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A Video results

Video results on the free-viewpoint rendering and 3D reconstruction with the ZJU-MoCap and AIST
datasets can be found at https://youngjoongunc.github.io/nhp.

B Reproducibility

B.1 Implementation details.

We describe the implementation details in the interest of reproducibility. Note that due to the high
computing cost, we did not spend significant effort to tune the architecture or training procedure, and
it is possible that variations can perform better, or that smaller models may suffice. Code will be
made public upon publication.

Image feature extractor. As briefly discussed in the main paper, we use an ImageNet-pretrained
ResNet18 backbone to extract a feature pyramid. For an image of shape H×W, we take the multi-scale
feature maps of shapes

{ 64 × H/2 × W/2, 64 × H/4 × W/4, 128 × H/8 × W/8, 256 × H/16 × W/16 }.

These feature maps are bilinearly upsampled to the highest resolution i.e., H/2 × W/2, and concate-
nated into a shape 512 × H/2 × W/2.

Temporal transformer. The temporal Transformer is used in construction of time-augmented
skeletal features in Section 3.2 of the manuscript. The overview of the attention between the skeletal
feature at t and skeletal memory features is illustrated in Fig. 1. All the L vertices are processed
batch-wise, where the attention is computed for each vertex. d is set to 64.

Sampling of time-augmented skeletal feature w.r.t. a query point x. When we are given a
query point x in 3D space, we sample the corresponding feature at x’s 3D location, s′1:C,t

x ∈ RC×d,
from the previously constructed time-augmented skeletal features s′1:C,t ∈ RL×C×d. Inspired by
[11, 9, 8, 7], we adopt the SparseConvNet [6] to perform such sampling, whose architecture is
described in Table 1. First, we compute the 3D bounding box of the human body based on the SMPL
parameters, and divide the 3D box into small voxels of size of 5mm × 5mm × 5mm, resulting
in a D′ × H ′ × W ′ (depth, height, width) volume. The SparseConvNet consists in 3D sparse
convolutions to process the input volume, diffusing the skeletal features into the nearby 3D space.
We resize and concatenate the multi-scale outputs from the 5, 9, 13, 17-th layers as the output
feature ∈ RD′

16 ×H′
16 ×W ′

16 ×384. Since the diffusion of the skeletal feature should not be affected by the
human position and orientation in the world coordinate system, we transform the skeletal feature
locations to the SMPL coordinate system. Then, the query location x is also transformed to the SMPL
coordinate system, and the corresponding skeletal feature s′1:C,t

x ∈ RC×384 is sampled via trilinear
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Figure 1: Overview of temporal Transformer’s attention between the skeletal features at t and skeletal
memory features.

Figure 2: Overview of multi-view Transformer’s cross-attention between the sampled time-augmented
skeletal features and time-specific pixel-aligned feature at t.

interpolation, and a fully-connected layer reduces the channel-size to 128. The resulting skeletal
feature s′1:C,t

x ∈ RC×128 is fed into the following multi-view transformer.

Multi-view transformer. The sampled time-augmented skeletal feature s′1:C,t
x is fed into the

proposed multi-view transformer to obtain our meta-time and meta-view representation of the query
point x, which is explained in Section 3.3 of the manuscript. The overview of the cross-attention
between the sampled time-augmented skeletal features and time-specific pixel-aligned features is
illustrated in Fig. 2. d is set as 128.

NeRF network. The NeRF network takes the final representation from above zx1:C,t as input and
predicts density σx

t and color rgbxt . It consists of the fully-connected layers as illustrated in Fig. 3.

Query point sampling details. We first compute the 3D bounding box of the human subject from
the corresponding SMPL vertice coordinates. Since there is a gap between the exact human subject
geometry and the SMPL model, we enlarge the side length of the bounding box by 2.5% and this
becomes the query point sampling bounds. We sample 1024 rays, and 64 points are sampled per ray
for the training. For the inference, 64 points are sampled along each ray.

2



Layer Description Output Dim.
Input volume D’ × H’ × W’ × 64

1-2 (3× 3× 3 conv, 64 features, stride 1) × 2 D’ × H’ × W’ × 64
3 (3× 3× 3 conv, 64 features, stride 2) D’/2 × H’/2 × W’/2 × 64
4-5 (3× 3× 3 conv, 64 features, stride 1) × 2 D’/2 × H’/2 × W’/2 × 64
6 (3× 3× 3 conv, 64 features, stride 2) D’/4 × H’/4 × W’/4 × 64
7-9 (3× 3× 3 conv, 64 features, stride 1) × 3 D’/4 × H’/4 × W’/4 × 128
10 (3× 3× 3 conv, 128 features, stride 2) D’/8 × H’/8 × W’/8 × 128
11-13 (3× 3× 3 conv, 128 features, stride 1) × 3 D’/8 × H’/8 × W’/8 × 128
14 (3× 3× 3 conv, 128 features, stride 2) D’/16 × H’/16 × W’/16 × 128
15-17 (3× 3× 3 conv, 128 features, stride 1) × 3 D’/16 × H’/16 × W’/16 × 128

Resize & Concat. outputs of layer 5, 9, 13, and 17 D’/16 × H’/16 × W’/16 × 384

Table 1: Architecture of SparseConvNet. Each layer consists of sparse convolution, batch normal-
ization and ReLU.
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Figure 3: Overview of NeRF architecture.

C Datasets

We discuss the additional details about the datasets used, including the train/test splits and license
information. Note that both the ZJU-Mocap and AIST datasets do not contain any personally
identifiable information or offensive content.

C.1 ZJU-MoCap

We use the 512 × 512 videos for the training and testing following the original Neural Body [7].
ZJU-Mocap provides 10 human subjects, and we reserved 7 for the training and 3 for testing on
unseen identities. As mentioned in the main paper, we experiment with 5 independent runs with
random train/test splits. For the qualitative results, we used subject 387, 393, 394 for the testing.
ZJU-Mocap provides SMPL parameters obtained using EasyMocap1 [2, 7, 3, 1] and foreground
mask extracted using PGN [4]. ZJU-Mocap is the public dataset that is only meant for the research
purposes as stated in their GitHub page.

C.2 AIST

The original AIST dataset provides 60 fps videos with 1080× 1920 resolutions [10] with correspond-
ing SMPL parameters [5] obtained using AIST++ API2. AIST dataset does not provide foreground
mask, so we obtained the foreground mask using PGN [4]. Since most part of the images are
background, we center-crop the video to 800 × 800 sizes. During the training and evaluation, we
resize the center-cropped video to 512× 512. AIST contains 30 human subjects. We split the train
and testing sets based on different subjects, which also makes sure the human motions in the train (20

1https://github.com/zju3dv/EasyMocap
2https://github.com/google/aistplusplus_api
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identities) and testing sets (10 identities) have no overlap. AIST videos are public dataset only for the
research purposes. The annotations of the AIST dataset is also public for research purposes and it is
licensed by Google LLC CC-BY-4.0 license.
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