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1 DATASET DESCRIPTION

CAMELYON-16 [1] dataset is proposed for studies on metastasis
detection in breast cancer. Comprising a total of 400 Whole Slide
Images (WSIs), the dataset is officially divided into 270 samples for
training and 130 samples for testing, with the testing samples con-
stituting approximately one-third of the total. Following [2, 8, 12],
we employed a method of three-times three-fold cross-validation
to minimize the impact of data splitting and random seeding on
model evaluation, ensuring each slide is utilized in both training
and testing phases. Under this arrangement, each fold contains
about 133 slides. The mean and standard deviation of performance
metrics are reported based on the results of three iterations.
TCGA Lung Cancer dataset encompasses two specific lung cancer
sub-types: Lung Adenocarcinoma (LUAD) and Lung Squamous Cell
Carcinoma (LUSC). It consists of diagnostic whole slide images,
featuring 541 slides of LUAD from 478 distinct cases, and 512 slides
of LUSC, also from 478 cases. We applied a 5-fold cross-validation
strategy to this dataset, guaranteeing comprehensive evaluation.
The results are summarized through the mean and standard devia-
tion of the performance metrics across the five testing folds.

Following prior works [8—11], we crop each WSI into a series
of 512 X 512 non-overlapping patches. The background region,
including holes, is discarded as in CLAM [8].

2 DATA PREPROCESSING

In order to integrate the segmentation of SAM into the prepro-
cessing workflow of WSIs, it is necessary to adapt the traditional
preprocessing protocols. We adopt the data preprocessing protocol
of CLAM [8], as illustrated in Fig 1. The preprocessing workflow of
WSIs comprises three stages: Foreground Segmentation, Patching
& SAM Segmentation, and Feature & SAM Info Extraction.

To ensure high-quality segmentation and extraction of relevant
organizational patches, as well as convenient use, we are integrating
the Foreground Segmentation and Patching & SAM Segmentation
stages into a single process. Under user-defined parameters, we will
segment the original WSI slide and create patches, then segment
the foreground areas of each slide using SAM. This integrated pro-
cess yields five distinct types of output files: Masks in H5 format,
Patches also in H5 format, Segments stored as PKL files, Stitches
again in H5 format, and a comprehensive Process List in CSV format.
Following the outputs from the first steps, the second stage will
independently perform feature extraction on each segmented patch
using a pretrained model, as well as extract group features with
SAM. This stage will produce three distinct types of files: h5_files
in H5 format, which store both coordinates and extracted features;
pt_files in PT format, which contain only the features of the patches;
and seg_files, also in H5 format, which hold the segmentation infor-
mation from SAM. In subsequent training, our MIL framework will
require the feature files for each patch and the SAM segmentation
results, along with their respective segmentation areas.

In addition to the standard process outlined, we also offer options
to generate the required pt and seg files from h5_files, Segments,

Whole Slide Images

L

[ : orginal process files

(O : SAM process files

Segments(.pkl)

Process List(.csv)

pt_flies(.pt)

seg_files(.h5)

patch feature group feature

Figure 1: WSIs feature extraction process.

and Process List, as well as from original pt_files, Segments, and
Process List. This design allows our preprocessing workflow to be
applicable to already-extracted tile features, reducing the time spent
on feature extraction. The relevant preprocessing code will be made
available in the code repository along with the entire project.

3 CONFIGURATION OF SAM

The Segment Anything Model (SAM) produces high quality object
masks from input prompts such as points or boxes, and it can be
used to generate masks for all objects in an image. It has been
trained on a dataset of 11 million images and 1.1 billion masks,
and has strong zero-shot performance on a variety of segmenta-
tion tasks. Since SAM can efficiently process prompts, masks for
the entire image can be generated by sampling a large number of
prompts over an image. In our study, we employed the SamAutomat-
icMaskGenerator class from the official repository to automatically
generate masks in images. We made adjustments to the default pa-
rameters, which are detailed in the code file. We utilized the official
checkpoint for the vit_h model as the pretrained weights in our
implementation.

