonov et al., 2023) have shown that GSL methods cannot consistently
outperform traditional GNNs with the same hyperparameter tuning strategy. Therefore, an in-depth
analysis of the effectiveness and necessity of GSL is highly needed.

First, to better understand GSL, we propose a comprehensive framework to carefully break down
GSL into 3 steps: (1) GSL Bases Generation. GSL bases are the processed node embeddings used
before constructing new structures, which are constructed by either graph-aware or graph-agnostic
models with fixed or learnable parameters. (2) New Structure Construction. Based on the GSL
bases, new structures are constructed with similarity-based (Pei et al., 2020; Jiang et al., 2019),
structural-based (Zhao et al., 2020; Liu et al., 2022a), or optimization-based approaches (Jin et al.,
2020). Then, graph refinements are followed. (3) View Fusion. To incorporate the original graph or
combine multiple GSL-generated graphs, various view fusion strategies are applied, e.g., late fusion
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Successful GSL Unsuccessful GSL

Figure 1: Examples of GSL that use neighbor distribution as GSL bases. The left shows a case of
successful GSL, where new connections between red nodes are constructed using their GSL bases 3
green nodes and 1 blue node. The right shows a case of unsuccessful GSL, because the GSL bases
of intra-class nodes are not consistent, and nodes with different classes are connected.

(Wang et al., 2021), early fusion (Li et al., 2022a), or separation (Liu et al., 2022b). Compared with
the existing categorization of GSL (Zhu et al., 2021a;b; Kolbeck et al., 2022; Qiao et al., 2018) that
mainly focuses on step (2), our proposed framework carefully disentangles each component in GSL,
which enhances our understanding of GSL in GNNs.

With the above framework, we rethink when GSL is helpful in GNNs. As examples shown in Figure
1, a GSL method creates new connections between nodes with similar GSL bases, which is denoted
as the contextual information of the ego node and its neighbors in this case. When the GSL bases
show high consistency with intra-class nodes, nodes within the same class are connected, which is
beneficial for GNNs (Luan et al., 2024b) and we denote it as successful GSL. Conversely, when the
GSL bases show high consistency between inter-class nodes, nodes in different classes are likely to
be connected, which is harmful to GNNs and we denote it as unsuccessful GSL. These examples
highlight that the effectiveness of GSL is highly contingent on the quality of GSL bases. However,
even if most GSL methods are supposed to be successful GSL, do we really need GSL in these
cases? In this paper, our answer is “No”. The prerequisite of successful GSL is that the GSL
bases are highly consistent within intra-class nodes, which inherently ensures a high quality of node
representations (Kothapalli et al., 2024). Therefore, even a successful GSL is unnecessary because
the GSL bases are already informative enough to provide distinguishable node embeddings.

Based on the above example, we empirically and theoretically analyze the effectiveness of similarity-
based GSL, one of the most representative approaches in GSL. Our findings reveal that the mutual
information (MI) between node representations and labels does not increase after applying graph
convolution on similarity-based GSL graphs. Our results indicate that even though GSL sometimes
outperforms GNNs in certain scenarios of heterophily (Pei et al., 2020; Luan et al., 2024c) or incon-
sistent neighbor distributions (Zheng et al., 2024a; Ma et al., 2021), its performance is still upper
bound by Multilayer Perceptrons (MLP) on the same GSL bases in most cases. These results also
explain why ego node separation (Zhu et al., 2020a) is an important part of model design. Our
extensive experiments show that, under the same hyperparameter tuning and GSL bases, no matter
adding GSL to 4 baseline GNNs or deleting GSL in 8 state-of-the-art (SOTA) GSL-based methods,
there are no significant changes in model performance on node classification. Furthermore, we also
show that while GSL fails to improve model performance, it does offer marginal improvements in
model robustness. In conclusion, our main contributions are as follows:

• We propose a new framework to decompose the process of GSL into 3 steps, which is more
comprehensive than the previous literature and helps better understand each component in
GSL.

• Both of our empirical experiments and theoretical analysis show that the mutual informa-
tion (MI) between node representations and labels does not increase after applying graph
convolution on similarity-based GSL graphs, indicating that most GSL methods are unnec-
essary.

• We fairly re-evaluate the effectiveness of GSL by adding GSL to GNN baselines and re-
moving GSL in SOTA GSL-based models. The results indicate that GSL does not consis-
tently improve GNN performance in most cases.

• Under our proposed framework, we report effective GSL designs include pretrained GSL
bases, parameter separation, and early fusion.
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2 PRELIMINARY

Graphs. Suppose we have an undirected graph G = {V, E} with node set V and edge set E . Let
Y ∈ RN×C denote the node labels and X ∈ RN×M represent the node features, where N is
the number of nodes, C is the number of classes, and M is the number of features. The graph
structure is represented by an adjacency matrix A, where Au,v = Av,u = 1 indicates the existence
of an edge euv, evu ∈ E between nodes u and v. The normalized adjacency matrix is given by
Â = D̃− 1

2 ÃD̃− 1
2 , where D̃ = D+In and Ã = A+In represent the degree matrix and adjacency

matrix with added self-loops. The neighbors of node u is denoted as Nu = {v|euv ∈ E}. Graph
Structure Learning (GSL) generates a new graph topology A′, where the new neighbors of node
u are denoted as N ′

u. Graph-aware models MG , such as Graph Convolutional Networks (GCN)
(Kipf & Welling, 2016), are powerful in extracting structural information in graphs by message
aggregation or graph filters (Luan et al., 2022b). In contrast, graph-agnostic models M¬G , such
as Multilayer Perceptrons (MLP), only use X without considering G. For example, the updating
process of node embeddings in GCN and MLP can be represented as:

GCN : Hl = σ(ÂHl−1W l−1), MLP : Hl = σ(Hl−1W l−1) (1)
where Hl and W l are the node embeddings and weight matrix at the l-th layer, respectively, and
σ(·) is an activation function.

Graph Homophily. The concept of homophily originates from social network analysis and is de-
fined as the tendency of individuals to connect with others who have similar characteristics (Khanam
et al., 2023). A higher level of graph homophily makes the topological information of each node
more informative, thereby improving the performance of graph-aware models MG (Luan et al.,
2024b; 2022a; Zheng et al., 2024a). Commonly used homophily metrics include edge homophily
(Zhu et al., 2020a; Abu-El-Haija et al., 2019) and node homophily (Pei et al., 2020):

hedge(G,Y ) =

∣∣{euv|euv∈E,Yu=Yv}
∣∣

|E| , hnode(G,Y ) = 1
|V|

∑
v∈V

∣∣{u|u∈Nv,Yu=Yv}
∣∣∣∣Nv

∣∣ (2)

Contextual Stochastic Block Models with Homophily (CSBM-H). To study the behavior of
GNNs, CSBM-H (Luan et al., 2024b; Ma et al., 2021) have been proposed to create synthetic graphs
with a controlled homophily degree. Specifically, in CSBM-H, for a node u with label y, its features
Xu ∈ RM are sampled from a class-wised Gaussian distribution Xu ∼ NYu

(µYu
,ΣYu

) with
µYu

∈ RF and ΣYu
∈ RF×F , where each dimension of Xu is independent from each other,

i.e.,ΣYu
= diag(Rn

≥0). Then, to generate graph structure G with given homophily degree h with the
range of [0, 1], the node u has the probability h to connect intra-class nodes and the probability 1−h

C−1

to connect inter-class nodes. After applying neighbor sampling, both of the node homophily hnode

and edge homophily hedge in G are approximately equal to h.

Mutual Information. Mutual Information quantifies the amount of information obtained about
one random variable given another variable (mut, 2024). The mutual information between variable
X and Y can be expressed as:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(3)

where p(x, y) is joint probability, and p(x) and p(y) are marginal probability.

Mutual information could be used to analyze the quality of input features by measuring how much
information the inputs X retain about the outputs Y . However, in graphs under the task of node
classification, the mutual information between a discrete variable Y and a continuous variable X
cannot be directly measured by Eq. (3). Therefore, in this paper, we measure the mutual information
I(X;Y ) based on entropy estimation from k-nearest neighbors distances following (Kraskov et al.,
2004; Ross, 2014; Kozachenko & Leonenko, 1987).

3 GRAPH STRUCTURE LEARNING

This section introduces our proposed Graph Structure Learning (GSL) framework. Previous surveys
(Zhu et al., 2021a;b; Qiao et al., 2018) only focus on new structure construction, constituting one
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Figure 2: A framework of GSL.

step in GNNs learning. To provide a comprehensive understanding of GSL with GNNs, as shown
in Figure 2, our framework includes three steps: GSL bases generation, new structure construc-
tion, and view fusion. Then we describe the pipeline of the GSL framework: First, GSL bases
B is constructed based on node features X (and input graphs G). Then, new graph structures G′

are constructed with the GSL bases. Last, the information from new graph G′ (multiple views if
possible) and original graph G are combined with different view fusion strategies for the training
of GNNs. Please refer to Appendix A for a more detailed explanation of the representative GSL
methods within our proposed GSL framework.

3.1 GSL BASES

The GSL bases B is defined as the processed node embeddings used before constructing new struc-
tures. The quality of the GSL bases plays a crucial role in determining the performance of GNNs
with GSL. For node classification tasks, an effective GSL bases B should exhibit consistency among
intra-class nodes, as shown in the left part of Figure 1, is expected to be consistent among intra-class
nodes. From the embedding training perspective, the construction of B can be categorized as ei-
ther non-parametric approaches (Franceschi et al., 2020; Pei et al., 2020; Zou et al., 2023), which
generate static B, or parametric approaches (Jin et al., 2020; Chen et al., 2020; Yu et al., 2020),
which updates B dynamically during training. From the perspective of information usage, the con-
struction of B can be categorized into graph-agnostic approaches (Franceschi et al., 2020; Jin et al.,
2020; Zou et al., 2023) or graph-aware approaches (Pei et al., 2020; Yu et al., 2020; Wang et al.,
2021). Combining these two perspectives, in Figure 2, we show the diagrams of four types of of B
construction: B = X , B = (A)kX , B = MLP(X), and B = GNN(X,A).

3.2 NEW STRUCTURE CONSTRUCTION

The construction of the new structure G′, based on B, is a key element of GSL. From the per-
spective of relation extraction, methods for constructing G′ can be categorized into similarity-based
(Pei et al., 2020; Jiang et al., 2019; Li et al., 2023a), structure-based (Zhao et al., 2020; Liu et al.,
2022a; Zou et al., 2023), and parametric optimization-based (Jin et al., 2020; Liu et al., 2022b; Li
et al., 2022b) approaches. Similarity-based methods are the most prevalent, and the choice of simi-
larity measurement, such as k-Nearest Neighbors (Franceschi et al., 2020), cosine similarity (Chen
et al., 2020), or Minkowski distance (Liu et al., 2022b), plays a critical role in the quality of the
reconstructed graphs. However, the initial G′ produced by these methods often results in a coarse
graph structure, which may not be optimal for GNN training. Thus, further refinements are often
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(a) B = X
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(b) B = ÂX

Figure 3: Mutual information and accuracy of node classification on GSL bases B, convoluted bases
of old graphs H = ÂB, convoluted bases of new graphs H ′ = Â′B, across varying homophily
degrees. The rewriting bases B is set to node features B = X (left) or aggregated features B =

ÂX (right).

necessary, such as sampling (Zhao et al., 2020; Li et al., 2022a; Liu et al., 2022b), symmetrization
(Yu et al., 2020; Fatemi et al., 2021; Liu et al., 2022b), normalization (Zhao et al., 2020; Liu et al.,
2022b; Jiang et al., 2019), or applying graph regularization (Jin et al., 2020; Jiang et al., 2019; Li
et al., 2022b).

3.3 VIEW FUSION

In cases where the methods (Fatemi et al., 2021; Zou et al., 2023; Jiang et al., 2019) already im-
plicitly fuse the information from G into G′, further view fusion is unnecessary. However, for other
approaches, the fusion of information from the original graph structure G and the reconstructed
structure G′ is crucial. Based on the fusion stage, methods can be classified as early fusion (Li et al.,
2022a; Lao et al., 2022; Liu et al., 2022a), late fusion (Wang et al., 2021; Liu et al., 2022b; Zheng
et al., 2024b), or separation (Liu et al., 2022b). Early fusion, often seen as ”graph editing”, modifies
G by adding or removing edges with G′ before training. Late fusion keeps both views as input, fus-
ing node embeddings either at each layer or in the final layer. Separation methods, typically paired
with contrastive learning, maintain multiple views without embedding fusion during GNN training.
Additionally, view fusion methods can be further distinguished by whether they involve parameter
sharing across layers during training.

3.4 TRAINING MODE

In addition to the previous three steps, the training mode of G′ plays a crucial role in GSL and
can be categorized into static, joint, and 2-stage approaches. Most methods (Jin et al., 2020; Li
et al., 2022b; Yan et al., 2022) use joint training where G′ and model parameters are optimized
simultaneously. In contrast, some methods (Wang et al., 2021; Liu et al., 2022a; Franceschi et al.,
2020) follow a 2-stage mode, iteratively updating G′ and model parameters. While dynamic updates
offer greater flexibility for learning complex structures through parameter optimization, they also
significantly increase computational complexity, especially during the bases and graph construction
steps. To address this, other methods (Zheng et al., 2024b; Suresh et al., 2021; Li et al., 2023a) opt
for a static G′ during training. Although this fixed structure may limit performance, it avoids the
time-consuming process of frequent graph updates.

4 EFFECTIVENESS OF GRAPH STRUCTURE LEARNING

This section analyzes the impact of GSL on GNN performance with empirical observations in Sec-
tion 4.1 and theoretical analysis in Section 4.2. Then, the time complexity of GSL is analyzed in
Section 4.3.

4.1 EMPIRICAL OBSERVATIONS
Setting Based on CSBM-H, we generate synthetic graphs with 10 random seeds for each ho-
mophily degree h ∈ {0, 0.1, . . . , 1.0} to mitigate randomness effects. Each graph G contains 1000
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nodes, with each node characterized by 10 features, 5 balanced classes, and a degree sampled from
the range [2, 10]. Then, for the GSL, we apply k-Nearest-Neighbors algorithm on GSL bases B
with k = 5 to generate new graphs, i.e., G′ = kNN(B). To inspect the effectiveness of GSL,
based on B, G, and G′, we can get several forms of node representation: B, H = GCN(B,G),
and H ′ = GCN(B,G′), corresponding to the node representation of MLP, GCN, GCN+GSL re-
spectively. We assess the performance of these methods on node classification tasks using mutual
information, MI(·), as a non-parametric measure, and accuracy, Acc(·), as a parametric measure.

To consider both the graph-agnostic bases and graph-aware bases as discussed in Section 3.1, the
GSL bases is selected as B = X and B = ÂX as shown in Figure 3a and Figure 3b respectively.
For example, on the left part of Figure 3a, the performance of MLP, GCN, GCN+GSL is shown
as mutual information I(B;Y ), I(H;Y ), and I(H ′;Y ) respectively. Based on these results, we
make several observations as follows:

Observation 1. Mutual information is an effective non-parametric measure of model perfor-
mance. As shown in Figure 3a and Figure 3b, the trend of mutual information I(·) (left) closely
mirrors the model accuracy ACC(·) (right). Additionally, mutual information effectively distin-
guishes performance differences between methods. Since mutual information is non-parametric, it
offers a flexible and reliable measure, making it suitable for theoretical analysis in the next section.

