
A Appendix A

A.1 Proof of Lemma 3.1

Assumption 2.1 implies that for any policy ⇡, ⇢(⇡) = E[c(s, a) + h⇡(s) | a ⇠ ⇡(·|s), s ⇠ ⌫⇡].

⇢⇡
0
� ⇢⇡ = lim

T!1
1
T E

hPT�1
t=0 r(st, at) + h⇡0(st)(st)� ⇢(⇡) + V̄ ⇡(st+1)� V̄ ⇡(st)

+h⇡(st)(st)� h⇡(st)(st) + ⇢(⇡) | s0 = s, at ⇠ ⇡0(·|st), st+1 ⇠ P(·|st, at)
i

+ lim
T!1

1
T E[V̄

⇡(s0) | s0 = s]� ⇢(⇡)

= lim
T!1

1
T E

hPT�1
t=0 Q̄⇡(st, at)� V̄ ⇡(st)

+h⇡0(st)(st)� h⇡(st)(st) | s0 = s, at ⇠ ⇡0(·|st), st+1 ⇠ P(·|st, at)
i

=

Z
Q̄⇡(s0,⇡0(s0))� V̄ ⇡(s0) + h⇡0(s)(s0)� h⇡(s0)(s0)⇡

0
(ds0)

A.2 Optimality condition

The following lemma uses the optimality condition of (12), serving an important recursion for the
deterministic case. We denote convexity modulus of Q̄ by µQ and define µd := µh � µQ.
Lemma A.1. [19, Lemma 3] If ⌘k in (15) satisfies

µd +
1
⌘k

� 0, (46)

then for any a 2 A,

 ⇡k(s,⇡k+1(s)) +
1
⌘k
D(⇡k(s),⇡k+1(s))

+ (µd +
1
⌘k
)D(⇡k+1(s), a)

  ⇡k(s, a) + 1
⌘k
D(⇡k(s), a). (47)

A.3 Progress in each iteration

Proposition A.2. For any s 2 S , we have
1

1�� (⇢(⇡k+1)� ⇢(⇡k))   ⇡k(s,⇡k+1(s))

 �[ 1
⌘k
D(⇡k(s),⇡k+1(s)) + (µd +

1
⌘k
)D(⇡k+1(s),⇡k(s))]. (48)

The above proposition shows that the progress of each step relates to the advantage function.

Proof. By the above lemma with a = ⇡k(s), we have

 ⇡k(s,⇡k+1(s)) +
1
⌘k
D(⇡k(s),⇡k+1(s)) + (µd +

1
⌘k
)D(⇡k+1(s),⇡k(s))

  ⇡k(s,⇡k(s)) +
1
⌘k
D(⇡k(s),⇡k(s)) = 0, (49)

where the last identity follows from the fact that  ⇡k(s,⇡k(s)) = 0 due to Assumption (6) and (10).
By Lemma 3.1, Eq. 49 and the fact that ⇡k+1

s ({s}) � 1� � due to (2.1), we have

⇢(⇡k+1)� ⇢(⇡k) =

Z
 ⇡k(q,⇡k+1(q))

⇡k+1
s (dq)

  ⇡k(s,⇡k+1(s))
⇡k+1
s ({s})

 (1� �) ⇡k(s,⇡k+1(s)). (50)

The result then follows by combining the above two inequalities.
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A.4 Proof of Theorem 3.4

Proof. Let L⇡k(s, a) := Q̄⇡k(s, a) + 1
⌘k

hr!(⇡k(s)), ai and L(s, a; ✓k) be its stochastic estimator.
Denote �(s, a) :=  k(s, a)� Lk(s, a). By the optimality condition of (15), we have

L(s,⇡k+1(s); ✓k)� L(s, a; ✓k) + h⇡k+1(s)(s)� ha(s)

+ 1
⌘k
[!(⇡k+1(s))� !(a)] + (µ+ 1

⌘k
)D(⇡k+1(s), a)  0, (51)

which implies that

Lk(s,⇡k+1(s))� Lk(s, a) + [h⇡k+1(s)(s)� ha(s)] + 1
⌘k
[!(⇡k+1(s))� !(a)]

+ (µ+ 1
⌘k
)D(⇡k+1(s), a) + �Qk (s,⇡k+1(s))� �Qk (s, a) + h�!k (s),⇡k+1(s)� ai  0. (52)