4 IMPLEMENTATION DETAILS

Following [8, 9, 11], we use the ResNet-50 model [4] pretrained
with ImageNet [3] as the backbone network to extract an initial
feature vector from each patch, which has a dimension of 1024. The
last convolutional module of the ResNet-50 is removed, and a global
average pooling is applied to the final feature maps to generate
the initial feature vector. The initial feature vector is then reduced
to a 512-dimensional feature vector by one fully-connected layer.
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Figure 2: Illustration of proposed consistency loss.

Consistency Loss

In order to validate the reliability of the extracted group features,
experiments were conducted on both ResNet50 [4] and PLIP [5]
extracted features. The feature extraction process of PLIP adheres to
the specifications outlined in the official repository. All the models
are trained for 200 epochs with an early-stopping strategy. The
patience of CAMELYON-16 and TCGA are 30 and 20, respectively.
We do not use any trick to improve the model performance, such
as gradient cropping or gradient accumulation. The batch size is
set to 1. All the experiments are conducted with NVIDIA GPUs.
Section 11 gives all codes and weights of the pre-trained model.

5 PSEUDOCODES OF SAM-MIL

Algorithm 1 gives the details about SAM-MIL training. The pseudo-
code illustrates only the training component of the code, omitting
the data preprocessing section.

6 CONSISTENCY-BASED ITERATIVE
OPTIMIZATION

To effectively constrain the training of pseudo-bags, we propose a
method for calculating spatial context-based consistency loss, as
shown in Fig 2. First, our model processes input data to extract
global attention weights for each token. Assuming visual similar-
ity, we hypothesize that patches visually similar within the model
should receive similar attention weights. Specifically, if the SAM
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CAMELYON-16
AUC  F1Score AUC

baseline(AB-MIL) 94.54 87.44 94.27 88.69
w/o consistency loss  95.79 89.23 95.66 91.33
w/ consistency loss 96.08 89.36 96.01 91.42

TCGA
F1 Score

Strategy

Table 1: Impact of spatial context-based consistency loss.

97 baseline © w/o ' w/

+0.29% +0.35%

93
AuC CAMELYON-16

TCGA Lung Cancer

Figure 3: Impact of spatial context-based consistency loss.

classifies certain patches as belonging to the same category, the
attention weights of these patches should also exhibit high con-
sistency. Further, leveraging the category information provided
by SAM, we group all patches by category. Within each category
group, we independently calculate the consistency loss of atten-
tion weights. This step evaluates the variance of attention weights
among patches within the group, aiming to minimize the weight
differences between similar patches. Subsequently, we sum the con-
sistency losses of all groups to obtain the total consistency loss for
the entire input slide. Finally, this consistency loss is integrated
into the model’s overall optimization loss, guiding the model to
better differentiate between patch categories during training. This
enhances the model’s sensitivity and processing capabilities for sub-
tle visual differences. This approach not only enhances the model’s
understanding of spatial context but also promotes its robustness
when dealing with images that have complex backgrounds and
style variations.

The experimental results, as shown in Table 1, demonstrate the
effectiveness of consistency loss for model training. Figure 3 il-
lustrates the improvements achieved by the model under the con-
straints of consistency loss.

7 EFFECT OF SAM GUIDED GROUP FEATURE

Our proposed SAM-Guided Feature Extractor’s group features are
suitable not only for our designed MIL framework but also for
application to various mainstream MIL models, thereby achiev-
ing immediate performance improvements. In our experiments,
features extracted by ResNet50 [4] and PLIP [5] were processed
under the guidance of SAM and validated in the CAMELYON-16
dataset. Besides the previously mentioned baseline AB-MIL, we se-
lected two advanced MIL models [9, 10] to assess the effectiveness
of our group features. The complete corresponding experimental
results are displayed in Table 2. Figure 5 illustrates the improve-
ments achieved by the group features. The results indicate that
incorporating features extracted by SAM led to performance im-
provements in both methods. Furthermore, it is observed that, due
to the lack of pre-training on medical images, the features extracted
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Figure 4: Discussion of important hyper-parameters.