Observation 2. MLP performs comparably to GCN+GSL under the same GSL bases. In
Figure 3a, the mutual information I(B;Y ) and classification accuracy ACC(B,Y ) are close to
I(H ′;Y ) and ACC(H ′,Y ), respectively, across both graph-agnostic and graph-aware GSL bases.
This suggests that, contrary to the expectation that GSL might enhance performance, the results
indicate that the model performance does not improve significantly after applying graph convolution
on G′, reinforcing the GSL controversy discussed in Figure 1.

Observation 3. GCN+GSL sometimes outperforms GCN in heterophilous graphs. As shown in
Figure 3a, the I(B;Y ) or ACC(B,Y ) increases with a higher homophily degree, while I(H ′;Y )
or ACC(H ′,Y ) remain stable across homophily degrees. In graphs with low homophily, the neigh-
bors identified by GSL are more likely to share the same labels as the target node compared to the
original graph neighbors, which causes GCN to underperform relative to GCN+GSL. However, this
effect is observed only when B = X (3a). When B = ÂX (3b), the GSL bases does not ex-
hibit consistency among intra-class nodes in low homophily settings, leading GCN+GSL to perform
worse than GCN.

These observations highlight that even when GCN+GSL outperforms GCN, its performance remains
close to MLP under the same GSL bases. Recent studies (Luo et al., 2024; Platonov et al., 2023) also
indicate that under consistent hyperparameter tuning, GSL does not always consistently outperform
classic GNN baselines. This leads us to reconsider the necessity of GSL. Thus, in addition to the
empirical observations above, we proceed with a theoretical analysis of GSL’s effectiveness in the
following section.

4.2 THEORETICAL ANALYSIS

To explain the above empirical observations, in this section, we first prove that the mutual informa-
tion I(Y ;H) of label Y and aggregated features H serve as a non-parametric measurement of the
performance of graph convolution. Following this, we compare the mutual information between the
node labels Y and either the original GSL bases B or the aggregated GSL bases H ′ (on GSL graph
G′), to highlight the impact of GSL on model performance.

Theorem 1. Given a graph G = {V, E} with node labels Y and node features X , the accuracy of
graph convolution on node classification is upper bounded by the mutual information of node label
Y and aggregated node features H:

PA ≤ I(Y ;H) + log 2

log(C)
(4)

Proposition 1. Consider a graph G = {V, E} characterized by node labels Y and n-dimensional
node bases B = {B1, B2, . . . , Bn} with C classes. Each base Bi is independent and follows a class-
dependent Gaussian distribution, i.e., Bi ∼ N (µY , σY ). A new graph G′ = {V, E ′} is generated
using a non-parametric method based on the bases B. For the aggregated bases B′ on G′, we have
inf I(Y ;B′) ≤ inf I(Y ;B).
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where the proofs are shown in Appendix B.

Theorem 1 shows that the mutual information I(Y ;H) provides an upper bound on the accuracy
of graph convolution for node classification, which justifies why mutual information serves as an
effective measure of model performance, as demonstrated in Observation 1.

Based on the conclusion of mutual information in Theorem 1, we analyze the effectiveness of GSL.
Proposition 1 shows that the graph convolution on new graphs generated by GSL does not increase
the lower bound of mutual information. This explains why MLP performs similarly to, or slightly
better than, GCN+GSL in Observation 2 and the GSL controversy in Figure 11

To further explain Observation 3 in Section 4.1, we refer again to Proposition 1. In conjunction
with previous studies on graph homophily (Pei et al., 2020; Luan et al., 2022a; Zheng et al., 2024a),
we know that the performance of GCN could be inferior to MLP on heterophilous graphs. Since
GCN+GSL is upper bounded by the MLP on the same GSL bases, when MLP outperforms GCN,
GCN+GSL may also outperform GCN, as seen in Figure 3a. However, even when GCN+GSL
surpasses GCN in some cases, it still lags behind MLP, a much simpler model, on the same GSL
bases. Therefore, we hypothesize that previous GSL improvements stem from the construction of
the GSL bases or the introduction of additional model parameters. A fair comparison of GSL with
other GNNs or MLP baselines should be conducted using the same GSL bases, as demonstrated in
our experiments.

4.3 COMPLEXITY ANALYSIS

After investigating the difference in the performance of GCN+GSL and GCN, we then analyze the
time complexity of some representative methods of GSL, such as IDGL (Chen et al., 2020), GRCN
(Yu et al., 2020), GAug (Zhao et al., 2020), and HOG-GCN (Wang et al., 2022), as shown in Table 3.
Assume the dimension of node representation is F for all the layers, the additional time complexity
introduced by GSL generally includes: 1. Construction of GSL bases: O(|E|F + |V|F 2) for graph-
aware bases or O(|V|F 2) for graph-agnostic bases, 2. Graph construction: O(|V|2 F ), 3. Graph
refinement: O(|V|2), and 4: View Fusion O(|V|2). Apart from the complexity of the new graph
construction in GSL, during the graph convolution, compared with GNNs without using GSL, the
additional complexity is further introduced by single view GSL O(|E ′|F ) or multiple view GSL
O((NG − 1)(|E|F + |V|F 2)), where |E ′| is the additional edges introduced in GSL and NG is the
number of views in GSL. Consider the fact that |V|2 ≫ |E|, we have the total additional complexity
of GSL by summing up all these terms: O(|V|2 F + |V|F 2). Compared with the complexity in
normal GCN O(|E|F + |V|F 2) (Blakely et al., 2021), this additional complexity O((|V|2 − |E|)F )
adds tremendous training time and grows exponentially with the number of nodes in graphs, which
is shown in our experiments.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of GSL by comparing the performance of baseline
GNNs and GNNs augmented with GSL (GNN+GSL), as well as the performance of GSL-based
state-of-the-art (SOTA) methods against their non-GSL counterparts (SOTA vs. SOTA-GSL) on
node classification tasks. The results of these comparisons are presented in Section 5.1. Addition-
ally, we analyze the quality of the newly constructed graphs generated by GSL in Section 5.2 and
investigate how different components of GSL impact model performance in Section 5.3.

Settings. Our experiments include several baseline GNNs: GCN (Kipf & Welling, 2016), SGC (Wu
et al., 2019a), GraphSage (Hamilton et al., 2017), and GAT (Velicković et al., 2017), and GSL-based
SOTA models: GAug (Zhao et al., 2020), GEN (Wang et al., 2021), GRCN (Yu et al., 2020), IDGL
(Chen et al., 2020), NodeFormer (Wu et al., 2023), GloGNN (Li et al., 2022b), WRGAT (Suresh
et al., 2021), and WRGCN (Suresh et al., 2021). The datasets used in our experiments include
heterophilous graphs: Squirrel, Chameleon, Actor, Texas, Cornell, and Wisconsin (Pei et al., 2020;
Rozemberczki et al., 2021), homophilous graphs: Cora, PubMed, and Citeseer (Yang et al., 2016),

1Admittedly, this theoretical analysis cannot be extended to optimization-based GSL due to the complexity
of non-linear optimization problems. As such, the unnecessity of GSL in these methods is confirmed through
our experiments.
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and Minesweeper, Roman-empire, Amazon-ratings, Tolokers, and Questions (Platonov et al., 2023).
We show more dataset details in Appendix C. The model performance is measured by accuracy for
multi-class datasets or AUC-ROC for binary-class datasets on node classification tasks. For the
data splits, we use 50%/25%/25% in train/validation/test sets for GNN+GSL and follow the default
splits in OpenGSL (Zhiyao et al., 2024) for each SOTA or SOTA-GSL method. Please refer to
Appendix D for more implementation details.

5.1 PERFORMANCE COMPARISON

GNN+GSL. We investigate the impact of GSL by comparing the performance of GNN and
GNN+GSL. As GSL introduces significant variations in three key aspects, outlined in Table 3, we
aim to comprehensively evaluate all possible GSL configurations through a combination of vari-
ous GSL components, which include 1) GSL bases: original features X , aggregated features ÂX ,
MLP-pretrained features MLP(X), GCN-pretrained features GCN(X,A), GCL(Graph Contrastive
Learning)-pretrained features GCL(X,A); 2) GSL Graph Construction: Graphs constructed via co-
sine similarity at the graph level (cos-graph), node level (cos-node), and k-nearest neighbors (kNN);
and 3) View Fusion: early fusion {G′}, late fusion {G,G′} with parameter sharing θ1 = θ2 or not
θ1 ̸= θ2. To ensure a fair comparison of the performance between GNN+GSL, GNN, and MLP, we
consider 5 GSL bases as input choices and train all models on each GSL bases. Detailed explana-
tions of these GSL modules can be found in Appendix D.1.

Table 1: Performance of GNNs with GNN+GSL.

Model Construct Fusion Param Sharing Mines. Roman. Amazon. Tolokers Questions Squirrel Chameleon Actor Texas Cornell Wisconsin Cora CiteSeer PubMed Rank
MLP None - - 79.55±1.23 65.45±0.99 46.65±0.83 75.94±1.38 74.92±1.39 39.29±2.22 43.57±4.18 35.40±1.38 80.46±6.44 73.78±7.34 85.88±7.78 87.97±1.80 76.68±2.10 87.39±2.18 3.93
GCN None - - 90.07±5.79 81.46±1.25 50.89±1.16 84.61±0.99 77.68±1.10 41.26±2.47 43.24±3.86 34.34±1.17 73.08±8.68 67.03±10.54 78.24±8.32 87.97±1.51 76.75±2.30 89.47±0.64 1.36
GCN cos-graph {G′} - 77.91±5.25 67.40±1.02 46.72±1.51 76.11±1.52 72.56±1.14 38.15±2.45 39.87±4.87 33.47±1.61 63.06±9.85 65.68±7.76 72.75±5.70 85.21±1.39 75.52±1.14 89.03±0.42 6.71
GCN cos-graph {G,G′} θ1 = θ2 52.53±6.45 62.57±0.81 41.29±1.61 74.22±1.79 69.63±1.52 37.62±1.74 39.78±4.00 32.74±0.92 57.88±8.75 66.49±9.12 73.14±5.92 64.68±1.61 67.32±1.89 86.43±0.76 9.32
GCN cos-graph {G,G′} θ1 ̸= θ2 88.70±0.86 69.90±2.38 47.35±0.83 82.85±0.95 75.29±1.38 38.84±2.87 40.30±4.31 33.73±1.49 65.47±8.48 62.97±10.89 75.29±6.54 85.51±1.87 75.23±1.14 88.74±0.59 4.79
GCN cos-node {G′} - 85.57±6.63 68.24±2.49 47.56±1.32 77.26±1.44 74.16±1.80 38.14±2.40 40.16±3.13 34.04±1.66 61.13±8.19 61.08±8.16 71.18±6.98 86.06±1.95 75.76±1.39 88.92±0.50 5.93
GCN cos-node {G,G′} θ1 = θ2 52.53±6.45 62.57±0.81 41.29±1.61 74.22±1.79 69.63±1.52 37.62±1.74 39.78±4.00 32.74±0.92 57.88±8.75 66.49±9.12 73.14±5.92 64.68±1.61 67.32±1.89 86.43±0.76 9.36
GCN cos-node {G,G′} θ1 ̸= θ2 89.17±0.68 72.63±1.45 48.31±0.96 82.91±0.97 75.56±1.05 38.41±2.32 39.94±4.49 34.10±1.53 64.68±8.85 63.24±9.47 73.92±7.51 85.69±1.73 75.49±1.42 88.72±0.71 4.29
GCN kNN {G′} - 82.89±6.66 68.44±0.83 47.13±1.00 78.92±1.79 73.90±1.73 38.15±2.02 40.22±3.82 33.94±1.24 63.03±8.53 61.35±9.28 72.16±7.41 86.08±1.62 75.56±1.42 88.59±0.58 5.93
GCN kNN {G,G′} θ1 = θ2 52.53±6.45 62.57±0.81 41.29±1.61 74.22±1.79 69.63±1.52 37.62±1.74 39.78±4.00 32.74±0.92 57.88±8.75 66.49±9.12 73.14±5.92 64.68±1.61 67.32±1.89 86.43±0.76 9.39
GCN kNN {G,G′} θ1 ̸= θ2 88.96±0.73 72.44±1.61 47.06±0.83 83.10±0.80 75.61±1.19 37.63±1.93 40.18±4.76 33.84±1.94 63.87±9.68 62.16±9.77 75.49±7.29 85.82±1.55 75.50±1.30 88.54±0.55 5.00
MLP None - - 79.55±1.23 65.45±0.99 46.65±0.83 75.94±1.38 74.92±1.39 39.29±2.22 43.57±4.18 35.40±1.38 80.46±6.44 73.78±7.34 85.88±7.78 87.97±1.80 76.68±2.10 87.39±2.18 3.71
SGC None - - 83.45±4.47 78.04±0.69 51.38±0.68 84.88±1.13 77.39±1.23 41.18±2.73 42.35±4.10 34.05±1.41 73.63±6.94 70.27±9.91 80.59±5.13 88.10±1.89 77.52±2.20 89.39±0.62 1.57
SGC cos-graph {G′} - 73.76±4.46 67.17±0.81 47.15±0.88 76.28±1.63 73.93±2.66 38.66±2.53 40.07±4.39 33.87±1.45 71.19±7.38 67.57±9.19 77.65±6.08 86.95±2.01 76.12±1.29 89.10±0.43 5.79
SGC cos-graph {G,G′} θ1 = θ2 52.53±4.89 62.97±0.78 42.42±1.57 74.29±1.79 70.56±1.27 37.56±2.25 39.33±3.60 32.85±0.90 57.60±7.53 66.49±10.37 71.57±4.46 64.82±2.11 67.55±1.80 86.58±0.72 9.64
SGC cos-graph {G,G′} θ1 ̸= θ2 79.70±1.21 62.02±2.06 47.24±0.93 83.22±1.52 77.19±0.99 38.32±1.80 40.85±4.61 33.51±1.50 70.34±7.31 64.86±9.01 75.29±6.82 87.47±1.70 75.70±1.28 88.65±0.49 6.14
SGC cos-node {G′} - 79.03±3.76 67.84±1.87 47.93±0.94 78.09±1.84 75.46±1.43 38.61±2.20 40.50±4.10 34.03±1.27 70.08±6.84 68.11±9.23 77.45±4.63 87.47±1.86 76.36±1.27 89.37±0.41 4.54
SGC cos-node {G,G′} θ1 = θ2 52.53±4.89 62.97±0.78 42.42±1.57 74.29±1.79 70.56±1.27 37.56±2.25 39.33±3.60 32.85±0.90 57.60±7.53 66.49±10.37 71.57±4.46 64.82±2.11 67.55±1.80 86.58±0.72 9.57
SGC cos-node {G,G′} θ1 ̸= θ2 80.12±1.36 66.90±1.66 48.04±0.97 83.53±1.43 77.11±1.09 38.52±2.29 40.20±4.66 34.20±1.79 68.47±8.11 64.59±9.74 75.29±6.05 87.54±1.63 75.88±1.26 88.68±0.43 5.11
SGC kNN {G′} - 75.53±4.98 67.94±0.70 47.68±0.84 79.45±2.06 74.22±2.47 37.32±2.10 39.92±3.91 34.05±1.55 72.81±6.15 70.00±7.98 77.84±6.02 87.82±1.77 76.54±1.44 89.19±0.42 4.64
SGC kNN {G,G′} θ1 = θ2 52.53±4.89 62.97±0.78 42.42±1.57 74.29±1.79 70.56±1.27 37.56±2.25 39.33±3.60 32.85±0.90 57.60±7.53 66.49±10.37 71.57±4.46 64.82±2.11 67.55±1.80 86.58±0.72 9.50
SGC kNN {G,G′} θ1 ̸= θ2 80.78±1.08 64.59±1.93 47.48±0.99 83.17±1.43 76.80±1.09 36.53±2.06 40.17±4.24 34.23±1.72 69.26±6.77 65.95±8.87 76.08±5.92 87.38±1.49 76.02±1.22 88.77±0.45 5.79
MLP None - - 79.55±1.23 65.45±0.99 46.65±0.83 75.94±1.38 74.92±1.39 39.29±2.22 43.57±4.18 35.40±1.38 80.46±6.44 73.78±7.34 85.88±7.78 87.97±1.80 76.68±2.10 87.39±2.18 4.14