In view of the definition (10), we can show that

 ⇡k(s,⇡k+1(s))�  ⇡k(s, a) + h⇡k+1(s)(s)� h⇡k(s)(s) + 1
⌘k
[D(⇡k(s),⇡k+1(s))�D(⇡k(s), a)]

+ (µ̃d +
1
⌘k
)D(⇡k+1(s), a) + �Qk (s,⇡k+1(s))� �Qk (s, a) + h�!k (s),⇡k+1(s)� ai  0, (53)

using the following inequalities and the definition of Bregman distance

Q̄⇡k(s,⇡k+1(s))� Q̄⇡k(s,⇡k(s)) � �MQ̄k⇡k+1(s)� ⇡k(s)k, (54)

h⇡k+1(s)(s)� h⇡k(s)(s) � �Mhk⇡k+1(s)� ⇡k(s)k, (55)

�Qk (s,⇡k+1(s)) = �Qk (s,⇡k+1(s))� �Qk (s,⇡k(s)) + �Qk (s,⇡k(s))

� �(MQ̄ +MQ̄k⇡k+1(s)� ⇡k(s)k+ �Qk (s,⇡k(s)), (56)

h�!k (s),⇡k+1(s)� ai = h�!,det
k (s),⇡k+1(s)� ai+ h�!,sto

k (s),⇡k(s)� ai
+ h�!,sto

k (s),⇡k+1(s)� ⇡k(s)i
� �k�!,det

k (s)k⇤D̄A � k�!,sto
k (s)k⇤k⇡k+1(s)� ⇡k(s)k

+ h�!,sto
k (s),⇡k(s)� ai, (57)

where the first three inequalities are from the definition of Lipschitz continuity, and the last inequality
is from Cauchy-Schwartz inequality. Notice the approximation errors are all captured by the error
terms. We then conclude from the above inequality and Young’s inequality that

�  ⇡k(s, a) + (µ+ 1
⌘k
)D(⇡k+1(s), a)

 1
⌘k
D(⇡k(s), a) +

⌘k

2 (2MQ +MQ̃ +Mh + k�!,sto
k (s)k⇤)2

� �Qk (s,⇡k(s)) + �Qk (s, a) + k�!,det
k (s)k⇤D̄A

� h�!,sto
k (s),⇡k(s)� ai. (58)

Note that setting a = ⇡⇤ and taking conditional expectation of the above inequality w.r.t. ⇠k, it then
follows from Lemma A.2, Equation 23 and E⇠k [�

sto
k (s)] = 0 that

1
1�� (⇢(⇡k)� ⇢⇤) + (µ+ 1

⌘k
)E⇠k [Es⇠⌫⇤D(⇡k+1(s),⇡

⇤(s))]

 1
⌘k
Es⇠⌫⇤D(⇡k(s),⇡

⇤(s)) + ⌘k

2 [(MQ̄ +MQ̄ +Mh)
2 + (�!)2)

+ E⇠k {Es⇠⌫⇤ [|�k(s,⇡k(s))|+ |�k(s,⇡⇤(s))|]}+ k�!,det
k (s)k⇤D̄A. (59)

Note that the term D(⇡k(s),⇡⇤) follows a telescopic sequence with the step size choice (24). Taking
full expectation w.r.t. ⇠k and the �k-weighted sum of the above inequalities, it then follows from (24)
and the definition of ⇢ that

1
1��

PK�1
k=0 �tE[(⇢(⇡k)� ⇢⇤)] + �K�1(µ+ 1

⌘K�1
)E⇠k,s⇠⌫⇤D(⇡k(s),⇡⇤(s))

 �0

⌘0
Es⇠⌫⇤D(⇡0(s),⇡

⇤(s)) +
PK�1

k=0 �k⌘k[(2MQ̄ +MQ̄ +Mh)2/2 + (�!)2)

+ (&Q̄ + &!D̄A)(
PK�1

k=0 �k), (60)

from which we get the desired result by dividing both sides
PK�1

k=0 �t.
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A.5 Proof of Theorem 3.7

Proof. Setting a = ⇡k(s) in (53), and using the facts that  ⇡k(s,⇡k(s)) = 0 and D(⇡k(s),⇡k(s)) =
0, we obtain

 ⇡k(s,⇡k+1(s)) + h⇡k+1(s)(s)� h⇡k(s) + 1
⌘k
D(⇡k(s),⇡k+1(s))