R50 R50 w/ GF PLIP PLIP w/ GF
+0.58%
98 +0.08% +0.01% +0.06%
+1.04%
+1.15% +0.38% +0.25%

94

90

TransMIL DSMIL DTFD-MIL MHIM-MIL

Figure 5: Effect of Group Features in Different Benchmarks.

using ResNet50 are somewhat inferior in performance compared
to those extracted using PLIP. However, after supplementing with
group features based on spatial context extraction, the features
extracted by ResNet50 demonstrated a greater improvement in
performance. This potentially suggests that the group features we
proposed provide significant guidance for models lacking prior
knowledge. Overall, our SAM-Guided Feature Extractor can serve
as a plug-and-play module applicable to various mainstream MIL
models.

8 DISCUSSION OF HYPER-PARAMETER IN
SAM-MIL

The bottom part of Figure 4 shows the results. We can find that
SAM-MIL is not sensitive to this parameter, and different values
can achieve high-level performance. This reflects the generality of
the preset optimal parameter in different scenarios.

9 ADDITIONAL VISUALIZATION

To more intuitively understand the effect of the spatial contextual
awareness, we visualize the tumor probabilities (cyan patch) of
patches produced by AB-MIL and SAM-MIL, as illustrated in Fig-
ure 6. Here, SAM-MIL employs AB-MIL as its baseline model. From
the visualization on the left side of the Figure 6, it is observed that
in larger tumor areas, AB-MIL often assigns high tumor proba-
bilities to patches in non-tumor areas. This phenomenon can be
attributed to the limited generalization capabilities of conventional
attention-based MIL models, which focus predominantly on salient
regions during training. In contrast, our model demonstrates en-
hanced concentration of tumor probabilities in tumor areas and

CAMELYON-16

Feature

AUC F1 Score
TransMIL [9]
w/ R50 93.51 85.10
w/ R50 + Group Feature 94.66 (+1.15) 86.27 (+1.17)
w/ PLIP 97.77 92.77
w/ PLIP + Group Feature 97.85 (+0.08) 92.23(-0.54)
DSMIL [7]
w/ R50 94.57 87.65
w/ R50 + Group Feature 94.95 (+0.38) 87.64(-0.01)
w/ PLIP 97.64 93.24
w/ PLIP + Group Feature 97.65 (+0.01) 93.24(-0.01)
DTFD-MIL [11]
w/ R50 95.15 87.62
w/ R50 + Group Feature 95.40 (+0.25) 90.56 (+2.94)
w/ PLIP 97.35 94.86

w/ PLIP + Group Feature 97.41 (+0.06) 95.03 (+0.23)

MHIM-MIL [10]

w/ R50 95.72 88.98

w/ R50 + Group Feature 96.76 (+1.04) 91.51 (+2.53)
w/ PLIP 97.79 94.13

w/ PLIP + Group Feature 98.37 (+0.58) 94.70 (+0.57)

Table 2: Effect of Group Features in Different Benchmarks.

reduced misclassifications in non-tumor areas, indicating superior
classification performance. Furthermore, the visualization on the
right side of the Figure 6 reveals that our baseline model tends to
overlook smaller tumor areas, leading to decreased performance.
However, SAM-MIL, benefiting from the introduced spatial context,
can effectively recognize and correctly classify these smaller tumor
regions.

10 LIMITATION

Although the integration of spatial context information through the
SAM significantly improves the classification performance of WSIs
by facilitating the construction of relationships between instances,
it is important to note that the incorporation of SAM necessitates
additional data preprocessing time and computational resources.
Moreover, the performance improvement attributable to SAM-MIL
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Figure 6: Comparison of patch visualization produced by AB-MIL [6] (baseline) and SAM-MIL. The blue lines outline the tumor
regions. The cyan colors indicate high probabilities of being tumor for the corresponding locations. Ideally, the cyan patches
should cover only the area within the blue lines. The visualization on the left focuses on the tumor regions within a larger area,
while the visualization on the right concentrates on smaller-sized tumor regions.

for WSIs tasks depends largely on SAM’s segmentation of visual
information in WSIs. However, extremely small tumor areas might
be overlooked, potentially leading to misclassification. The absence
of medical images in the SAM pre-training data might hinder SAM’s
ability to perfectly segment tissue and cellular information in WSIs,
with visually similar tissues potentially being misclassified into
the same category. Therefore, optimizing the segmentation per-
formance of SAM is a focal point for our future work. We can
explore the introduction of SAMs pre-trained on medical datasets
to enhance the segmentation of WSIs and improve the overall per-
formance of SAM.