SAGE None - - 90.66±0.88 85.02±0.97 52.93±0.83 83.31±1.12 75.95±1.41 40.43±2.64 42.95±5.37 34.83±1.20 80.17±6.90 75.68±7.52 86.27±6.67 88.13±1.77 76.65±2.00 89.18±0.65 1.71
SAGE cos-graph {G′} - 80.39±4.66 70.13±1.05 47.55±1.17 76.77±1.28 72.86±1.18 39.03±2.69 40.84±5.42 34.75±1.39 70.91±8.58 70.00±7.56 78.24±6.87 83.64±2.03 75.53±1.36 89.18±0.35 6.07
SAGE cos-graph {G,G′} θ1 = θ2 53.02±6.49 59.98±1.73 39.99±2.29 71.57±2.28 66.01±3.58 35.05±2.41 38.49±3.68 31.32±1.04 60.30±7.05 67.57±4.59 76.47±5.92 64.58±1.74 67.77±1.31 85.53±0.51 9.93
SAGE cos-graph {G,G′} θ1 ̸= θ2 90.67±0.66 79.02±1.21 52.10±0.84 82.17±0.89 75.38±0.96 39.36±2.14 40.64±6.06 35.14±1.08 76.08±6.30 70.27±6.62 79.41±5.71 83.60±1.78 74.39±1.35 88.88±0.50 3.86
SAGE cos-node {G′} - 85.26±4.64 71.25±1.76 48.96±0.87 78.39±1.75 73.01±1.11 38.68±2.75 40.81±4.51 35.10±1.26 71.47±9.47 68.11±7.87 75.49±6.32 84.88±1.90 75.58±1.04 89.17±0.35 5.64
SAGE cos-node {G,G′} θ1 = θ2 53.02±6.49 59.98±1.73 39.99±2.29 71.59±2.28 66.01±3.58 35.05±2.41 38.49±3.68 31.32±1.04 60.30±7.05 67.57±4.59 76.47±5.92 64.58±1.74 67.77±1.31 85.53±0.51 9.79
SAGE cos-node {G,G′} θ1 ̸= θ2 90.64±0.65 78.60±0.98 52.08±0.90 82.02±0.88 75.31±1.12 39.18±2.54 40.86±6.17 35.18±1.24 74.71±5.65 69.73±7.43 80.00±5.68 83.96±1.65 74.63±1.26 88.93±0.64 3.93
SAGE kNN {G′} - 82.86±3.14 70.74±0.80 48.40±1.01 78.12±2.17 72.70±1.15 38.93±2.84 39.68±5.40 35.09±1.14 70.91±9.05 68.92±6.88 75.69±6.73 84.40±1.75 75.68±1.43 88.86±0.44 6.50
SAGE kNN {G,G′} θ1 = θ2 53.02±6.49 59.98±1.73 39.99±2.29 71.59±2.28 66.01±3.58 35.05±2.41 38.49±3.68 31.32±1.04 60.30±7.05 67.57±4.59 76.47±5.92 64.58±1.74 67.77±1.31 85.53±0.51 9.86
SAGE kNN {G,G′} θ1 ̸= θ2 90.61±0.63 79.16±1.15 51.56±1.07 81.66±0.87 75.22±0.97 39.20±2.39 40.44±5.82 35.13±1.38 74.17±6.31 70.54±7.32 79.61±6.61 84.05±1.63 74.59±1.25 88.67±0.55 4.57
MLP None - - 79.55±1.23 65.45±0.99 46.65±0.83 75.94±1.38 74.92±1.39 39.29±2.22 43.57±4.18 35.40±1.38 80.46±6.44 73.78±7.34 85.88±7.78 87.97±1.80 76.68±2.10 87.39±2.18 3.86
GAT None - - 90.41±1.34 84.51±0.84 52.00±2.84 84.37±0.96 77.78±1.27 41.67±2.51 43.83±3.66 33.73±1.77 75.28±8.12 65.41±12.14 77.84±7.41 88.02±1.92 76.77±2.02 89.21±0.67 2.04
GAT cos-graph {G′} - 80.78±8.24 67.68±1.25 45.79±1.10 74.84±1.84 72.34±1.49 38.74±2.54 40.21±3.53 33.37±1.10 62.73±9.06 67.57±7.03 77.06±7.29 86.03±1.85 75.46±1.49 88.63±0.59 6.29
GAT cos-graph {G,G′} θ1 = θ2 53.16±7.93 63.67±1.08 44.83±2.04 73.46±1.07 68.92±1.53 37.14±2.13 39.85±2.87 32.06±1.12 57.03±8.70 67.30±4.67 75.10±5.85 64.84±1.45 67.82±0.62 86.47±0.66 9.46
GAT cos-graph {G,G′} θ1 ̸= θ2 89.97±0.80 76.08±1.70 49.61±0.73 82.75±0.90 77.13±1.20 39.21±2.81 40.40±3.30 33.05±1.20 70.66±7.77 66.76±7.23 78.82±6.76 86.60±1.75 75.05±1.36 87.85±0.72 4.71
GAT cos-node {G′} - 87.64±8.40 68.80±2.39 46.37±1.06 77.77±1.86 73.65±1.47 38.65±2.46 40.33±3.25 33.43±0.94 64.64±9.09 65.41±8.48 75.10±6.13 87.08±1.66 75.59±1.49 88.59±0.49 5.82
GAT cos-node {G,G′} θ1 = θ2 53.16±7.93 63.67±1.08 44.83±2.04 73.46±1.07 68.92±1.53 37.14±2.13 39.85±2.87 32.06±1.12 57.03±8.70 67.30±4.67 75.10±5.85 64.84±1.45 67.82±0.62 86.47±0.66 9.46
GAT cos-node {G,G′} θ1 ̸= θ2 90.03±0.78 77.56±2.75 50.36±0.70 82.72±1.16 76.83±1.16 38.97±3.12 40.56±3.77 33.49±1.35 70.39±7.34 65.95±6.77 78.63±6.59 86.64±1.78 75.32±1.04 87.87±0.61 4.21
GAT kNN {G′} - 84.27±5.25 68.73±1.47 46.05±0.90 77.57±1.75 71.58±1.62 38.82±2.33 40.12±3.69 33.84±1.07 61.68±8.71 62.97±7.43 74.90±5.86 86.77±1.90 75.64±1.45 88.29±0.48 6.50
GAT kNN {G,G′} θ1 = θ2 53.16±7.93 63.67±1.08 44.83±2.04 73.46±1.07 68.92±1.53 37.14±2.13 39.85±2.87 32.06±1.12 57.03±8.70 67.30±4.67 75.10±5.85 64.84±1.45 67.82±0.62 86.47±0.66 9.46
GAT kNN {G,G′} θ1 ̸= θ2 89.96±0.79 77.23±1.63 49.79±0.72 82.78±0.95 76.67±1.13 39.65±2.76 41.11±3.92 33.54±1.36 70.38±7.22 65.95±6.52 77.84±7.23 86.97±1.75 75.20±1.55 87.97±0.51 4.18

Table 1 shows the performance of MLP, GNN baselines, and GNN+GSL across 8 datasets, using the
best-performing GSL bases. For each GNN backbone, the best-performing method is highlighted in
red, while the second-best method is highlighted in blue. Notably, under fair comparison conditions,
all 4 baseline GNNs outperform their GNN+GSL counterparts. This suggests that incorporating
GSL into these GNN baselines does not consistently yield performance improvements and leads
to worse results in many instances. However, these results alone are insufficient to conclusively
determine the effectiveness of GSL, as the method may require specific training procedures or more
complex model designs. Therefore, we further examine the performance of state-of-the-art (SOTA)
GSL approaches to more fairly evaluate GSL’s potential within GNNs.

SOTA-GSL. To fairly reassess the impact of GSL in state-of-the-art (SOTA) methods, we compare
the performance of SOTA models with their SOTA-GSL counterparts within the same hyperparam-
eter search space. Corresponding to the analysis of GCN and MLP in Section 4.1, the SOTA-GSL
methods include two variants: (1) SOTA, G′ = G, which replaces the GSL graph G′ with the origi-
nal graph G; and (2) SOTA, G′ = MLP, which substitutes the graph convolution layers of GSL G′

with MLP layers. The results are presented in Table 2, where ”OOM” denotes out-of-memory. It is
evident that removing GSL does not diminish model performance; in fact, it is often comparable to
or even exceeds the original results. Furthermore, GSL-based SOTA methods require significantly
more GPU memory and longer running times compared to their non-GSL counterparts. Based on
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these findings, we conclude that GSL not only fails to enhance performance across most datasets
but also increases model complexity. In conjunction with the results in Table 1, we assert that GSL
is unnecessary for effective GNN design in most cases.

Table 2: Model Performance and training time per epoch of SOTA methods and SOTA-GSL. The
results for methods marked with “*” are reported in Zhiyao et al. (2024).

Questions Minesweeper Roman-empire Amazon-ratings Tolokers Cora Pubmed Citeseer
Model AUC Time AUC Time Acc Time Acc Time AUC Time Acc Time Acc Time Acc Time

GAug* OOM - 77.93±0.64 - OOM - 48.42±0.39 - OOM - 82.48±0.66 7s 78.73±0.77 20s 72.79±0.86 10s
GAug, G′ = G OOM - 80.56±0.36 11s OOM - 48.45±0.37 12s OOM - 81.73±0.38 1s 79.38±0.46 6s 72.34±0.18 2s
GAug, G′ = MLP OOM - 64.31±1.40 4.8s OOM - 48.05±0.66 37s OOM - 78.90±0.00 3.2s 77.40±0.00 8.1s 72.91±0.32 9s

GEN* OOM - 79.56±1.09 260s OOM - 49.17±0.68 - OOM - 81.66±0.91 214s 78.49±3.98 1384s 73.21±0.62 470s
GEN, G′ = G OOM - 80.81±0.23 75s OOM - 50.08±0.30 130s OOM - 82.16±0.37 39s 80.49±0.13 114s 71.52±0.34 25s
GEN, G′ = MLP OOM - 71.81±0.98 12s OOM - 49.29±0.65 49s OOM - 80.20±0.00 140s 66.80±0.00 1592s 73.50±0.00 310s

GRCN* 74.50±0.84 - 72.57±0.49 60s 44.41±0.41 180s 50.06±0.38 220s 71.27±0.42 37s 84.61±0.34 13s 79.30±0.34 17s 72.34±0.34 20s
GRCN, G′ = G 75.69±0.52 8s 71.15±0.05 10s 45.84±0.52 8s 46.07±1.02 10s 71.73±0.42 10s 81.66±1.10 2s 79.35±0.26 3s 69.55±1.28 2s
GRCN, G′ = MLP 63.59±2.35 3.9s 72.18±1.09 2s 45.89±0.83 7.5s 48.77±0.60 8.1s 70.45±1.39 8s 79.40±0.00 1.3s 78.10±0.00 5s 71.40±0.00 4.2s

IDGL* OOM - 50.00±0.00 157s 47.10±0.65 186s 45.87±0.58 - 50.00±0.00 279s 84.19±0.61 123s 82.78±0.44 146s 73.26±0.53 332s
IDGL, G′ = G OOM - 50.00±0.00 51s 41.24±0.86 42s OOM - 50.00±0.00 52s 82.43±0.45 13s 73.50±1.85 23s 73.13±0.49 36s
IDGL, G′ = MLP OOM - 79.56±1.26 13.7s 50.35±0.36 35s 39.93±0.88 15s 71.55±1.08 11s 83.20±0.00 6.6s 79.20±0.00 13s 72.60±0.00 13.9s

NodeFormer* OOM - 77.29±1.71 - 56.54±3.73 - 41.33±1.25 - OOM - 78.81±1.21 213s 78.38±1.94 - 70.39±2.04 219s
NodeFormer, G′ = G OOM - 80.66±0.82 215s 68.37±1.95 236s OOM - OOM - 77.01±1.99 152s OOM - 70.82±0.13 139s
NodeFormer, G′ = MLP OOM - 80.04±1.42 21s 53.08±2.37 7.2s 71.55±1.08 26s OOM - 78.82±0.00 8s 76.30±0.00 127s 72.80±0.00 15s

GloGNN 68.67±1.07 66.6s 52.45±0.30 13.0s 66.21±0.17 26.1s 50.72±0.88 31.1s 79.81±0.20 47.4s 78.07±1.66 6.6s 87.88±0.26 18.2s 71.95±1.90 21.8s
GloGNN, G′ = G 68.32±1.23 49.4s 52.30±0.21 3.6s 66.03±0.14 15.3s 50.23±0.83 21.7s 80.02±0.16 25.1s 73.49±2.01 5.1s 87.62±0.20 14.4s 72.27±2.08 21.2s
GloGNN, G′ = MLP 69.69±0.22 25.7s 52.30±0.20 2.1s 66.49±0.16 12.4s 49.56±0.73 12.3s 74.85±0.12 2.8s 73.93±1.81 3.2s 87.64±0.27 10.2s 72.09±1.81 13.8s

WRGAT OOM - 90.22±0.64 168.0s OOM - OOM - 78.69±1.21 153.0s 84.28±1.52 19.5s 88.82±0.50 421.6s 73.50±1.41 22.1s
WRGAT, G′ = G 74.67±0.95 64.1s 89.79±0.37 18.6s OOM - 50.41±0.53 49.9s 78.81±0.89 47.0s 83.48±1.48 3.4s 88.92±0.43 26.5s 73.22±1.90 4.7s
WRGAT, G′ = MLP 68.07±2.62 75.8s 87.08±2.11 16.2s OOM - 41.38±1.46 24.4s 76.41±1.25 37.7s 76.99±1.10 2.9s 80.27±6.23 23.9s 65.28±2.11 4.5s

WRGCN 74.70±1.71 358.3s 90.63±0.64 40.9s OOM - 52.76±0.95 508.4s 82.68±0.82 52.3s 88.30±1.46 23.7s OOM - 73.74±1.60 54.2s
WRGCN, G′ = G 75.91±1.30 43.3s 90.65±0.49 5.5s OOM - 52.54±0.56 50.1s 82.65±0.86 15.6s 88.32±0.79 3.9s 89.26±0.45 19.4s 74.45±1.51 10.5s
WRGCN, G′ = MLP 64.59±1.48 23.1s 70.66±1.37 7.7s OOM - 37.05±0.46 8.0s 69.10±0.91 12.2s 70.00±3.59 2.2s 67.29±2.49 9.9s 70.84±1.36 4.1s

5.2 QUALITY OF GSL GRAPHS

Previous studies (Li et al., 2022b; Zheng et al., 2024b) suggest that GSL constructs graphs with
properties that improve intra-class node connectivity, which can be measured by homophily. This
improvement can be visualized by inspecting graph structures with nodes sorted by their class la-
bels. A graph that appears closer to a block diagonal matrix indicates stronger intra-class con-
nectivity. However, this enhancement may not always be essential and can be achieved through
non-GSL methods as well. In Figure 4, we visualize the original and reconstructed structures of
a heterophilous graph from the Wisconsin dataset. The GSL graphs are constructed using various
bases: X, ÂX, MLP(X), GCN(X,A), and GCL(X,A). We also include reconstructed graphs us-
ing a simple method that samples edges between nodes of the same class based on label predictions,
i.e., Ŷ = GCN(X,A) or Ŷ = MLP(X,A). Figure 4 demonstrates that, although GSL improves
intra-class connectivity, the improvement is not as substantial as that achieved by non-GSL meth-
ods, as seen in the last two subfigures. Thus, the improvement in homophily within GSL graphs is
unnecessary, as it can be easily achieved through simple methods.