+ (µ̃d +
1
⌘k
)D(⇡k+1(s),⇡k(s)) + �Qk (s,⇡k+1(s))

� �Qk (s, a) + h�!k (s),⇡k+1(s)� ai  0. (61)

Using the above inequality, (55)-(57), and Young’s inequality, we then have

 ⇡k(s,⇡k+1(s)) +
1

2⌘k
D(⇡k(s),⇡k+1(s)) + (µ̃d +

1
⌘k
)D(⇡k+1(s),⇡k(s))

 (Mh +MQ̄ +MQ̄ + k�!,sto
k (s)k⇤)k⇡k+1(s)� ⇡k(s)k � 1

2⌘k
D(⇡k(s),⇡k+1(s))

+ k�!,det
k (s)k⇤D̄A

 ⌘k(Mh +MQ̄ +MQ̄ + k�!,sto
k (s)k⇤)2 + k�!,det

k (s)k⇤D̄A.

 ⌘k(Mh +MQ̄ +MQ̄ + �̄!)2 + &̄!D̄A. (62)

Similar to Eq. 49, we can show that

⇢(⇡k+1)� ⇢(⇡k) =

Z
 ⇡k(q,⇡k+1(q))]

⇡k+1
s (dq)

=

Z
 ⇡k(q,⇡k+1(q))�

⇥
⌘k(Mh +MQ̄ +MQ̄ + �̄!)2 + &̄!D̄A

⇤
⇡k+1
s (dq)

+ ⌘k(Mh +MQ̄ +MQ̄ + �̄!)2 + &̄!D̄A

 (1� �) ⇡k(s,⇡k+1(s)) + �
⇥
⌘k(Mh +MQ̄ +MQ̄ + �̄!)2 + &̄!D̄A

⇤
(63)

The result in (30) follows by taking the telescopic sum of the above inequality, while the one in (31)
follows directly from (30) and the first inequality we proved in this subsection (62).
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A.6 Proof of an Auxiliary Lemma

To start the analysis, we first need a lemma to bound the total variation norm of policies with respect
to its parameterization. This lemma will be used later to bound the convergence of the differential
Q-function. Notice that for ergodic chains. we can obtain the following lemma by replacing P̃ with P
in the original proof.
Lemma A.3. [Lemma 3 33] Consider the initialization distribution ⌘(·) and transition kernel
P(·|s, a). Under ⌘(·) and P(·|s, a), denote dw(·, ·) as the state-action visitation distribution of
the MDP with the Boltzmann policy parameterized by the parameter w, i.e., ⇡ / expw. Suppose
Assumption 2.1 holds, for all policy parameter w and w0, we have

kdw(·, ·)� dw0(·, ·)kTV  Cdkw � w0k2 (64)

where Cd is a positive constant.

In the next step, we show that the gradient of the differential Q-function and the gradient of the
dual objective is also bounded and Lipschitz continuous. For discrete state and action spaces, we
adopt standard stochastic matrix theory. However, we need to make the following assumption for
continuous state and action spaces.
Lemma A.4. For any s 2 S, a 2 A the differential Q-function and the gradient of the objective in
Dual IRL is smooth, i.e.,

|Q̄⇡✓1 (s, a)� Q̄⇡✓2 (s, a)|  Lqk✓1 � ✓2k2, (65)
kr✓L(✓1)�r✓L(✓2)k2  Lck✓1 � ✓2k2, (66)

for some constant real number Lq and Lc.

Proof. Note that from (7) and Appendix A from [27] we have for any given policy ⇡,

r✓Q̄ = r✓c�r✓⇢+ P⇡(I � P⇡ + P ⇤)�1(I � P ⇤)r✓c (67)

where P ⇤ is the limiting matrix of the transition kernel P⇡ , i.e., P = limN!1
1
N

PN
n=1P

n, and Pn

is the n-th power of the matrix P . Since the chain is uniformly ergodic (ref to ergodicity) we have
P ⇤ = eT , i.e.,

P ⇤ =

2

64
� T �
� T �

...

