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A APPENDIX

A.1 DATASETS

The details of the 11 downstream datasets are shown in Table 5. The accuracy metric of each dataset
follows CLIP.

Dataset Classes Train size Test size

ImageNet 1000 1,281,167 50,000
Caltech-101 102 3,060 6,085
Oxford Pets 37 3,680 3,669
Stanford Cars 196 8,144 8,041
Oxford Flowers 102 102 2,040 6,149
Food-101 102 75,750 25,250
FGVC Aircraft 100 6,667 3,333
SUN397 397 19,850 19,850
Describable Textures 47 3,760 1,880
EuroSAT 10 10,000 5,000
UCF101 101 9,537 1,794

Table 5: 11 Datasets statistics.

A.2 IMPLEMENTATION DETAILS

We use a few-shot training strategy in all experiments at 16 shots which are randomly sampled
for each class. We apply APPLe on a pre-trained ViT-B/16 CLIP model where the textual feature
dimension is 512, the visual feature dimension is 768 and then transformed to 512. We generate
50 prototypes per category for all 11 datasets with the GPT-3 model (Brown et al., 2020). The
textual features of prototypes are fine-tuned for 100 epochs. The batch size is set to 64, of which
the samples are strictly from base classes only. We use an SGD optimizer with a learning rate of
0.002. All experiments are conducted on an NVIDIA A6000 GPU. We report base and new class
accuracies and harmonic mean (HM) averaged over 3 runs.

A.3 DISCUSSION AND COMPARISON TO CONTEXT OPTIMIZATION METHODS

APPLe significantly differs from existing context optimization methods. With the above experi-
ments, APPLe provides a different perspective to understand CLIP:

1. Is the generalization ability claimed in context optimization methods validated in practice?
- No. APPLe* outperforms context optimization methods on new classes, and new datasets by a
large margin. We confirm that the original CLIP already possesses strong generalization ability
on new datasets, but a singular prompt cannot exploit such ability.

2. When disregarding the generalization to new classes, is optimizing the context information more
effective than fine-tuning the textual features?
- No. The results of our comprehensive experiments indicate that tuning the textual features
stands out as more beneficial, enhancing performance predominantly on base classes.

3. Does fine-tuning the prompt textual features cause the overfitting issue?
- No. As evidenced in Fig. 4, utilizing a minimal number of prototypes per class (1 to 3) does
lead to overfitting issues. However, increasing the prototype count to more than 10 significantly
mitigates this, fostering improved generalization to new classes.

A.4 ADAPTIVE ATTENTION VISUALIZATION

To better understand the impact of adaptive attention, we visualize the learned attention matrix on
a heatmap as shown in Fig. 7. The weights of different prompts in each class vary significantly,
ranging from around 0.68 to 0.93. As in Equation 2, the adaptive attention matrix W is applied to
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the computed similarity matrix, resulting in weighted confidence on the prompt prototypes. Thus,
the attention matrix plays an important role in controlling the contribution of each prototype.

Max

Min

Min: "The image is of a beige, cream, and brown rug."

Max: "The image is of a close-up of a knitted cream-colored sweater."

Figure 7: Heatmap visualization of the
learned attention matrix on DTD dataset.

We also show the two prototypes, which show the
least and the maximum contribution to the corre-
sponding categories. The prototype of least attention
is “The image is of a beige, cream, and
brown rug.” We can identify that this prompt in-
volves the wrong category name Rug, rather than
the ground-truth name Woven. Therefore, our pro-
posed adaptive attention mechanism has the abil-
ity to handle noisy prototypes. Thus, a As for the
prompt of maximum attention “The image is of
a close-up of a knitted cream-colored
sweater.” Other prompts in the same category in-
volve specific colors that cover a small portion of
the visual samples, but cream-colored is a more
general keywords that may match more visual sam-
ples. Thus, a higher attention value is assigned.

A.5 CROSS-DATASET TRANSFER

APPLe can be easily extended to perform cross-dataset transfer by involving the target class prompt
prototypes during training. Specifically, we incorporate all prompt prototypes (50 prototypes in
each class) from 11 datasets. When fine-tuning on base classes from the source dataset ImageNet,
we include prototypes for both base and new classes. This inclusion allows the model to learn and
optimize features that are not only specific to the base classes but also relevant to the new classes
in the target dataset. By training on the visual samples from the ImageNet dataset, these prompt
prototypes can enhance the overall generalization ability. In addition, we note that the training-free
version of APPLe, denoted as APPLe*, can already achieve much better cross-dataset transferability.
We confirm that the original CLIP already possesses strong generalization ability on new datasets,
but a singular prompt cannot exploit such ability.

Table 6: Comparison of baseline methods and APPLe in the cross-dataset transfer setting.
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CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
Co-CoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
MaPLe 70.72 93.53 90.49 66.29 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30

APPLe* 69.88 93.35 91.11 66.30 73.37 86.37 28.17 67.72 54.79 46.16 70.16 67.75
APPLe 71.90 93.51 91.22 66.32 73.16 86.31 28.26 67.98 55.26 46.15 70.26 67.84

A.6 IMPACT OF TRAINING EPOCHS

We show the impact of the training epochs on CoOp in Table 7. The default training epoch of CoOp
is 200, which makes the model overfit to the base classes. However, when training on fewer epochs
(e.g., 10), we see a large performance improvement.