Original, hedge=0.18 B = X, hedge=0.81 B = AX, hedge=0.42 B = MLP(X), hedge=0.96

B = GCN(X,A), hedge=0.75 B = GCL(X,A), hedge=0.39 Y = GCN(X, A), hedge=0.71 Y = MLP(X, A), hedge=1.00

Figure 4: Visualization of original graph and reconstructed graphs on Wisconsin
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5.3 GSL COMPONENTS

Since the performance of GNN and GNN+GSL models is comparable under the same GSL bases, as
shown in Table 1, we further investigate how different components of GSL influence GNNs. As il-
lustrated in Figure 5, our results indicate that: (1) Pretrained node representations, such as MLP(X)
and GCN(X,A), significantly enhance GNN performance, (2) GSL graph generation has minimal
impact on model performance, (3) two view fusion with parameter separation improves GNN per-
formance, and (4) early fusion generally outperforms late fusion. These results explain why prior
comparisons of GNNs are unfair since those pretrained GSL bases greatly improve GNN perfor-
mance. This improvement stems from self-training, a key component in many GSL approaches.
As a result, incorporating self-training methods may be more advantageous for future GNN designs
than relying solely on GSL. For additional results and an analysis of GSL modules, please refer to
Appendix E.
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Figure 5: Influences of different GSL components to model performance.

6 CONCLUSION

In this paper, we revisit the role of Graph Structure Learning (GSL) in Graph Neural Networks
(GNNs) with our proposed GSL framework. Motivated by the controversy of GSL, we demonstrate
that graph convolution over GSL-constructed graphs does not improve mutual information, as con-
firmed by both empirical observations and theoretical analysis. By either adding GSL to baseline
GNNs or removing it from state-of-the-art (SOTA) methods, we find that GSL does not enhance
GNN performance when evaluated under the same GSL bases and hyperparameter tuning. These re-
sults suggest that the improvements attributed to GSL may stem from components other than GSL.
Our findings contribute to a better understanding of GSL and offer insights into re-evaluating the
essential components in future GNN design.
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A TAXONOMY OF GRAPH STRUCTURE LEARNING METHODS

We present several representative GSL-based GNNs within our proposed GSL framework in Table
3. Below, we provide a detailed description of each method.

Table 3: Representative GSL methods under our proposed GSL framework

Method Bases Construct Refinement View Fusion Training Mode

LDS (Franceschi et al., 2020) X {E ′ = kNN(B)} +Opt. Bernoulli(E ′) Late Fusion, {G′
1,G′

2, . . . ,G′
m}, θ1 = θ2 2-stage

Geom-GCN (Pei et al., 2020) Isomap/Poincare/
Struc2vec(X,A)

{E ′|e′ij = |Bi −Bj |} threshold(E ′) Late Fusion, {G,G′}, θ1 ̸= θ2 Static

ProGNN (Jin et al., 2020) ϵ {E ′ = Opt(ϵ)} Low Rank+Sparsity
+Original No Fusion, {G′} Joint

IDGL (Chen et al., 2020) MLP(X) {E ′|e′ij = cos(Bi,Bj)} topk(E ′) Early Fusion, {G + G′} Joint
GRCN (Yu et al., 2020) GCN(X ,A) {E ′|e′ij = σ(BiB

T
j )} topk(E ′), sym(E ′) Early Fusion, {G + G′} Joint

GAug-M (Zhao et al., 2020) GCN(2)(X ,A) {E ′|e′ij = σ(BiB
T
j )}

G′
+ = topk(E ′),

G′
− = bottom(E ′)

Early Fusion, {G + G′
+ − G′

−} Joint

GAug-O (Zhao et al., 2020) X {E ′|e′ij = p(eij |GAE(B,A))} Gumbel(E ′) Early Fusion, {G + G′} Joint
SLAPS (Fatemi et al., 2021) MLP(X) {E ′ = kNN(B)} norm(E ′),sym(E ′) No Fusion, {G′} Joint

CoGSL (Liu et al., 2022a) GCN(X, {A, kNN(X),
PPR(X),Subgraph(X)}) {E ′|e′ij = p(eij |MLP(B,A))} - Early Fusion, {G∗|minLCL(G,G′)}, θ1 ̸= θ2 2-stage

GEN (Wang et al., 2021) GCN(X,A) {E ′ = kNN(B)} - Late Fusion, {G′
1,G′

2, . . . ,G′
m} , θ1 ̸= θ2 2-stage

STABLE (Li et al., 2022a) GCL(X,A)
{E ′|e′ij = cos(Bi,Bj)

or cos(Bi,Bj)}
G′
+ = topk(E ′),

G′
− = threshod(E ′)

Early Fusion, {G + G′
+ − G′

−} Joint

SEGSL (Zou et al., 2023) X
{E ′|minHS ,

e′ij ∈ EncTree(kNN(B))} - No Fusion, {G′} Joint

SUBLIME (Liu et al., 2022b) GCN(X,A)
{E ′ = Opt(ϵ)} or

{E ′|e′ij = cos/Minkowski(Bi,Bj)} topk(E ′),sym(E ′),norm(E ′) Separation, {G,G′}, θ1 = θ2 Joint

BM-GCN (He et al., 2021) Ŷ = MLP(X),
minLCE(Ŷ ,Y )

{E ′ = BQBT } norm(E ′) Early Fusion, {G ⊙ G′} Joint

WSGNN (Lao et al., 2022) MLP(X) {E ′|e′ij = cos(Bi,Bj)} - Early Fusion, {G + G′} Joint

GLCN (Jiang et al., 2019) X {E ′|e′ij = ϕ(|Bi −Bj |)}
norm(E ′), Original

+Sparsity+Smoothness No Fusion, {G′} Joint

ASC (Li et al., 2023a) SpectralCluster(X) {E ′|e′ij = ∥Bi −Bj∥} topk(E ′) No Fusion, {G′} Static
WRGAT (Suresh et al., 2021) GCN(X , A) {E ′|e′ij ·Opt(B)} Sparsity + MultiHop Early Fusion {G + G′} Static

HOG-GCN (Wang et al., 2022) GCN(X , A) {E ′|e′ij = σ(BiB
T
j )} Sparsity + Smoothness No Fusion {G′} Joint

GGCN (Yan et al., 2022) MLP(X) {E ′|e′ij = cos(Bi,Bj)} Low Rank + Sparsity Early Fusion, {G + G′} Joint
GloGNN (Li et al., 2022b) MLP(X) {E ′ = Opt(B)} Sparsity+MultiHop No Fusion, {G′} Joint

HiGNN (Zheng et al., 2024b) Ŷ = GCN(X,A),
minLCE(Ŷ ,Y )

{E ′ = e′ij = cos(Bi,Bj))} topk(E ′), sym(E ′) Late Fusion, {G,G′}, θ1 ̸= θ2 Static

LDS (Franceschi et al., 2020). The GSL bases in LDS is constructed as node features X and the
GSL graph G′ is initialized using a k-Nearest-Neighbors algorithm based on B. Then, G′ is updated
with a loss function of node classification. Then multiple graphs are sampled based on G′ with
a Bernoulli function and used to update the model parameters. The G′ construction and model
parameters are updated as a 2-stage mode.

Geom-GCN (Pei et al., 2020). Geom-GCN constructs the GSL bases from several graph-aware node
embedding strategies using both of the X and A: Isomap (), Poincare (), and struc2vec (). Then,
new graphs are constructed by filtering node pairs with a higher similarity measured by Euclidean
distance {E ′|e′ij = |Bi −Bj | < δ} where δ is a threshold. Finally, both of the aggregated message
from G and G′ are fused after applying graph convolution layers with no parameter sharing. The G′

is not updated through the training process.

ProGNN (Jin et al., 2020). The G′ in ProGNN is purely learned by optimization without GSL bases.
It optimizes the G′ using low rank, sparsity, and similarity with the original graphs G. It outputs a
single graph G′ without fusion and updates the G′ together with model parameters.

IDGL (Chen et al., 2020). The GSL bases in LDS is constructed by linear transformation of node
features MLP(X). Then, a GSL graph G′ is constructed using cosine similarity with topk threshold
refinement. The early fusion is applied by fusing GSL graph G′ with original graph G before training.
The GSL graph G′ is trained with model parameters jointly.

GRCN (Yu et al., 2020). GRCN constructs GSL bases by node embeddings of graph convolution
GCN(X,A). Then, the GSL graph G′ is constructed by a kernel function with topk and symmetriza-
tion refinement {E ′|e′ij = σ(BiBj) > δ}. The final graph is obtained by early fusion and the GSL
graph G′ is updated together with model parameters.

GAug-M and GAug-O (Zhao et al., 2020). GAug-M constructs GSL bases using a 2-layer graph
convolution GCN(2)(X,A). Then, the GSL graph G′ is constructed by a kernel function. The
final graph is obtained by adding some edges with highest probabilities and removing some edges
with lowest probabilities on G. GAug-O selects node features as GSL bases X , then trains a Graph
Auto-Encoder to predict edges as G′. Then, after gumbel sampling, the GSL graph G′ is fused with
original graph G before training. The G′ in both of the GAug-M and GAug-O is updated together
with model parameters.
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SLAPS (Fatemi et al., 2021). SLAPS constructs the GSL bases by applying MLP(X) followed
by a k-nearest neighbors (kNN) algorithm based on node feature similarities. The GSL graph G′

is then processed by an adjacency processor that symmetrizes and normalizes the adjacency ma-
trix to ensure non-negativity and symmetry. The final graph is obtained of the generated graph
G′ with the node features without fusion. Additionally, a self-supervised denoising autoencoder
LDAE = L(Xi, GNNDAE(X̂i; θGNNDAE

)) is introduced to address the supervision starvation
problem, updating G′ together with the model parameters.

CoGSL (Liu et al., 2022a). CoGSL constructs GSL bases using two views, one of them is the
Origin graph. Another is selected from the Adjacency matrix A, Diffusion matrix PPR(X), the
KNN graph KNN(X) and the Subgraph of the Origin. GCNs are applied to these views to ob-
tain node embeddings. The GSL graph is constructed by applying a linear transformation to the
node embeddings of each node pair to estimate the connection probability between them. This
connection probability is then added to the original view to finalize the graph. The refinement
E ′|e′ij = p(eij |MLP(B,A)) step involves maximizing the mutual information between the two se-
lected views and the newly constructed graph. InfoNCE loss is used to optimize the connection
probability, where the same node serves as a positive sample, and different nodes serve as negative
samples. The final graph G′ is obtained via early fusion of the selected views, and the GSL graph is
updated with model parameters.

GEN (Wang et al., 2021). GEN constructs the GSL bases by generating kNN graphs though several
GCN layer, utilizing node representations from different layers. These kNN graphs are then com-
bined using a Stochastic Block Model (SBM) to create a new graph G′. The GSL graph G′ is refined
iteratively through Bayesian inference to maximize posterior probabilities P (G,α, β|O,Z, Yl) =
P (O|G,α,β)P (G,α,β)P (O,Z,Yl)

P (O,Z,Yl)
, considering both the original graph and node embeddings. The final

graph is obtained by feeding the graph Q back into the GCN for further optimization. The itera-
tive process updates both the GSL graph and GCN parameters as a 2-stage mode, providing mutual
reinforcement between the graph estimation and model learning.

STABLE (Li et al., 2022a). STABLE constructs the GSL bases by generating augmentations based
on node similarity through kNN graph and perturbing edges to simulate adversarial attacks. The
GSL graph G′ is constructed by refining the structure using contrastive learning between positive
samples (slightly perturbed graphs) and negative samples (undesirable views generated by feature
shuffling). The refinement step applies a top-k filtering strategy on the node similarity matrix to
retain helpful edges while removing adversarial ones. The final graph is obtained through early
fusion, and the GSL graph G′ is updated together with model parameters during joint training

SE-GSL (Zou et al., 2023). SE-GSL constructs the GSL bases using a kNN graph fused with the
original graph. The GSL graph G′ is constructed through a structural entropy minimization process
that extracts hierarchical community structures in the form of an encoding tree. The final graph is
optimized by sampling node pairs from the encoding tree and generating new edges based on the
minimized entropy structure. The refined graph is then used for downstream tasks, and the GSL
graph G′ is updated jointly with model parameters during training.

SUBLIME (Liu et al., 2022b). SUBLIME constructs the GSL bases using both an anchor view
(original graph) and a learner view (new graph). The new graph is initialized through kNN and
further optimized either by parameter-based methods (using models like MLP, GCN, or GAT) or by
non-parameter-based approaches (using cosine similarity or Minkowski distance). After obtaining
the new graph, post-processing operations such as top-k filtering, symmetrization, and degree-based
regularization are applied to ensure the graph’s sparsity and structure. The GSL graph G′ is refined
by applying contrastive learning between the anchor and learner views, incorporating edge drop and
feature masking to generate node embeddings. The final graph is used in downstream tasks, and
both views are updated together with model parameters in a joint training process.

BM-GCN (He et al., 2021). BM-GCN constructs the GSL bases by introducing soft labels for nodes
enbedding B = softmax(σ(MLP (X))) via a multilayer perceptron LMLP =

∑
vi∈V f(Bi, Yi).

These soft labels are then used to compute a block matrix (H) , which models the connection
probabilities between different node classes. The GSL graph G′ is constructed by creating a
block similarity matrix Q = HHT from the block matrix Ys = Yi, Bi|∀vi ∈ Ty,∀vj /∈ Ty, H =
(Y T

s AYs) ◦ (Y T
s AE), reflecting similarities between classes. The new graph is optimized using

BQBT and further fused with the original graph A + βI for downstream tasks. The final graph is
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obtained by optimizing G′ through degree-based regularization and top-k filtering. The GSL graph
G′ is updated together with model parameters during joint training.