3

75 . (68)

Taking the gradient of both sides, we have

r✓Q̄ = r✓c�r✓⇢+ P⇡(I � P⇡ + P ⇤)�1(I � P ⇤)r✓c. (69)

To bound the last term, we first note that kP⇡k2 = kI�P ⇤k2 = 1. Furthermore, we have for ergodic
Markov chains, �min(I � P + P ⇤) > 0 and the following decomposition (Theorem A.5, [27])

I � P⇡ + P ⇤ = W�1


I �Q 0

0 I

�
W (70)

Denote 1/� := �min(I �Q), we have for any s 2 S, a 2 A

kr✓Q̄k2 =
��r✓c�r✓⇢+ P⇡(I � P⇡ + P ⇤)�1(I � P ⇤)r✓c

��
2

 kr✓ck2 + kr✓⇢k2 +
��P⇡(I � P⇡ + P ⇤)�1(I � P ⇤)r✓c

��
2

 2kr✓ck2 +
��P⇡(I � P⇡ + P ⇤)�1(I � P ⇤)

��
2
kr✓ck2

 2kr✓ck2 + kP⇡k2k(I � P⇡ + P ⇤)�1k2k(I � P ⇤)k2kr✓ck2
 2kr✓ck2 + �kr✓ck2
 (2 + �)Lr

(71)

where the last step follows Assumption 4.1. Using the mean value theorem, we get
��Q̄⇡✓1 (s, a; ✓1)� Q̄⇡✓2 (s, a; ✓2)

��  max
✓

kr✓Q̄
⇡✓ (s, a; ✓)kk✓1 � ✓2k

 (2 + �)Lrk✓1 � ✓2k (72)
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Denoting Lq = 2 + � and taking the minimum over all state-action pairs, we get the desired result
for discrete state and action. For general state and action spaces, in view of Assumption 4.2, it is easy
to verify the result. Note that from the above analysis, the boundedness of the gradient under general
state and action spaces is not too restrictive.

For the second part, note that

r✓L(✓1)�r✓L(✓2) = E(s,a)⇠dE [r✓c(s, a; ✓1)]� E(s,a)⇠d
⇡✓1 [r✓c(s, a; ✓1)]

+ E(s,a)⇠dE [r✓c(s, a; ✓2)]� E(s,a)⇠d
⇡✓2 [r✓c(s, a; ✓2)] (73)

Using triangle inequality, we have
��E(s,a)⇠dE [r✓c(s, a; ✓1)�r✓c(s, a; ✓2)]

��
2
 E(s,a)⇠dE kr✓c(s, a; ✓1)�r✓c(s, a; ✓2)k
= Lg k✓1 � ✓2k2 (74)

Additionally,

kEd1 [r✓c(s, a; ✓1)]� Ed2 [r✓c(s, a; ✓1)]k2
 kEd1 [r✓c(s, a; ✓1)�r✓c(s, a; ✓2)]k2 + kEd1 [r✓c(s, a; ✓2)]� Ed2 [r✓c(s, a; ✓2)]k2 (75)
(i)
 Ed1 kr✓c(s, a; ✓1)�r✓c(s, a; ✓2)k2 + 2max(kr✓ck2) · kd⇡✓1 (·, ·)� d⇡✓2 (·, ·)kTV

(ii)
 Ed1Lg k✓1 � ✓2k2 + 2LrCd

��Q̄⇡✓1
✓1

� Q̄
⇡✓2
✓2

��
2

(iii)
 Ed1Lg k✓1 � ✓2k2 + 2LrCd

p
|S| · |A|

��Q̄⇡✓1
✓1

� Q̄
⇡✓2
✓2

��
1

 (Lg + 2LqLrCd

p
|S| · |A|) k✓1 � ✓2k2 (76)

where (i) follows from the Hölder’s inequality; (ii) follows from Lemma A.3; (iii) follows from the
equivalence of Lp norms, which is also from the Hölder’s inequality. Combining the two inequalities,

kr✓L(✓1)�r✓L(✓2)k2  (2Lg + 2LqLrCd

p
|S| · |A|) k✓1 � ✓2k2 (77)

Denoting Lc := 2Lg + 2LqLrCd

p
|S| · |A| we have the claimed result.