A.7 MORE RETRIEVAL RESULTS

We visualize the retrieved samples on the DTD dataset. As shown in Fig. 8, when retrieving the top
5 image samples for cobwebbed, CLIP retrieves all false positive samples. In contrast, our method
can accurately find the 5 cobwebbed images. Our correct retrieval results are based on the averaged
confidence of prototypes.

We present 4 cases in Fig. 9. The ambiguous keywords in the prompts are highlighted in red.
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Table 7: Impact of Training Epochs on CoOp
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Figure 8: Retrieved image samples for category cobwebbed on DTD dataset.

A webbed texture looks like it 

has a lot of small holes or pores.

A cobwebbed texture is a sticky, 

fibrous texture that is often used 

to describe old, dilapidated

objects.

A cobwebbed texture looks like 

a piece of cloth or yarn that has 

been tangled up into a small, 

dense ball.

A cobwebbed texture is a very 

fine, delicate, and often clingy 

net-like fabric.

Fibrous

Prototype

Retrieved

Closest

Sample

Ground-

truth Label Cracked Cracked Lacelike

××××

Figure 9: Failure cases of retrieved closest samples with single prompt prototypes on DTD dataset.

A.8 RESULTS ON FEW-SHOT LEARNING

We have provided experimental results for the few-shot learning setting. Our experiments suggest
that our method (APPLE) shows promising results compared to both PLOT (Chen et al., 2022) and
ProDA (Lu et al., 2022).

A.9 COMPARISON TO THE GENERIC 80 PROMPTS IN THE CLIP MODEL

CLIP’s performance on ImageNet benefits from 80 generic prompts. However, our work focuses
on the limitations of these generic prompts, particularly for fine-grained datasets. These prompts,
as limited in the official CLIP repository 1, are less effective for such datasets due to their lack
of specificity. For example, prompts like ’a plastic ’ or ’a in a video game’ do not capture fine-
grained distinctions well. It is worth noting that the CLIP performance reported in our paper uses
the customized prompts as indicated in the CLIP paper, e.g., “A photo of a label, a type of pet.” for
OxfortPets.

These context prompts can indeed improve performance. We have evaluated the base-to-new setting
on ImageNet in Table 9 (CLIP-80-emb). As for the embedding ensembling method mentioned in
(Radford et al., 2021), we have tested the performance between embedding ensembling and logits
ensembling methods. It can be seen that without fine-tuning, the performance results between the

1https://github.com/openai/CLIP/blob/main/notebooks/PromptEngineeringforImageNet.ipynb
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CoOp 71.92 81.95 86.32 69.42 78.70 95.42 92.80 95.94 85.62 35.89 74.28
ProDA 72.93 82.69 87.24 70.09 75.09 95.09 93.54 96.02 87.41 37.17 75.64
PLOT 72.60 85.34 87.11 71.43 84.55 96.04 93.59 97.56 87.11 46.74 76.03
APPLe 73.73 85.11 87.61 72.52 82.99 96.63 94.22 95.90 87.65 46.53 76.43

Table 8: Few-shot Learning results

two methods are relatively similar. However, if we want to further fine-tune the textual features,
embedding ensembling method tends to overfit to base classes. This phenomenon has been discussed
in Figure 4.

As for the test time speed, logits ensembling indeed causes more computation overhead, but only
for dot product between the visual and textual features. Because the textual features of the 80
generic prompts also need to be inferred through the language transformer 80 times. The dot product
between visual and textual features needs relatively less computational resources.

Methods CLIP CLIP-80-emb CLIP-80-logits APPLe*-50-emb APPLe*-50-logits APPLe-50-emb APPLe-50-logits
Base 72.43 73.56 73.54 74.62 74.62 74.16 78.17
New 68.14 69.97 69.99 71.79 71.94 71.93 72.12
HM 70.22 71.72 71.72 73.17 73.26 73.02 75.02

Table 9: Comparison to the generic 80 prompts in the CLIP model

A.10 GENERALIZABILITY ACROSS DIFFERENT CLIP VARIANTS AND OTHER VLMS

We conducted extensive experiments with various CLIP models and other VLMs, as detailed in
Table 11. Our method’s consistent performance improvement across different architectures, includ-
ing ViT-B/16, ViT-B/32, ViT-L/16, ViT-L/16@336, LAION’s CLIP replication (Schuhmann et al.,
2022), and the BLIP model (Li et al., 2022), attests to its robustness. These results underscore our
method’s adaptability to different model architectures and training datasets. This is particularly sig-
nificant given that each of these variants and models has unique characteristics and was trained on
diverse datasets.