11 CODE AND DATA AVAILABILITY

The source code of our project will be uploaded at https://anonymous.

4open.science/r/SAM-MIL.

CAMELYON-16 dataset can be found at https://camelyon16.grand-
challenge.org.

All TCGA datasets can be found at https://portal.gdc.cancer.gov.

The official Segment Anything Model repository is at https://
github.com/facebookresearch/segment-anything. The pre-trained
weights can be found at https://dl.fbaipublicfiles.com/segment_
anything/sam_vit_h_4b8939.pth.

The script of slide pre-processing and patching modified from
CLAM repository at https://github.com/mahmoodlab/CLAM.

The code and weights of PLIP can be found at https://github.
com/PathologyFoundation/plip.
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Algorithm 1: PyTorch-style pseudocode for SAM-MIL training scheme

HH HFHHE

#

f: model networks

mr: mask ratio

num_groups: number of pseudo bags
alpha: pseudo-bag loss scaling factor
beta: consistency loss scaling factor

SAM-Guided Group Mask

def mask_fn(x,unique_areas, mask_ratio):

#

# Initialize lists for retained and masked indices
final_retained_idxs = []
final_masked_idxs = []
len_keep = 0
for area in unique areas do
# Get indices for the current area
area_indices = where(area == area)
# Calculate the number of points in the area
area_ps = size(area_indices)
adjusted_random_ratio = adjusted_sigmoid(area) * mask_ratio
# Select indices to mask based on adjusted ratio
area_len_keep, area_mask_ids = select_mask_fn(area_ps, adjusted random_ratio)
# Map local indices to global indices
retained_idxs_global = map_to_global(area_indices, area_mask_ids[@][:area_len_keep])
masked_idxs_global = map_to_global(area_indices, area_mask_ids[@][area_len_keep:])
# Store global indices
final retained_idxs.append(retained_idxs_global)
final_masked_idxs.append(masked_idxs_global)
# Update total number of points retained
len_keep += area_len_keep
end
# Concatenate indices for all groups
retained_idxs = concatenate(final_retained_idxs)
masked_idxs = concatenate(final_masked_idxs)
# Merge all indices into one tensor
mask_ids = concatenate([retained_idxs, masked idxs])
return mask_ids

main loop

for x,y,sam in loader: # load a minibatch x,y,sam with N slides

unique_areas = sam.getUniqueAreas()

# get masked instance index

mask_id = mask_fn(x,unique_areas,mr)

# mask instance

x_masked = masking(x,mask_id)
logits,bag_feats, = f.forward(x_masked)

# Shuffle and group the pseudo-bag

indices = torch.randperm(bag_feats.size(1))
shuffled_bag = bag feats[:, indices, :]
group_size = shuffled_bag.size(1) // num_group

bag_groups = [shuffled bag[:, i * group_size:(i + 1) * group_size, :] for i in range(num_group)]

label groups = [y for _ in range(num_group)]

# Train each group and calculate losses

group_results = [f.train(group) for group in bag_groups]

bag_loss = sum(result["cls_loss"] for result in group_results) / len(group_results)

# consistency loss

global_attn = f.compute_attn_with_grad(bag_feats, label=y)

sam_class = sam.getClass()

consistency_loss = calculate_consistency_loss(global_attn, sam_class, con_batch_size)

# total loss
cls_loss = CrossEntropy(logits,y)
loss_all = cls_loss + alpha * bag_loss + beta * consistency loss

# Adam update
loss_all.backward()

update(f.params)
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