WSGNN (Lao et al., 2022). WSGNN introduces a two-branch graph structure learning method,
where each branch operates on different aspects of the graph: Branch AZ learns node labels from
the new graph structure, while Branch ZA learns the new graph structure from the labels. The
GSL bases is constructed using the observed graph Aobs and node features X . The new graph A′

is inferred via cosine similarity between node embeddings. After constructing two separate views
from each branch, the final graph is obtained by averaging the graphs from both branches. The
refinement process ensures sparsity through cosine-based edge calculation E ′|e′ij = cos(Bi,Bj).
Finally, both views undergo early fusion, with graph structure and node labels optimized jointly
using a composite loss function that includes ELBO for structure prediction and cross-entropy loss
for label prediction. The final GSL graph G′ is updated during joint training.

GLCN (Jiang et al., 2019). GLCN constructs the GSL bases by computing pairwise distances
between node features and passing them through an MLP to obtain a block similarity score. This
score is then processed with a softmax function to generate an n×n probability matrix that serves as
the learned graph structure. The graph is refined using regularization techniques to ensure sparsity
and feature smoothness LGL =

∑n
i,j=1 ||xi−xj ||22Sij +γ||S||2F +β||S−A||2F . The learned graph

is then used for downstream graph tasks, where the task loss and the graph regularization loss are
jointly optimized during joint training

ASC (Li et al., 2023a). ASC constructs the GSL bases is formed by using pseudo-eigenvectors
from spectral clustering. They divide the Laplacian spectrum into slices, with each slice corre-
sponding to an embedding matrix. The GSL graph G′ is constructed by adaptive spectral clustering,
where pseudo-eigenvectors are weighted based on alignment with node labels Where fZ

i . For re-
finement, they apply top-K edge selection by minimizing node embedding distance and maximizing
homophily argmin

Z

∑
i,j∈VY

(d(fZ
i , fZ

j ), 1(yi, yj)). This final restructured graph is training without

fusion. Finally, the GSL graph is updated together with the model parameters.

WRGAT (Suresh et al., 2021). WRGAT constructs the GSL bases using the node features and a
weighted relational GNN (WRGNN) framework that fuses structural and proximity information. A
multi-relational graph is built by assigning different types of edges based on the structural equiv-
alence of nodes at various neighborhood levels. This framework adapts to both assortative and
disassortative mixing patterns, which helps improve node classification tasks. The GSL graph G′

is refined through attention-based message passing across these relational edges, and early fusion
of proximity and structural features is used. The GSL graph G′ is trained jointly with the model
parameters to optimize the node classification task.

HOG-GCN (Wang et al., 2022). HOG-GCN constructs the GSL bases by incorporating both topo-
logical information and node attributes to estimate a homophily degree matrix S = BBT , B =

softmax(Zm), Z
(l)
m = σ(Z

(l−1)W (l)
m

m ). The GSL graph G′ is constructed using a homophily-
guided propagation mechanism, which adapts the feature propagation weights between neighbor-
hoods based on the homophily degree matrix Z(l) = σ(µZ(l−1)W

(l)
e +ξD̂(−1)Ak⊙HZ(l−1)W

(l)
n ).

For refinement, the graph incorporates both k-order structures and class-aware information to model
the homophily and heterophily relationships between nodes. The final graph is obtained through
joint fusion of topological and attribute-based homophily degrees, and both graph structure and
model parameters are updated during joint training.

GGCN (Yan et al., 2022). GGCN constructs the GSL bases using node features and structural
properties such as node-level homophily hi and relative degree r̄i. It incorporates structure-based
edge correction by learning new edge weights derived from structural properties like node degree,
and feature-based edge correction by learning signed edge weights from node features, allowing
for positive and negative influences between neighbors. The GSL graph G′ is constructed by com-
bining signed and unsigned edge information, aiming to capture both homophily and heterophily.
The refinement process uses edge correction and decaying aggregation to mitigate oversmoothing
and heterophily problems. The final graph is updated with early fusion, and the GSL graph G′ is
optimized during joint training
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GloGNN (Li et al., 2022b). GloGNN constructs its GSL bases using node embeddings derived from
MLP, combining both low-pass and high-pass convolutional filters. A coefficient matrix Z(l) is used
to characterize the relationship between nodes and is optimized to capture both feature and structural
similarities H(0)

X = (1− α)H
(0)
X + αH

(0)
A . Refinement is achieved via top-k selection based on the

multi-hop adjacency matrix, and the matrix is symmetrized. The final graph is obtained through
global aggregation of nodes, capturing both local and distant homophilous nodes. This graph is then
used in downstream tasks, where the GSL graph G′ is jointly optimized with the model parameters.

HiGNN (Zheng et al., 2024b). HiGNN constructs its GSL bases by utilizing heterophilous informa-
tion as node neighbor distributions, which represent the likelihood of neighboring nodes belonging
to different classes Hu = [p1, p2, ..., pc], where pi = |v|v∈Nu,yv=i|

|Nu| . A new graph structure G′ is
constructed by linking nodes with similar heterophilous distributions using cosine similarity. The re-
finement involves selecting top-k edges based on the similarity score and applying symmetrization.
The final graph is fused with the original adjacency matrix A and the newly constructed adjacency
matrix A′ via late fusion during message passing, where the node embeddings from both A and A′

are combined with a balance parameter λ. The graph G′ and node embeddings are updated during
static training.

B PROOF OF THEOREM

Theorem 1. Given a graph G = {V, E} with node labels Y and node features X, the accuracy of
graph convolution in node classification is upper bounded by the mutual information between the
node label Y and the aggregated node features H:

PA ≤ I(Y ;H) + log 2

log(C)
(5)

Proof. For an arbitrary node u, the aggregated node features can be derived as Hu =
1

|Nu|
∑

v∈Nu
Xv following the graph convolution operation. For a classifier predicting labels based

on Hu, we have Ŷu = cls(Hu). Consequently, the Markov chain Y → H → Ŷ holds. By applying
Fano’s inequality (Gerchinovitz et al., 2020), we obtain

H(Y |H) ≤ Hb(PE) + PE log(C − 1) (6)

where PE represents the error rate and Hb(·) is the binary entropy function. Rearranging this in-
equality gives us a lower bound on PE :

PE ≥ H(Y |H)−Hb(PE)

log(C − 1)
(7)

Since H(Y |H) = H(Y )− I(Y ;H) = log(C)− I(Y ;H) and Hb(PE) ≤ log 2, we can substitute
these terms into the equation:

PE ≥ 1− I(Y ;H) + log 2

log(C)
(8)

Finally, by expressing the accuracy rate PA, we find:

PA = 1− PE ≤ I(Y ;H) + log 2

log(C)
(9)

This concludes the proof of Theorem 1.

Proposition 1. Consider a graph G = {V, E} characterized by node labels Y and n-dimensional
node bases B = {B1, B2, . . . , Bn} with C classes. Each base Bi is independent and follows a class-
dependent Gaussian distribution, i.e., Bi ∼ N (µY , σY ). A new graph G′ = {V, E ′} is generated
using a non-parametric method based on the bases B. For the aggregated bases B′ on G′, we have
inf I(Y ;B′) ≤ inf I(Y ;B).
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Proof. Let’s first consider the mutual information for i-th node base Bi. For a non-parametric GSL
method, we have the probability that class k connects with class j as:

pk,j =
g(Bk

i , B
j
i )∑C

q=1 g(B
k
i , B

q
i )

(10)

where g(·) is a non-parametric measurement of the probability of new connections, such as cosine
similarity or Minkowski Distance. Then, we can get aggregated bases from the new graph by the
operation of graph convolution (Ma et al., 2021; Luan et al., 2024b):

B′k
i =

C∑
q=1

pk,qB
q
i (11)

Therefore, the Markow chain Y → Bi → B′
i holds. From data processing inequality (Beaudry &

Renner, 2012), we have
I(Y ;B′

i) ≤ I(Y,Bi) (12)

To extend this conclusion to multi-dimensional variables, we apply the chain rule of mutual infor-
mation

I(Y ;B) = I(Y ; {B1, . . . , Bn}) =
n∑

i=1

I(Y ;Bi | {B1, . . . , Bi−1})

I(Y ;B′) = I(Y ; {B′
1, . . . , B

′
n}) =

n∑
i=1

I(Y ;B′
i | {B′

1, . . . , B
′
i−1})

(13)

Due to the property that conditioning reduces entropy, we have

I(Y ;Bi | {B1, . . . , Bi−1}) ≥ I(Y ;Bi)

I(Y ;B′
i | {B′

1, . . . , B
′
i−1}) ≥ I(Y ;B′

i)
(14)

Thus, we have

inf I(Y ;B) =

n∑
i=1

I(Y ;Bi) and inf I(Y ;B′) =

n∑
i=1

I(Y ;B′
i) (15)

where inf represents infimum. Since I(Y ;B′
i) ≤ I(Y,Bi) holds for each i, we have

inf I(Y ;B′) ≤ inf I(Y ;B) (16)

This concludes the proof of Proposition 1.

C DATASET DETAILS

The datasets used in our experiments include heterophilous graphs: Squirrel, Chameleon, Actor,
Texas, Cornell, and Wisconsin (Pei et al., 2020; Rozemberczki et al., 2021), homophilous graphs:
Cora, PubMed, and Citeseer (Yang et al., 2016), and Minesweeper, Roman-empire, Amazon-ratings,
Tolokers, and Questions (Platonov et al., 2023). The dataset statistics are shown in 4. The descrip-
tions of all the datasets are given below:

Cora, Citeseer, and Pubmed datasets are widely used citation networks in graph structure learning
research. In each dataset, nodes represent academic papers, while edges capture citation relation-
ships between them. The node features are bag-of-words vectors derived from the paper’s content,
and each node is assigned a label based on its research topic. These datasets offer a structured
framework to evaluate GNN models on classification tasks within citation networks.
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Table 4: Dataset Statistics

Dataset #Nodes #Edges #Classes #Features Edge Homophily
Cora 2,708 5,278 7 1,433 0.81

Pubmed 19,717 44,324 3 500 0.80
Citeseer 3,327 4,552 6 3,703 0.74

Roman-empire 22,662 32,927 18 300 0.05
Amazon-ratings 24,492 93,050 5 300 0.38

Minesweeper 10,000 39,402 2 7 0.68
Tolokers 11,758 529,000 2 10 0.59

Questions 48,921 153,540 2 301 0.84

Cornell 183 295 5 1,703 0.30
Chameleon 2,277 36,101 5 2,325 0.23
Wisconsin 251 466 5 1,703 0.21

Texas 183 309 5 1,703 0.11
Squirrel 5,201 216,933 5 2,089 0.22
Actor 7,600 33,544 5 931 0.22

Roman-Empire is constructed from the Roman Empire Wikipedia article, with nodes representing
words and edges formed by either word adjacency or dependency relations. It contains 22.7K nodes
and 32.9K edges. The task is to classify words by their syntactic roles, and node features are fast-
Text embeddings. The graph is chain-like, with an average degree of 2.9 and a large diameter of
6824. Adjusted homophily is low (hadj = -0.05), making it useful for GNN evaluation under low
homophily and sparse connectivity.

Amazon-Ratings is based on Amazon’s product co-purchasing network, this dataset includes nodes
as products (books, CDs, DVDs, etc.) and edges linking frequently co-purchased items. It consists
of the largest connected component of the graph’s 5-core. The goal is to predict product ratings
grouped into five classes.

Minesweeper is a synthetic dataset resembling the Minesweeper game, nodes in a 100x100 grid
represent cells, with edges connecting adjacent cells. The task is to identify mines (20% of nodes).
Node features indicate neighboring mine counts, with 50% of features missing. The average degree
is 7.88, and the graph has near-zero homophily due to random mine placement.

Tolokers is derived from the Toloka crowdsourcing platform, where nodes represent workers con-
nected by shared tasks. The graph has 11.8K nodes and an average degree of 88.28. The task is to
predict which workers have been banned, using profile and task performance features. The graph is
much denser than others in the benchmark.

Questions is based on user interactions from Yandex Q, this dataset focuses on users interested
in medicine. Nodes are users, and edges represent questions answered between users. It contains
48.9K nodes with an average degree of 6.28. The task is to predict user activity at the end of a
one-year period, with fastText embeddings from user descriptions as features. The graph is highly
imbalanced (97% active users).

Texas, Wisconsin, Cornell are part of the WebKB project, representing web pages from university
computer science departments. Nodes correspond to web pages, and edges represent hyperlinks
between them. The node features are bag-of-words vectors from the web page content, and the
labels classify each page into one of five categories: student, project, course, staff, and faculty.

Chameleon, Squirrel are page-page networks based on specific topics from Wikipedia. Nodes
represent web pages, and edges correspond to mutual links between them. Node features are derived
from the page content, and the classification task is based on average monthly traffic. These datasets
are characterized by high heterophily, making them challenging for traditional GNN models.

Actor is an induced subgraph from a film-director-actor-writer network. Nodes represent actors,
and edges are created when two actors co-occur on the same Wikipedia page. The task is to classify
actors into five categories based on the keywords associated with their Wikipedia pages.
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D IMPLEMENTATION DETAILS

All the experiments are conducted on a linux server(Operation system: Ubuntu 16.04.7 LTS) with
one NVIDIA Tesla V100 card.

D.1 GNN+GSL

We implement GSL on 4 baseline GNNs with a variety of GSL approaches from the perspective of
GSL bases, GSL graph construction, and view fusion. The baseline GNNs include:

• GCN (Kipf & Welling, 2016) performs layer-wise propagation of node features and ag-
gregates information from neighboring nodes to capture local graph structures. Each layer
applies a convolution operation to update node embeddings, combining the node’s features
with its neighbors.

• GAT (Velicković et al., 2017) employs self-attention to learn dynamic attention coeffi-
cients between nodes and their neighbors. These coefficients are normalized using softmax,
and the final node representation is computed as a weighted sum of the neighbor features.
Multi-head attention is used to enhance stability and expressiveness, with the number of
attention heads set to 8 by default in our experiments.

• SAGE (Hamilton et al., 2017) uses an inductive framework to aggregate features from
a node’s local neighborhood, allowing it to generalize to unseen nodes. The aggregation
function, set to mean in our experiments, efficiently combines neighbor information at each
layer.

• SGC (Wu et al., 2019a) simplifies the GCN model by removing non-linear activations and
collapsing multiple layers into a single linear transformation. This reduction in complexity
accelerates training. Node features are propagated using precomputed matrices, making
the model faster and more efficient. In our experiments, the number of k-hops in SGC is
set to 2 by default.

The GSL bases B includes the following options:

• B = X: The original node features are used as the GSL bases.

• B = ÂX: Aggregated node features from 1-hop neighbors, normalized by node degree,
are used as the GSL bases.

• B = MLP(X): Pretrained MLP embeddings are used as the GSL bases. A 2-layer MLP
is trained using node features and labels on the training set for 1000 epochs per run. The
hidden layer size is set to 128, the learning rate to 1e−2, the dropout rate to 0.5, and the
weight decay to 5e−4. All parameters are optimized with Adam. After training, node
embeddings are extracted from the last hidden layer, with a dimension of 128, prior to
classifier input.

• B = GCN(X,A): Pretrained node embeddings are obtained from a 2-layer GCN model,
following the same training procedure as for the MLP embeddings.