We also need Lipschitz continuity of the action-value function w.r.t ✓. We can easily get the following
lemma in view of Lemma A.4, combined with the mean value theorem.
Lemma A.5. Under any feasible policy ⇡, for any s 2 S, a 2 A and reward function parameters
✓1, ✓2, the following holds

��Q̄⇡(s, a; ✓1)� Q̄⇡(s, a; ✓2)
��  Lq k✓1 � ✓2k2 (78)

where Lq is defined in A.4.
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A.7 Proof of Theorem 4.5

To show the convergence of the action-value function, we first need to show that the policy evaluation
step is span contractive, which has a similar proof of Theorem 6.6.6 in [27]. For convenience, we
define a 1-step Bellman operator for a given policy ⇡ as

T Q̄(s, a) := c(s, a)� ⇢(⇡) + P⇡(s
0, a0|s, a)Q̄(s0, a0). (79)

Lemma A.6. Define � by

� := 1� min
(s1,a1),(s2,a2)

P
s2S,a2A min{P⇡(s, a|s1, a1), P⇡(s, a|s2, a2)} (80)

Then for any two differential Q-functions p, q,

kT p� T qksp,1  � kp� qksp,1 (81)

Furthermore, if for any state-action pairs (s1, a1) and (s2, a2) there exists a third state-action pair
(s0, a0) such that both P⇡(s0, a0|s1, a1) > 0 and P⇡(s0, a0|s2, a2) > 0, then � < 1.

Proof. Let (s⇤, a⇤) := argmax(s,a)2S⇥A T p� T q and (s⇤, a⇤) := argmin(s,a)2S⇥A T p� T q so
that

(T p)(s⇤, a⇤)� (T q)(s⇤, a⇤) = P⇡(p� q)(s⇤, a⇤)

(T p)(s⇤, a⇤)� (T q)(s⇤, a⇤) = P⇡(p� q)(s⇤, a⇤)

from which we get

kT p� T qksp,1 = max
(s,a)2S⇥A

T (p� q)� min
(s,a)2S⇥A

T (p� q)

= P⇡(p� q)(s⇤, a⇤)� P⇡(p� q)(s⇤, a⇤)

 max
(s,a)2S⇥A

P⇡(p� q)(s, a)� min
(s,a)2S⇥A

P⇡(p� q)(s, a)

= kP⇡(p� q)ksp,1 (82)

Denote ⌧ := (s, a). Note that

kP⇡(p� q)ksp,1 = max {
P

⌧P⇡(⌧ |⌧1)(p� q)(⌧1)�
P

⌧P⇡(⌧ |⌧2)(p� q)(⌧2)} (83)

So it is sufficient to prove that

kP⇡(p� q)ksp,1  � kp� qksp,1 . (84)

For notational convenience, let b(⌧1, ⌧2|⌧) = min{P⇡(⌧ |⌧1), P⇡(⌧ |⌧2)}. We prove the above inequal-
ity by first showing that the inequality holds for any ⌧ := (s1, a1), and then taking a maximum over
all (s, a) pairs.
P

⌧P⇡(⌧ |⌧1)(p� q)(⌧1)�
P

⌧P⇡(⌧ |⌧2)(p� q)(⌧2)

=
P

⌧ [P⇡(⌧ |⌧1)� b(⌧1, ⌧2|⌧)] (p� q)(⌧1)�
P

⌧ [P⇡(⌧ |⌧2)� b(⌧1, ⌧2|⌧)] (p� q)(⌧2)


P

⌧ [P⇡(⌧ |⌧1)� b(⌧1, ⌧2|⌧)]max(p� q)�
P

⌧ [P⇡(⌧ |⌧2)� b(⌧1, ⌧2|⌧)]min(p� q)

=
P

⌧ [P⇡(⌧ |⌧1)� b(⌧1, ⌧2|⌧)] (p� q)(s⇤, a⇤)�
P

⌧ [P⇡(⌧ |⌧2)� b(⌧1, ⌧2|⌧)] (p� q)(s⇤, a⇤)

= [1�
P

⌧ b(⌧1, ⌧2; ⌧)] kp� qksp,1 (85)

 � kp� qksp,1 (86)

Simply taking the maximum over all state-action pairs we can get the desired result.

In view of A.6, when the MDP does not have 1 step contraction, we can construct a J-step Bellman
operator for some integer J , which would be sufficient due to Assumption 2.1 (see Theorem 8.5.3
[27]).

Now we are ready to prove Theorem 4.5.
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Proof. Taking expectation w.r.t ⇣k and using triangle inequality
���E⇣kQ̄

⇡k,⇣k
✓k

� Q̄
⇡✓k
✓k

���
sp,1


���Q̄⇡k

✓k
� Q̄

⇡✓k
✓k

���
sp,1

+
���E⇣kQ̄

⇡k,⇣k
✓k

� Q̄⇡k
✓k

���
sp,1

,


���Q̄⇡k

✓k
� Q̄

⇡✓k
✓k

���
sp,1

+ &. (87)

Here Q̄⇡k
✓k

is the ideal differential Q-function in the kth iteration, and Q̄
⇡✓k
✓k

is the optimal differential
Q-function w.r.t to the current reward function c(s, a; ✓k). We cannot expect them to be close from
the beginning, as we only partially solve the entropy regularized RL problem. We show in this
theorem that the gap between them is shrinking.