• B = GCL(X,A): Pretrained node embeddings are derived from a Graph Contrastive
Learning (GCL) model without supervision, following the same training process as the
MLP embeddings. GRACE (Zhu et al., 2020b) is used as the GCL model, with 2 views
and 2 layers. The edge and feature dropout rates in each view are set to 0.2.

The approaches for the construction of GSL graph G′ includes:

• Cos-graph: G′ = {eij |cos(Bi,Bj) > δ, i ∈ V, j ∈ V}. This method calculates the cosine
similarity between all node pairs in the original graph G. Node pairs with a similarity higher
than the threshold δ are selected as the edge set for the GSL graph G′.

• Cos-node: G′ =
⋃

i∈V{{eij}|cos(Bi,Bj) > δi, j ∈ Ni}. Unlike Cos-graph, which
operates at the graph level, Cos-node constructs G′ at the node level. To prevent nodes from
being left without neighbors (which may occur in Cos-graph), Cos-node selects neighbors
based on node-level cosine similarity, ensuring each node has sufficient connections.
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• kNN: G′ = kNN(B). This method constructs a kNN graph using the k-Nearest Neighbors
algorithm based on the GSL bases B.

The view fusion in GSL includes:

• {G′}: This approach uses only the GSL graph G′ for subsequent GNN training, completely
ignoring the original graph G.

• {G,G′}, θ1 = θ2. Both the GSL graph G′ and the original graph G are used for GNN
training, with parameter sharing across each layer of the GNN.

• {G,G′}, θ1 ̸= θ2. Both the GSL graph G′ and the original graph G are used for GNN
training, but with separate model parameters for each graph.

Especially, for graphs with two views, the fusion stage in GSL includes:

• Early Fusion: G + G′.Combine the two graphs, G and G′, into a single new graph prior to
GNN training.

• Late Fusion: H +H ′. After training the GNN on the original graph G and the GSL graph
G′, merge the node embeddings, H and H′, before passing them to the classifiers.

In addition to the original models based on 4 baseline GNNs, we implement GNN+GSL (GSL-
augmented GNNs) by combining the aforementioned GSL modules, resulting in multiple variants
for each type of GNN. For all models, we explore hyperparameters including hidden dimensions
from the set {64, 128, 256}, learning rates from {1e-2, 1e-3, 1e-4}, weight decay values from {0,
1e-5, 1e-3}, the number of layers from {2, 3}, and dropout rates from {0.2, 0.4, 0.6, 0.8}.

For GSL graph generation, we also search for additional hyperparameters to ensure the performance
quality of the GSL-augmented GNN. Specifically, for Cos-graph and Cos-node, we control the pa-
rameter δ to vary the ratio of the number of edges in G′ to the number of edges in G across the set
{0.1, 0.5, 1, 5}. For kNN, we investigate the number of neighbors from the set {2, 3, 5, 10}..

D.2 SOTA-GSL

To fairly re-evaluate the effectiveness of GSL in state-of-the-art (SOTA) models, two methods are
employed to compare performance within the same search space. The first method (SOTA, G′ = G)
replaces the GSL graph with the original graph. The second method (SOTA, G′ = MLP) substitutes
the GSL graph with a linear transformation, connecting it to the subsequent model structures and
ensuring the continuity of channels within the original network structure. We train each model for
1000 epochs and search the hidden dimensions from the set {16, 32, 64, 128, 256, 512}, learning
rate from {1e-1, 1e-2, 1e-3, 1e-4, 1e-5}, weight decay values from {5e-4, 5e-5, 5e-6, 5e-7, 0}, the
number of layers from {1, 2, 3}, and dropout rates from {0.2, 0.4, 0.6, 0.8}. The model-specific
hyperparameters are shown as follows:

In GRCN, the hyperparameter K determines the number of nearest neighbors used to create a sparse
graph from a dense similarity graph which helps balance efficiency and accuracy.We set the k as 5.

In GAug, the alpha is a hyperparameter that regulates the influence of the edge predictor on the
original graph. We set the alpha as 0.1.

In IDGL, The parameter graph learn num pers defines the number of perspectives for evaluating
node similarities in the graph learning process. The parameter num anchors specifies the number of
anchor points used to reduce computational complexity and improve scalability in graph structure
learning. The graph skip conn parameter controls the proportion of skip connections, preserving
information from the original graph during new graph structure learning. The update adj ratio pa-
rameter determines the proportion of the adjacency matrix updated at each iteration, influencing the
dynamic adjustment of the graph structure. We set the graph learn num pers as 6, num anchors as
500, graph skip conn as 0.7, and update adj ratio as 0.3.

In NodeFormer, The parameter k determines the number of neighbors considered for each node in
constructing the local graph structure, influencing the strength of node connections and the propaga-
tion of features. The parameter tolerance controls the degree of error tolerance during optimization.
A larger tolerance allows more flexibility in the search space near local optima, while a smaller one
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results in stricter convergence. The number of attention heads in a graph attention network (GAT).
Multi-head attention enables the model to focus on different subspace representations simultane-
ously, enhancing the diversity and stability of the representations. We set the k as 10, lambda as
0.01, and n heads as 4.

In GEN,the parameter K in KNN refers to the number of nearest neighbors used to construct the
graph structure, determining how many adjacent nodes are selected. The parameter tolerance defines
the acceptable range of error during optimization, controlling the convergence criteria of the model.
The parameter threshold determines the edge weight threshold in the graph, deciding which edges
to retain in the graph structure.We set the k as 10, tolerance as 0.01, and threshold as 0.5.

In GloGNN, we set the Delta as 0.9, Gamma as 0.8, alpha as 0.5, beta as 2000, and orders as 5. Delta
adjusts the balance between local and global node embeddings. Gamma controls the significance of
global aggregation versus local information. Alpha balances the contributions of node features and
graph structure. Beta regularizes the model, preventing overfitting. Order defines how many layers
of neighbors are considered.

In WRGAT, we set the number of attention heads as 2 and the negative slope as 0.2. The number of
attention heads determines how many attention mechanisms are used. The negative slope modifies
the LeakyReLU activation.

The tables below show the best combination of hyperparameters based on the accuracy of test set.

Table 5: Hyperparameters for SOTA-GSL on Cora.

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Cora

GAug 1e-4 5e-7 0.8 512 2
GAug, G′ = G 1e-4 5e-7 0.8 512 2
GAug, G′ = MLP 1e-4 5e-7 0.8 512 2
GEN 1e-2 5e-4 0.5 16 2
GEN, G′ = G 1e-2 5e-4 0.5 16 2
GEN, G′ = MLP 1e-2 5e-4 0.5 16 2
GRCN 1e-3 5e-3 0.5 256 2
GRCN, G′ = G 1e-3 5e-3 0.5 256 2
GRCN, G′ = MLP 1e-3 5e-3 0.5 256 2
IDGL 1e-2 5e-4 0.5 512 2
IDGL, G′ = G 1e-2 5e-4 0.5 512 2
IDGL, G′ = MLP 1e-2 5e-4 0.5 512 2
NodeFormer 1e-2 5e-4 0.2 64 2
NodeFormer, G′ = G 1e-2 5e-4 0.2 64 2
NodeFormer, G′ = MLP 1e-2 5e-4 0.2 64 2
GloGNN 1e-2 5e-5 0.5 64 1
GloGNN, G′ = G 1e-2 5e-5 0.5 64 1
GloGNN, G′ = MLP 1e-2 5e-5 0.5 64 1
WRGAT 1e-2 1e-5 0.5 128 2
WRGAT, G′ = G 1e-2 5e-5 0.5 128 2
WRGAT, G′ = MLP 1e-2 1e-5 0.5 128 2
WRGCN 1e-2 1e-5 0.5 128 2
WRGCN, G′ = G 1e-2 5e-5 0.5 128 2
WRGCN, G′ = MLP 1e-2 1e-5 0.5 128 2

E ADDITIONAL EXPERIMENT RESULTS

In this section, we examine the impact of different GSL modules on GNN models. The GSL modules
include graph bases, GSL graph generation, view fusion methods, and fusion stages, with details
provided in Appendix D.1.

E.1 GSL BASES

In addition to the analysis of the impact of GSL bases shown in Figure 5, Figure 6 presents further
results on the performance of various GSL bases (X, ÂX, MLP (X), GCN(X,A), GCL(X,A))
across GAT, SGC, and GraphSAGE. The results are consistent with those observed in GCN and
MLP, where the original node features do not always yield the best input. Some pretrained features,
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Table 6: Hyperparameters for SOTA-GSL on PubMed.

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

PubMed

GAug 1e-2 5e-4 0.5 128 2
GAug, G′ = G 1e-2 5e-4 0.5 128 2
GAug, G′ = MLP 1e-2 5e-4 0.5 128 2
GEN 1e-3 5e-4 0.2 32 2
GEN, G′ = G 1e-3 5e-4 0.2 32 2
GEN, G′ = MLP 1e-3 5e-4 0.2 32 2
GRCN 1e-3 5e-3 0.5 32 2
GRCN, G′ = G 1e-3 5e-3 0.5 32 2
GRCN, G′ = MLP 1e-3 5e-3 0.5 32 2
IDGL 1e-2 5e-4 0.5 16 2
IDGL, G′ = G 1e-2 5e-4 0.5 16 2
IDGL, G′ = MLP 1e-2 5e-4 0.5 16 2
NodeFormer 1e-3 5e-4 0.2 64 2
NodeFormer, G′ = G 1e-3 5e-4 0.2 64 2
NodeFormer, G′ = MLP 1e-3 5e-4 0.2 32 2
GloGNN 1e-3 5e-5 0.7 64 3
GloGNN, G′ = G 1e-3 5e-5 0.7 64 3
GloGNN, G′ = MLP 1e-3 5e-5 0.7 64 3
WRGAT 1e-2 5e-5 0.5 64 2
WRGAT, G′ = G 1e-2 1e-5 0.5 64 2
WRGAT, G′ = MLP 1e-2 5e-5 0.5 64 2
WRGCN 1e-2 5e-5 0.5 64 2
WRGCN, G′ = G 1e-2 5e-5 0.5 64 2
WRGCN, G′ = MLP 1e-2 5e-5 0.5 64 2

Table 7: Hyperparameters for SOTA-GSL on Citeseer.

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Citeseer

GAug 1e-4 5e-7 0.8 512 2
GAug, G′ = G 1e-4 5e-7 0.8 512 2
GAug, G′ = MLP 1e-4 5e-7 0.8 512 2
GEN 1e-2 5e-4 0.5 16 2
GEN, G′ = G 1e-2 5e-4 0.5 16 2
GEN, G′ = MLP 1e-2 5e-4 0.5 16 2
GRCN 1e-3 5e-3 0.8 512 3
GRCN, G′ = G 1e-3 5e-3 0.8 512 3
GRCN, G′ = MLP 1e-2 5e-3 0.5 256 3
IDGL 1e-2 5e-4 0.5 32 2
IDGL, G′ = G 1e-3 5e-4 0.5 16 2
IDGL, G′ = MLP 1e-3 5e-4 0.5 16 2
NodeFormer 1e-2 5e-4 0.2 64 2
NodeFormer, G′ = G 1e-2 5e-4 0.2 64 2
NodeFormer, G′ = MLP 1e-2 5e-4 0.2 64 2
GloGNN 1e-2 1e-5 0.7 64 2
GloGNN, G′ = G 1e-2 1e-5 0.7 64 2
GloGNN, G′ = MLP 1e-2 1e-5 0.7 64 2
WRGAT 1e-2 5e-5 0.5 128 2
WRGAT, G′ = G 1e-2 5e-5 0.5 128 2
WRGAT, G′ = MLP 1e-2 5e-5 0.5 128 2
WRGCN 1e-2 5e-5 0.3 128 2
WRGCN, G′ = G 1e-2 5e-5 0.5 128 2
WRGCN, G′ = MLP 1e-2 1e-5 0.5 128 1
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Table 8: Hyperparameters for SOTA-GSL on Minesweeper.

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Minesweeper

GAug 1e-3 5e-6 0.8 256 3
GAug, G′ = G 1e-3 5e-6 0.8 256 3
GAug, G′ = MLP 1e-3 5e-6 0.8 256 3
GEN 1e-4 5e-6 0.8 256 3
GEN, G′ = G 1e-4 5e-6 0.8 256 3
GEN, G′ = MLP 1e-4 5e-6 0.8 256 3
GRCN 1e-3 5e-7 0.2 128 2
GRCN, G′ = G 1e-3 5e-6 0.2 128 2
GRCN, G′ = MLP 1e-3 5e-6 0.2 128 2
IDGL 1e-1 5e-6 0.2 128 3
IDGL, G′ = G 1e-1 5e-6 0.2 128 3
IDGL, G′ = MLP 1e-1 5e-6 0.2 128 3
NodeFormer 1e-2 5e-4 0.8 32 2
NodeFormer, G′ = G 1e-2 5e-4 0.8 32 2
NodeFormer, G′ = MLP 1e-2 5e-4 0.8 32 2
GloGNN 1e-2 5e-4 0.5 512 5
GloGNN, G′ = G 1e-2 5e-4 0.5 512 5
GloGNN, G′ = MLP 1e-2 5e-4 0.5 512 5
WRGAT 1e-2 5e-5 0.5 128 2
WRGAT, G′ = G 1e-2 5e-5 0.5 128 2
WRGAT, G′ = MLP 1e-2 5e-5 0.5 128 2
WRGCN 1e-2 5e-5 0.5 128 2
WRGCN, G′ = G 1e-2 5e-5 0.5 128 2
WRGCN, G′ = MLP 1e-2 5e-5 0.5 128 2

Table 9: Hyperparameters for SOTA-GSL on Roman-Empire.

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Roman-empire

GAug 1e-1 5e-5 0.5 32 2
GAug, G′ = G 1e-1 5e-5 0.5 32 2
GAug, G′ = MLP 1e-1 5e-5 0.5 32 2
GEN 1e-2 5e-7 0.2 128 2
GEN, G′ = G 1e-2 5e-7 0.2 128 2
GEN, G′ = MLP 1e-2 5e-7 0.2 128 2
GRCN 1e-3 5e-5 0.5 128 2
GRCN, G′ = G 1e-2 5e-5 0.5 128 2
GRCN, G′ = MLP 1e-2 5e-5 0.5 128 2
IDGL 1e-1 5e-5 0.5 128 2
IDGL, G′ = G 1e-1 5e-5 0.5 128 2
IDGL, G′ = MLP 1e-1 5e-5 0.5 128 2
NodeFormer 1e-3 5e-6 0.2 128 3
NodeFormer, G′ = G 1e-3 5e-6 0.2 128 3
NodeFormer, G′ = MLP 1e-3 5e-5 0.8 128 3
GloGNN 1e-2 5e-5 0.7 128 3
GloGNN, G′ = G 1e-2 5e-5 0.7 128 3
GloGNN, G′ = MLP 1e-2 5e-5 0.7 128 3
WRGAT 1e-2 5e-5 0.5 128 2
WRGAT, G′ = G 1e-2 1e-5 0.5 128 2
WRGAT, G′ = MLP 1e-2 5e-5 0.5 128 2
WRGCN 1e-2 5e-5 0.5 128 2
WRGCN, G′ = G 1e-2 5e-5 0.5 128 2
WRGCN, G′ = MLP 1e-2 5e-5 0.5 128 2
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Table 10: Hyperparameters for SOTA-GSL on Amazon-ratings.

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Amazon-ratings

GAug 1e-2 5e-7 0.2 128 2
GAug, G′ = G 1e-2 5e-7 0.2 128 2
GAug, G′ = MLP 1e-2 5e-7 0.2 128 2
GEN 1e-2 5e-7 0.2 128 2
GEN, G′ = G 1e-2 5e-7 0.2 128 2
GEN, G′ = MLP 1e-2 5e-7 0.2 128 2
GRCN 1e-3 5e-7 0.2 128 2
GRCN, G′ = G 1e-2 5e-7 0.2 64 2
GRCN, G′ = MLP 1e-2 5e-7 0.2 128 2
IDGL 1e-2 5e-7 0.2 128 2
IDGL, G′ = G 1e-2 5e-7 0.2 128 2
IDGL, G′ = MLP 1e-2 5e-7 0.2 128 2
NodeFormer 1e-4 5e-5 0.5 128 3
NodeFormer, G′ = G 1e-4 5e-5 0.5 64 3
NodeFormer, G′ = MLP 1e-4 5e-5 0.5 64 3
GloGNN 1e-2 5e-5 0.3 128 3
GloGNN, G′ = G 1e-2 5e-5 0.3 128 3
GloGNN, G′ = MLP 1e-2 5e-5 0.3 128 3
WRGAT 1e-2 5e-5 0.3 128 2
WRGAT, G′ = G 1e-2 1e-5 0.3 128 2
WRGAT, G′ = MLP 1e-2 1e-5 0.3 128 2
WRGCN 1e-2 5e-5 0.7 128 3
WRGCN, G′ = G 1e-2 5e-5 0.7 128 3
WRGCN, G′ = MLP 1e-2 1e-5 0.7 128 3

Table 11: Hyperparameters for SOTA-GSL on Questions.

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Questions

GAug 1e-2 5e-4 0.5 64 3
GAug, G′ = G 1e-2 5e-4 0.5 64 3
GAug, G′ = MLP 1e-2 5e-4 0.5 64 3
GEN 1e-2 5e-7 0.2 256 2
GEN, G′ = G 1e-2 5e-7 0.2 256 2
GEN, G′ = MLP 1e-2 5e-7 0.2 256 2
GRCN 1e-2 5e-6 0.5 64 2
GRCN, G′ = G 1e-2 5e-6 0.5 64 2
GRCN, G′ = MLP 1e-2 5e-6 0.5 64 2
IDGL 1e-2 5e-7 0.2 128 2
IDGL, G′ = G 1e-2 5e-7 0.2 128 2
IDGL, G′ = MLP 1e-2 5e-7 0.2 128 2
NodeFormer 1e-4 5e-3 0.5 128 3
NodeFormer, G′ = G 1e-4 5e-3 0.5 64 3
NodeFormer, G′ = MLP 1e-4 5e-3 0.5 64 3
GloGNN 1e-2 5e-5 0.7 128 3
GloGNN, G′ = G 1e-2 5e-5 0.7 128 3
GloGNN, G′ = MLP 1e-2 5e-5 0.7 128 3
WRGAT 5e-3 5e-5 0.3 64 2
WRGAT, G′ = G 5e-3 1e-5 0.3 64 2
WRGAT, G′ = MLP 5e-3 5e-5 0.3 64 2
WRGCN 5e-3 5e-5 0.7 64 2
WRGCN, G′ = G 5e-3 5e-5 0.7 64 2
WRGCN, G′ = MLP 5e-3 1e-5 0.7 64 2
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Table 12: Hyperparameters for SOTA-GSL on Tolokers.

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Tolokers

GAug 1e-1 5e-5 0.5 32 2
GAug, G′ = G 1e-1 5e-5 0.5 32 2
GAug, G′ = MLP 1e-1 5e-5 0.5 32 2
GEN 1e-2 5e-5 0.2 128 2
GEN, G′ = G 1e-2 5e-6 0.2 128 2
GEN, G′ = MLP 1e-2 5e-6 0.2 128 2
GRCN 1e-2 5e-5 0.5 32 2
GRCN, G′ = G 1e-2 5e-6 0.5 32 2
GRCN, G′ = MLP 1e-1 5e-6 0.5 64 2
IDGL 1e-2 5e-4 0.5 64 2
IDGL, G′ = G 1e-2 5e-4 0.5 64 2
IDGL, G′ = MLP 1e-2 5e-4 0.5 64 2
NodeFormer 1e-2 5e-4 0.2 64 2
NodeFormer, G′ = G 1e-2 5e-4 0.2 64 2
NodeFormer, G′ = MLP 1e-2 5e-4 0.2 64 2
GloGNN 1e-2 5e-5 0.3 128 3
GloGNN, G′ = G 1e-2 5e-5 0.3 128 3
GloGNN, G′ = MLP 1e-2 5e-5 0.3 128 3
WRGAT 1e-2 5e-5 0.5 128 2
WRGAT, G′ = G 1e-2 1e-5 0.5 128 2
WRGAT, G′ = MLP 1e-2 5e-5 0.5 128 2
WRGCN 1e-2 5e-5 0.5 128 1
WRGCN, G′ = G 1e-2 5e-5 0.5 128 2
WRGCN, G′ = MLP 1e-2 5e-5 0.5 128 2

such as MLP (X) on the Texas, Cornell, and Wisconsin datasets, demonstrate significant improve-
ment compared to the original features X, highlighting the necessity of self-training. Since many
GSL methods (Zheng et al., 2024b; Suresh et al., 2021) utilize self-training during the training pro-
cess, a fair comparison of these GSL methods and baseline GNNs should be conducted in the context
of self-training, such as by using pretrained node features as input, as shown in Table 1.

E.2 GSL GRAPH GENERATION

Figure 7 compares the Cos-graph, Cos-node, and kNN methods for GSL graph generation. Across
most datasets, the performance differences among these methods are minimal. In certain datasets,
such as Roman-empire and Pubmed, the models exhibit comparable performance regardless of the
graph generation technique employed. This suggests that variations in graph generation have a
limited effect on overall performance.

E.3 VIEW FUSION

Figure 8 illustrates the impact of different view fusion approaches, comparing the use of only the
GSL graph G′, the combination of the original graph G with G′ using shared parameters θ1 = θ2,
and the use of separate parameters θ1 ̸= θ2. Notably, using only the GSL graph G′ underper-
forms compared to employing both graph views with separate model parameters. This indicates
that incorporating information from the original graph G is beneficial for maximizing GNN+GSL
performance. Furthermore, for the two graph views, parameter sharing significantly underperforms
parameter separation. We speculate that the messages aggregated under G and G′ differ considerably,
suggesting that different graphs should be treated with distinct model parameters.

E.4 FUSION STAGE

Figure 9 compares early fusion and late fusion for GNN+GSL with multiple graph views. The
performance difference between the two fusion states is often minimal. While early fusion tends to
perform slightly better on complex datasets like Actor and Pubmed, the overall impact of switching
between early and late fusion is limited across most datasets. For simpler datasets like Minesweeper
and Amazon, both fusion methods yield nearly identical performance, indicating that the choice of
fusion state does not drastically alter the model’s outcome in most cases.
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E.5 HETEROPHILY-ORIENTED GNN WITH GSL

Table 13: Performance of heterophily-oriented GNNs with GNN+GSL

Model Construct Fusion Param Sharing Mines. Roman. Amazon. Tolokers Questions Squirrel Chameleon Actor Texas Cornell Wisconsin Cora CiteSeer PubMed Rank
MLP - - - 79.55±1.23 65.45±0.99 46.65±0.83 75.94±1.38 74.92±1.39 39.29±2.22 43.57±4.18 35.40±1.38 80.46±6.44 73.78±7.34 85.88±7.78 87.97±1.80 76.68±2.10 87.39±2.18 2.93

ACMGNN - - - 90.56±1.03 84.86±0.73 52.07±1.72 84.41±1.12 77.72±1.59 41.53±2.43 44.65±4.43 34.86±1.22 82.62±5.97 75.68±8.99 87.65±7.15 88.23±1.81 76.63±2.34 89.37±0.56 1.21
ACMGNN cos-graph {G′} - 47.36±3.47 60.97±0.76 41.50±0.75 70.21±1.51 67.32±1.37 38.12±1.92 39.90±3.64 33.43±0.95 59.80±6.99 59.46±8.35 71.57±6.68 77.47±2.41 73.68±0.97 87.19±0.38 7.64
ACMGNN cos-graph {G,G′} θ1 = θ2 52.74±5.22 51.18±2.12 33.11±1.38 69.06±4.65 62.30±3.23 31.58±4.39 38.79±4.73 29.06±2.60 54.10±7.59 59.19±8.87 70.39±9.58 59.74±1.87 65.17±1.94 79.53±1.69 9.86
ACMGNN cos-graph {G,G′} θ1 ̸= θ2 87.46±1.02 74.63±0.76 49.35±0.58 81.63±0.87 73.84±1.41 38.54±1.89 41.16±4.18 34.23±0.98 67.67±5.97 70.00±5.90 80.78±5.21 80.83±1.84 73.43±1.47 88.98±0.47 3.64
ACMGNN cos-node {G′} - 52.83±3.52 61.26±0.62 42.47±0.53 74.14±1.14 72.23±1.36 38.23±1.97 40.77±3.68 34.74±0.90 61.45±6.13 63.51±5.87 74.31±6.43 75.84±2.93 73.05±1.18 87.22±0.41 6.21
ACMGNN cos-node {G,G′} θ1 = θ2 52.74±5.22 51.18±2.12 33.11±1.38 69.06±4.65 62.30±3.23 31.58±4.39 38.79±4.73 29.06±2.60 54.10±7.59 59.19±8.87 70.39±9.58 59.74±1.87 65.17±1.94 79.53±1.69 9.86
ACMGNN cos-node {G,G′} θ1 ̸= θ2 87.80±0.97 73.55±0.51 49.04±0.57 80.74±0.92 74.11±1.40 39.19±2.12 40.28±4.30 34.19±1.16 69.86±5.56 69.46±7.21 80.39±5.23 80.33±1.90 73.31±1.26 88.94±0.36 4.07
ACMGNN kNN {G′} - 51.68±3.38 60.86±0.87 41.68±0.95 71.31±0.64 69.56±1.41 38.58±1.96 40.56±2.34 34.88±0.77 62.51±6.16 62.70±5.95 76.47±4.43 75.99±2.85 70.20±1.51 87.20±0.45 6.64
ACMGNN kNN {G,G′} θ1 = θ2 52.74±5.22 51.18±2.12 33.11±1.38 69.06±4.65 62.30±3.23 31.58±4.39 38.79±4.73 29.06±2.60 54.10±7.59 59.19±8.87 70.39±9.58 59.74±1.87 65.17±1.94 79.53±1.69 9.86
ACMGNN kNN {G,G′} θ1 ̸= θ2 87.59±0.88 73.21±0.63 49.06±0.53 81.34±0.85 73.95±1.35 39.18±2.18 41.70±3.71 34.67±1.11 68.48±5.78 68.92±5.87 80.20±3.13 80.46±2.26 73.14±1.31 88.87±0.51 4.07

MLP - - - 79.55±1.23 65.45±0.99 46.65±0.83 75.94±1.38 74.92±1.39 39.29±2.22 43.57±4.18 35.40±1.38 80.46±6.44 73.78±7.34 85.88±7.78 87.97±1.80 76.68±2.10 87.39±2.18 2.29
MixHop - - - 90.10±5.59 81.70±0.89 50.95±0.71 84.56±1.19 77.66±1.24 41.22±2.66 43.11±4.73 33.59±1.23 72.54±8.98 62.43±9.54 75.88±8.27 87.76±1.94 76.51±1.93 89.42±0.81 1.86
MixHop cos-graph {G′} - 64.75±4.59 51.83±0.53 41.47±2.00 68.78±1.94 71.45±1.38 37.75±2.41 37.79±2.10 31.77±1.75 55.72±6.39 60.27±5.85 70.20±4.60 84.42±1.35 74.20±0.83 88.74±0.29 8.21
MixHop cos-graph {G,G′} θ1 = θ2 54.22±10.75 63.50±0.86 44.21±1.36 74.22±2.21 70.64±1.32 37.16±1.34 39.06±3.08 32.24±1.33 58.16±9.18 66.22±5.59 73.73±7.80 65.14±2.62 68.66±1.24 86.63±0.51 7.54
MixHop cos-graph {G,G′} θ1 ̸= θ2 84.71±1.19 55.41±1.63 43.37±0.75 74.41±1.33 69.63±2.03 37.64±2.19 38.71±4.36 31.73±1.77 61.13±7.96 61.35±7.10 75.29±6.00 85.42±1.21 74.57±1.34 88.16±0.46 6.50
MixHop cos-node {G′} - 60.56±7.08 51.74±0.68 42.71±0.97 74.27±1.84 72.83±1.12 38.35±1.99 38.88±3.00 33.05±1.04 58.42±6.52 60.27±5.98 71.57±4.91 83.22±1.16 74.11±1.12 88.23±0.45 6.71
MixHop cos-node {G,G′} θ1 = θ2 54.22±10.75 63.50±0.86 44.21±1.36 74.22±2.21 70.64±1.32 37.16±1.34 39.06±3.08 32.24±1.33 58.16±9.18 66.22±5.59 73.73±7.80 65.14±2.62 68.66±1.24 86.63±0.51 7.64
MixHop cos-node {G,G′} θ1 ̸= θ2 85.43±0.57 55.95±2.35 44.15±0.59 76.54±0.91 72.03±2.45 37.47±2.07 39.52±3.33 32.50±1.10 60.61±8.73 62.97±6.75 75.10±6.20 85.36±0.89 74.68±1.13 88.18±0.52 4.79
MixHop kNN {G′} - 59.50±6.26 50.39±0.72 42.07±0.93 70.49±1.70 69.57±1.32 38.07±1.72 38.76±2.91 33.23±1.30 59.25±4.49 57.30±6.96 69.22±7.22 83.99±1.28 74.96±1.18 87.99±0.40 8.00
MixHop kNN {G,G′} θ1 = θ2 54.22±10.75 63.50±0.86 44.21±1.36 74.22±2.21 70.64±1.32 37.16±1.34 39.06±3.08 32.24±1.33 58.16±9.18 66.22±5.59 73.73±7.80 65.14±2.62 68.66±1.24 86.63±0.51 7.54
MixHop kNN {G,G′} θ1 ̸= θ2 85.53±0.50 57.48±1.98 43.28±0.68 77.24±1.61 70.34±1.76 38.15±2.01 40.12±3.76 32.30±1.53 60.05±9.45 63.51±7.56 74.90±8.21 85.18±1.26 74.59±1.19 88.20±0.57 4.93

We also include heterophily-oriented GNNs, specifically ACMGNN (Luan et al., 2022a) and Mix-
Hop (Abu-El-Haija et al., 2019), in our experiments that incorporate GSL into GNN baselines.
These experiments follow the same setup as described in Table 1. The results, presented in Table 13,
demonstrate that, under fair comparison conditions, both ACMGNN and MixHop outperform their
GNN+GFS counterparts. This suggests that adding GSL to these heterophily-oriented GNNs may
be unnecessary.

E.6 TRAINABLE GSL

Table 14: Performance of GNNs with their counterparts of trainable GSL.