We denote Q̄⇡
✓ as Q̄⇡(s, a; ✓) for clarity, as it represents the differential Q-function with the reward

function parameterized by ✓ and follow sample distribution induced by policy ⇡.

Note that
��Q̄⇡k(s, a; ✓k)� Q̄⇡✓k (s, a; ✓k)

��
sp,1

=
��Q̄⇡k(s, a; ✓k)� Q̄⇡✓k (s, a; ✓k) + Q̄⇡✓k�1 (s, a; ✓k�1)� Q̄⇡✓k�1 (s, a; ✓k�1)

+ Q̄⇡k(s, a; ✓k�1)� Q̄⇡k(s, a; ✓k�1)
��
sp,1


��Q̄⇡k�1(s, a; ✓k�1)� Q̄⇡✓k (s, a; ✓k)

��
sp,1 +

��Q̄⇡k(s, a; ✓k)� Q̄⇡k(s, a; ✓k�1)
��
sp,1

+
��Q̄⇡✓k�1 (s, a; ✓k�1)� Q̄⇡k(s, a; ✓k�1)

��
sp,1

(i)
 Lq k✓k � ✓k�1k2 + Lq k✓k � ✓k�1k2 +

��Q̄⇡✓k�1 (s, a; ✓k�1)� Q̄⇡k�1(s, a; ✓k�1)
��
sp,1 .

(88)

where (i) follows Lemma A.4-A.5. Note that from the update rule ✓k = ✓k�1 � ↵gk,

k✓k � ✓k�1k2  ↵ kgkk2 = ↵ kr[⇢E � ⇢⇡k ]k2  ↵Lc (89)

For the second term, note that

Q̄⇡✓k�1 (s, a; ✓k�1) = T Q̄⇡✓k�1 (s, a; ✓k�1), (90)
Q̄⇡k(s, a; ✓k�1) = T Q̄⇡k�1(s, a; ✓k�1). (91)

From lemma A.6 we have
��Q̄⇡✓k�1 (s, a; ✓k�1)� Q̄⇡k�1(s, a; ✓k�1)

��
sp,1  �

���Q̄⇡k�1

✓k�1
� Q̄

⇡✓k�1

✓k�1

���
sp,1

. (92)

Combine the above inequalities
���E⇣kQ̄

⇡k,⇣k
✓k

� Q̄
⇡✓k
✓k

���
sp,1

 �
���Q̄⇡k�1

✓k�1
� Q̄

⇡✓k�1

✓k�1

���
sp,1

+ 2↵LqLc + &. (93)

Sum from k = 1 to K, rearrange the equations, we have

1
K

PK�1
k=0

���Q̄⇡k,⇣k
✓k

� Q̄
⇡✓k
✓k

���
sp,1


���Q̄⇡0

✓0
�Q̄

⇡✓0
✓0

���
sp,1

(1��)K + 2↵LqLc+&
1�� . (94)

Pick step size ↵ = ↵0p
K

with ↵0 > 0, we have

1
K

PK�1
k=0

��Q̄⇡k,⇣k � Q̄⇡✓k

��
sp,1 = O(K�1) +O(K�1/2) + &

1�� . (95)
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A.8 Proof of Theorem 4.6

Proof. Note that a constant shift over the action-value function induces the same policy. It is easy to
show the following relation as presented in [37]

kE⇣k log ⇡k+1 � log ⇡✓kk1  kQ̄⇡k,⇣k � Q̄⇡k
✓k
k1

= kQ̄⇡k,⇣k � Q̄⇡k
✓k

+ c✓ke� ckek1. (96)

The relation holds for any c✓k , ck. Denoting c = c✓k � ck, we conclude that

kE⇣k log ⇡k+1 � log ⇡✓kk1  min
c2R

kE⇣kQ̄⇡k,⇣k � Q̄⇡k
✓k

+ cek1 = 1
2

��E⇣kQ̄⇡k,⇣k � Q̄⇡k
✓k

��
sp,1 .