Model GSL Type Mines. Roman. Amazon. Tolokers Questions Cora CiteSeer PubMed Rank

GCN
No GSL 90.07±5.79 81.46±1.25 50.89±1.16 84.61±0.99 77.68±1.10 87.97±1.51 76.75±2.30 89.47±0.64 1.19

Trainable GSL 90.07±0.58 78.76±0.46 50.89±0.65 84.61±0.65 OOM 84.92±1.51 74.89±1.13 88.66±0.45 2.31
Non-trainable GSL 89.17±0.68 72.63±1.45 48.31±0.96 82.91±0.97 75.56±1.05 85.69±1.73 75.49±1.42 88.72±0.71 2.50

SGC
No GSL 83.45±4.47 78.04±0.69 51.38±0.68 84.88±1.13 77.39±1.23 88.10±1.89 77.52±2.20 89.39±0.62 1.19

Trainable GSL 83.45±1.03 74.74±0.57 51.38±0.57 84.88±0.65 OOM 86.99±1.64 75.13±1.26 88.94±0.31 2.31
Non-trainable GSL 79.03±3.76 67.84±1.87 47.93±0.94 78.09±1.84 75.46±1.43 87.47±1.86 76.36±1.27 89.37±0.41 2.50

GraphSAGE
No GSL 90.66±0.88 85.02±0.97 52.93±0.83 83.31±1.12 75.95±1.41 88.13±1.77 76.65±2.00 89.18±0.65 1.31

Trainable GSL 90.66±0.58 82.54±0.60 52.93±0.59 83.31±0.50 OOM 83.48±1.69 74.18±1.02 88.67±0.39 2.44
Non-trainable GSL 90.67±0.66 79.02±1.21 52.10±0.84 82.17±0.89 75.38±0.96 83.60±1.78 74.39±1.35 88.88±0.50 2.25

GAT
No GSL 90.41±1.34 84.51±0.84 52.00±2.84 84.37±0.96 77.78±1.27 88.02±1.92 76.77±2.02 89.21±0.67 1.19

Trainable GSL 90.41±0.61 83.10±0.58 52.10±0.62 84.35±0.56 OOM 86.23±1.58 74.39±1.14 88.13±0.56 2.19
Non-trainable GSL 89.96±0.79 77.23±1.63 49.79±0.72 82.78±0.95 76.67±1.13 86.97±1.75 75.20±1.55 87.97±0.51 2.62

ACMGNN
No GSL 90.56±1.03 84.86±0.73 52.07±1.72 84.41±1.12 77.72±1.59 88.23±1.81 76.63±2.34 89.37±0.56 1.06

Trainable GSL 90.56±0.63 81.90±0.71 51.87±0.44 84.40±0.79 OOM 81.16±1.81 73.91±1.16 88.55±0.39 2.19
Non-trainable GSL 87.46±1.02 74.63±0.76 49.35±0.58 81.63±0.87 73.84±1.41 80.83±1.84 73.43±1.47 88.98±0.47 2.75

MixHop
No GSL 90.10±5.59 81.70±0.89 50.95±0.71 84.56±1.19 77.66±1.24 87.76±1.94 76.51±1.93 89.42±0.81 1.12

Trainable GSL 90.10±0.52 79.07±0.75 50.95±0.71 84.55±0.67 OOM 84.84±1.28 74.45±1.11 88.48±0.62 2.25
Non-trainable GSL 85.43±0.57 55.95±2.35 44.15±0.59 76.54±0.91 72.03±2.45 85.36±0.89 74.68±1.13 88.18±0.52 2.62

In Table 14, we present the results of applying trainable GSL to baseline GNNs. Specifically, we
select the best-performing GSL variants, as shown in Tables 1 and 13, for each backbone GNN. The
best-performing method is highlighted in bold, while the runner-up is indicated with an underline.
“OOM” refers to ”out of memory.” The results demonstrate the following: (1) The average rank in-
dicates that trainable GSL improves GNN performance on 5 out of 6 GNN backbones; (2) Although
trainable GSL outperforms non-trainable GSL, it remains inferior to GNN backbones without GSL,
indicating that GSL could be unnecessary in improving GNN performance on node classification.

E.7 PERFORMANCE ON GRAPH CLASSIFICATION

In addition to the node classification experiments, we further investigate whether GSL consistently
improves GNN performance in graph classification. Specifically, we conduct ablation experiments
by replacing the GSL graph with the original graph, following the methodology outlined in (Li et al.,
2023c). As shown in 15, removing GSL from 4 state-of-the-art GNNs, including ProGNN (Jin et al.,
2020), GEN (Wang et al., 2021), GRCN (Yu et al., 2020), and IDGL (Chen et al., 2020), results in
significantly reduced training time. At the same time, the GNN performance remains comparable to
that of the GSL-enhanced counterparts. This suggests that GSL does not consistently enhance GNN
performance in graph classification. Due to page limitations, we only tested a few methods in this
paper. We believe it would be valuable to explore additional state-of-the-art methods, datasets, and
theoretical justifications for the effectiveness of GSL in graph classification in future work.
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Table 15: Ablation study of GSL-enhanced methods for graph classification.

Model Cora PubMed CiteSeer

AUC Time AUC Time Acc Time

ProGNN 76.28±0.52 959s OOM - 67.14±0.23 1776s
ProGNN,w/o. GSL 78.96±0.64 30s 75.80±0.95 326s 67.24±1.48 44s
GEN 79.88 ± 0.93 219s OOM - 66.98 ± 1.28 320s
GEN,w/o. GSL 78.32 ± 1.21 3s 76.94 ± 0.40 47s 64.66 ± 1.46 3s
GRCN 83.04 ± 0.33 56s 74.55 ± 0.96 249s 70.85 ± 0.87 113s
GRCN,w/o. GSL 71.82 ± 0.61 9s 74.18 ± 0.63 28s 58.33 ± 0.17 24s
IDGL 83.32 ± 0.59 144s OOM - 70.57 ± 0.26 330s
IDGL,w/o. GSL 83.32 ± 0.59 129s OOM - 71.12 ± 0.31 401s

E.8 ROBUSTNESS OF GSL

Table 16: Ablation study on model robustness by adding edges in GSL-enhanced methods.

Use GSL Method Dataset 0% 10% 20% 30% 40% 50% 60% 80%
w/o. GSL Gaug CiteSeer 72.34 68.85 67.12 62.87 65.03 62.22 60.32 56.58
w. GSL Gaug CiteSeer 72.79 71.62 68.08 63.96 63.68 62.08 60.14 56.78

w/o. GSL Gaug Cora 81.73 76.83 74.07 70.53 68.67 67.70 67.42 54.93
w. GSL Gaug Cora 82.43 79.14 77.86 73.54 72.54 70.88 69.94 59.83

w/o. GSL IDGL CiteSeer 73.13 68.55 66.45 64.33 64.55 59.66 60.66 57.59
w. GSL IDGL CiteSeer 73.26 71.11 68.62 67.83 65.79 63.89 63.17 60.23

w/o. GSL IDGL Cora 82.43 78.65 78.18 77.98 74.33 74.53 72.36 65.23
w. GSL IDGL Cora 84.12 82.86 81.28 79.79 77.13 76.87 75.42 69.17

w/o. GSL GRCN CiteSeer 69.55 61.11 61.36 56.39 56.67 53.87 51.62 52.08
w. GSL GRCN CiteSeer 73.21 69.89 67.87 64.94 63.56 61.53 60.36 56.53

w/o. GSL GRCN Cora 81.66 74.89 72.01 69.98 66.76 66.19 61.85 59.63
w. GSL GRCN Cora 84.64 81.49 77.37 76.34 74.27 72.13 71.53 68.38

Table 17: Ablation study on model robustness by deleting edges in graphs for GSL-enhanced meth-
ods.

Use GSL Method Dataset 0% 10% 20% 30% 40% 50% 60% 80%
w/o. GSL Gaug CiteSeer 72.34 71.72 70.83 69.65 68.52 67.75 65.65 65.22
w. GSL Gaug CiteSeer 72.79 70.97 71.88 69.86 68.66 70.48 68.42 65.72

w/o. GSL Gaug Cora 81.73 78.65 78.18 77.98 74.33 74.53 72.30 65.24
w. GSL Gaug Cora 82.40 79.87 79.05 78.83 77.54 77.16 75.31 68.91

w/o. GSL IDGL CiteSeer 73.13 71.13 72.42 70.40 69.19 67.07 67.59 65.67
w. GSL IDGL CiteSeer 73.26 72.45 71.83 72.85 70.87 69.05 68.80 67.73

w/o. GSL IDGL Cora 82.43 81.39 80.15 79.58 78.72 76.12 74.44 67.99
w. GSL IDGL Cora 84.14 82.12 81.87 80.96 80.53 79.12 77.25 71.63

w/o. GSL GRCN CiteSeer 69.55 67.72 66.64 64.53 61.79 62.64 61.43 58.61
w. GSL GRCN CiteSeer 73.21 73.23 72.23 73.15 70.84 70.49 69.82 67.73

w/o. GSL GRCN Cora 81.66 76.51 74.39 74.71 71.64 71.77 68.02 60.63
w. GSL GRCN Cora 84.64 83.16 82.26 81.36 80.57 79.38 77.62 74.52

To investigate the robustness of GSL under noisy graph structures, we randomly add or delete edges
in graphs following (Li et al., 2023c). As shown in Table 16 and Table 17, we randomly add or re-
move [0%, 10%, . . . , 80%] edges in original graphs. The results show that, generally GSL-enhanced
GNNs are more robust to a higher ratio of noises in graph structures. There are still some cases
where GSL cannot improve the model robustness, such as GAug on CiteSeer. It will be interesting
to empirically and theoretically investigate the robustness of GSL-enhanced models in the future.
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E.9 WEAKLY SUPERVISED GSL

Table 18: Ablation experiments of GSL-enhanced methods in weakly-supervised settings.

Method Dataset Use GSL 20 labels 10 labels 5 labels 3 labels

Gaug

PubMed w/o. GSL 79.68 72.87 67.66 63.30
w. GSL 78.73 75.48 69.84 65.90

CiteSeer w/o. GSL 72.30 64.62 57.68 51.53
w. GSL 72.79 67.02 58.38 54.37

Cora w/o. GSL 81.71 74.02 65.67 60.13
w. GSL 82.48 76.12 69.46 65.97

Grcn

Mines. w/o. GSL 71.61 67.11 61.66 61.31
w. GSL 71.15 64.72 59.47 58.85

Cora w/o. GSL 81.66 72.52 67.88 64.09
w. GSL 84.60 81.74 76.85 75.42

CiteSeer w/o. GSL 69.55 59.35 55.66 51.72
w. GSL 72.30 70.28 69.54 68.63

Idgl
CiteSeer w/o. GSL 73.13 64.62 56.62 50.79

w. GSL 73.26 66.08 62.69 55.61

Cora w/o. GSL 82.43 75.85 69.21 64.47
w. GSL 84.19 78.33 73.46 69.94

We further conduct an ablation study on the performance of GSL-enhanced methods. As shown
in Table 18, the performance of these GSL-enhanced methods is comparable to their counterparts
without GSL when there are 20 labels per class. However, as we decrease the supervision ratio (such
as in scenarios with 5 or 3 labels per class) the GSL-enhanced methods demonstrate improved per-
formance compared to those without GSL. These results indicate that GSL can effectively enhance
GNN performance in settings with low supervision.

E.10 ADDITIONAL ABLATION STUDY ON GSL-ENHANCED GNNS

Table 19: Ablation study on additional GSL-enhanced methods including Grale and MetricNN.

Model Questions Minesweeper Roman-empire Amazon-ratings Tolokers

AUC Time AUC Time Acc Time Acc Time AUC Time

Grale 68.96±0.23 320s 66.36±0.08 31s 35.42±0.57 129s 46.57±0.37 145s 73.32±0.72 110s
Grale,w/o. GSL 68.34±1.18 283s 62.42±0.20 9s 64.90±0.26 130s 48.38±0.94 136s 74.49±0.45 48s

MetricNN 64.28 ± 1.34 23s 68.51 ± 1.63 2.1s 38.55 ± 1.68 8.3s 42.10 ± 1.22 10s 69.41 ± 5.50 5.4s
MetricNN,w/o. GSL 65.27 ± 0.86 11s 73.51 ± 0.01 2.1s 37.60 ± 2.26 4.3s 42.28 ± 1.11 5.8s 75.20 ± 0.48 3.4s

We also conducted experiments on two GSL-enhanced GNNs, Grale (Halcrow et al., 2020) and
MetricNN (Garcia & Bruna, 2017), using the same settings as in our previous experiments. As
shown in Table 19, removing GSL from these methods resulted in improved model performance on
most datasets, along with reduced training time. These findings further support the conclusion drawn
in this paper that GSL is unnecessary for enhancing model performance in node classification.
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Table 20: Ablation study on model robustness by introducing feature noises in graphs for GSL-
enhanced methods.

Use GSL Method Dataset 0% 10% 20% 30% 40% 50% 60% 80%
w/o. GSL Gaug CiteSeer 72.34 69.83 69.37 69.72 67.24 65.87 62.67 57.07
w. GSL Gaug CiteSeer 72.79 71.14 71.27 69.90 67.51 67.98 63.56 58.09

w/o. GSL Gaug Cora 81.73 78.96 80.80 78.86 77.84 76.87 73.27 67.40
w. GSL Gaug Cora 82.48 53.87 51.81 51.20 48.66 54.41 48.05 35.63

w/o. GSL Gaug PubMed 79.38 78.75 77.08 77.97 77.50 76.68 74.43 68.90
w. GSL Gaug PubMed 78.73 79.09 78.57 77.93 77.42 77.95 76.28 71.20

w/o. GSL IDGL CiteSeer 73.13 71.41 70.84 69.31 66.57 65.98 62.50 53.44
w. GSL IDGL CiteSeer 73.26 72.24 71.86 71.03 69.89 68.46 66.02 58.28

w/o. GSL IDGL Cora 82.43 80.72 81.24 79.11 78.53 78.08 73.57 68.73
w. GSL IDGL Cora 84.19 83.11 82.08 80.64 80.31 80.02 77.51 74.92

w/o. GSL GRCN CiteSeer 69.55 65.42 64.17 65.99 63.96 59.64 57.22 47.74
w. GSL GRCN CiteSeer 72.34 70.58 67.70 67.11 64.28 61.13 58.10 53.25

w/o. GSL GRCN Cora 81.66 76.40 76.86 76.48 74.32 74.86 72.98 64.71
w. GSL GRCN Cora 84.61 80.30 79.83 76.36 77.96 75.23 73.51 68.49

w/o. GSL GRCN PubMed 79.35 74.57 74.96 74.74 73.46 76.09 74.35 71.26
w. GSL GRCN PubMed 79.30 78.89 78.36 77.40 77.11 76.75 75.95 73.85
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Figure 6: Influences of different GSL bases to more GNNs.
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Figure 7: Influences of the approaches of GSL generation to GNN+GSL.
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Figure 8: Influences of the approaches of view fusion in GSL to GNN+GSL.
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Figure 9: Influences of the states of view fusion in GSL to GNN+GSL.
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Figure 10: Model robustness when injecting random noise on GAug.
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Figure 11: Model robustness when injecting random noise on Idgl.
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Figure 12: Ablation experiments of GSL-enhanced methods in weakly-supervised settings.
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