(97)

In view of Theorem 4.6, we have

1
K

PK�1
k=0 kE⇣k [log ⇡k+1]� log ⇡✓kk1 

���Q̄⇡0
✓0

�Q̄
⇡✓0
✓0

���
sp,1

2(1��)K + ↵LqLc+&
2(1��) . (98)

The convergence result for reward function approximation is similar to smooth-nonconvex problems
in optimization. We begin by using the smoothness property of the objective function L.

L(✓k+1)  L(✓k) + hr✓L(✓k), ✓k+1 � ✓ki+ Lc
2 k✓k+1 � ✓kk22

(i)
= L(✓k)� ↵ hr✓L(✓k), gki � 1

2↵
2Lckgkk22

 L(✓k)� ↵ hr✓L(✓k), gk �r✓L(✓k)i � ↵kr✓L(✓k)k22 + 1
2↵

2Lckgkk22
(ii)
= L(✓k)� ↵ hr✓L(✓k), gk �r✓L(✓k)i � ↵kr✓L(✓k)k22 + 2↵2L3

c . (99)

where (i) follows the update rule; (ii) follows the bound on the gradient gk, i.e.

kgkk2  kE(s,a)⇠dE [r✓c(s, a; ✓k)]� E(s,a)⇠d⇡ [r✓c(s, a; ✓k)] k2
 kE(s,a)⇠dE [r✓c(s, a; ✓k)] k2 + kE(s,a)⇠d⇡ [r✓c(s, a; ✓k)] k2
 max kr✓ck2 +max kr✓ck2
= 2Lc. (100)

Taking expectation w.r.t ⇣k and state-action sample distribution d✓k , on the above equation,
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⇥
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c
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where (i) follows Cauchy-Schwartz inequality, notice that

� ↵E [hr✓L(✓k),E [gk �r✓L(✓k)|✓k]i]
= ↵E [hr✓L(✓k),E [�gk +r✓L(✓k)|✓k]i]

 ↵ kr✓L(✓k)kE
h���E(s,a)⇠d⇡k+1 [r✓c(s, a; ✓k)]� E(s,a)⇠d
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i
. (102)

and that

E
h���E(s,a)⇠d⇡k+1 [r✓c(s, a; ✓k)]� E(s,a)⇠d

⇡✓k [r✓c(s, a; ✓k)]
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i

 2kr✓ck2E [kd(s, a;⇡✓k)� d(s, a;⇡k+1)kTV ] . (103)

follows the Hölder’s inequality; (ii) follows the definition of the total-variation norm; (iii) follows
the bound on the gradient r✓c; (iv) follows from the fact that the policy is the Boltzmann distribution
of the exponential of the action-value function, Lemma A.3, and equivalence of norms. Rearrange
terms we have
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(104)

Sum from k = 0 to K � 1, and divide both sides by ↵K,
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In view of theorem 4.5, we have
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Note that
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A.9 Experiment Details

Here we present some details about the experiments. All experiments are performed on an Apple
MacBook Pro with an M1 chip. For RL tasks, We use a discount factor � = 0.99 for training the
SAC. SAC and SPMD agents are trained with 3e6 samples, with a learning rate of 3e � 4. The
average-reward estimate is calculated by taking an average of the sampled batch. The training process
of each agent takes around 3 hours for one environment.

For IRL tasks, the expert demonstrations are collected from training a SAC agent for five million
steps. We train the IPMD agent 2e6 samples (number of interactions with the environment) while
training IQ-Learn and f -IRL using the script provided along with its implementation. To avoid the
objective from exploding, we also add a scaled (0.05 the size of) norm of the predicted reward as a
regularization term. The inexact evaluation of the gradient can be incorporated into the error term in
stochastic gradient descent so that this change has no major impact on the analysis.

For the reward recovery experiment, we train the expert agent using SAC with a 0.99 discount factor.
IQ-Learn is trained with 1e5 iterations for Pendulum and 5e5 iterations for LunarLanderContinuous.
IPMD is trained with 1e5 iterations for both environments. Both agents use 11 expert trajectories.

A.10 Miscellaneous

We acknowledge that IRL, like many other machine learning techniques, has potential implications
if misused. IRL can be used in violation of privacy (as the reviewer mentioned) by inferring an
individual’s intentions and preferences, potentially crafting convincing social engineering attacks or
phishing attempts; IRL can also be used to model the behavior of specific demographics, which could
result in biased algorithmic decision-making, leading to unfair treatment or discrimination against
certain groups, etc.
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