A.11 PROMPT QUALITY IMPACT

The quality of prompts is a critical factor in our experiments, as they directly influence the model’s
ability to accurately interpret and classify images based on textual descriptions.
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Models Set CLIP CLIP-80 APPLe* APPLe

ViT-B/16
Base 72.43 73.56 74.62 78.17
New 68.14 69.97 71.94 72.12
HM 70.22 71.72 73.26 75.02

ViT-B/32
Base 67.43 67.52 69.40 72.66
New 64.04 65.84 67.78 67.83
HM 65.69 66.67 68.58 70.16

ViT-L/14
Base 79.20 79.96 81.03 83.51
New 74.02 76.43 78.06 78.13
HM 76.52 78.16 79.52 80.73

ViT-L/14@336
Base 80.25 81.04 82.00 84.26
New 75.50 77.60 79.08 79.15
HM 76.52 78.16 80.51 81.63

LAION ViT-B-32
Base 70.01 70.07 70.53 73.45
New 69.06 69.66 70.13 70.22
HM 69.53 69.86 70.33 71.80

BLIP ViT-B
Base 43.63 50.10 54.40 67.56
New 48.42 59.16 63.38 66.28
HM 45.90 54.25 58.55 66.91

Table 10: Generalizability across different CLIP variants and other VLMs

In our experiments, we observed that the performance with prompts generated by GPT-3 is relatively
consistent with those generated by GPT-4. This could be attributed to the fact that generating cat-
egory descriptions for our tasks may not require advanced reasoning capabilities, a domain where
GPT-4 has more significant improvements over GPT-3. Hence, GPT-3’s capacity appears to be suf-
ficient for this specific task.

Regarding the column labeled ’mixed1’ in our table, it represents a mix of prompts generated by both
GPT-3 and GPT-4. We included this to examine the impact of using a heterogeneous set of prompts
on model performance. The results indicate that there is not a significant deviation in performance
when using mixed-quality prompts compared to those generated solely by GPT-3 or GPT-4.

We acknowledge the limitations in our current testing due to the time constraints of the rebuttal
period. In the next version of our paper, we plan to conduct more comprehensive testing across
all 11 datasets to demonstrate the consistency of performance regardless of the prompt generation
source. This will provide a more complete picture of how different qualities of prompts impact the
overall effectiveness of our model.

Datasets Set GPT-3 GPT-4 mixed1

ViT-B/16
Base 82.41 83.10 81.95
New 69.57 70.41 70.72
HM 75.45 76.23 75.92

ViT-B/16
Base 95.64 95.43 95.69
New 98.04 97.93 98.21
HM 96.83 96.66 96.93

ViT-B/16
Base 44.66 45.14 45.20
New 43.13 39.41 41.81
HM 43.88 42.08 43.44

Table 11: Prompt Quality Impact

A.12 PROTOTYPE CALIBRATION STRATEGIES

We have explored alternative balancing methods, including the Boltzmann operator and logsumexp.
We conducted additional experiments on ImageNet using these methods and present the results in the
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Table 13. We test different Boltzmann temperatures (T=20, 10, 5) to understand their impact on per-
formance. Our findings show that the mean/max balancing method outperforms both the Boltzmann
operator and logsumexp. This superiority may be attributed to the specific way mean/max balancing
integrates information from all prototypes while emphasizing the most relevant ones, which seems
particularly effective for our model and dataset.

Regarding the Boltzmann operator, we observed that varying the temperature has a noticeable impact
on performance. Lower temperatures (T=5) led to results closer to our method, suggesting that a
tighter focus on the most relevant prototypes can be beneficial. However, none of the temperatures
tested could match the performance achieved by our mean/max balancing. The performance with
logsumexp, especially in the Base class, was notably lower. This could be due to the mathematical
properties of logsumexp, which might lead to a less effective balance between prototype relevance
and diversity in our specific application.

These experiments reinforce the robustness and effectiveness of our chosen mean/max balancing
method. It demonstrates that our approach is well-suited for handling the classification challenges
in our model, outperforming other common balancing strategies.

Methods Mean/Max Balancing Boltzmann T=20 T = 10 T = 5 Logsumexp

Base 78.17 76.96 77.35 77.30 70.48
New 72.12 71.96 71.96 72.07 71.64
HM 75.02 74.27 74.56 74.59 73.73

Table 12: Prototype Calibration Strategies

A.13 BEST PROTOTYPE SELECTION

We experiment with training attention weights only and select the best prototype with the highest
weights. We conduct this experiment on ImageNet and compare the performance with CLIP’s hand-
designed prompts and our APPLe* model.

As shown in Table 13, the performance using the best prototype selected by the model is inferior
to that of the hand-designed prompts used in CLIP. This outcome suggests that relying on a single
prototype, even if it’s the ’best’ as determined by the model, may not effectively capture the diverse
and complex nature of objects in images. Our results indicate that a single prototype is often biased
towards a specific representation of an object, which limits its generalizability.

For example, as highlighted in Figure 1 of our paper, each prompt for an apple pie depicts a particular
state or aspect of the pie, such as a round pie or a slice on a plate. While each prompt is accurate in
its description, none can encompass all the variations of apple pies alone. This specificity is where
the limitation lies. It becomes challenging for a single, even well-crafted prototype to represent the
breadth of variations that an object can have in the real world.

Methods CLIP CLIP-closest prompt APPLe*

Base 72.43 71.84 74.62
New 68.14 67.90 71.94
HM 70.22 69.81 73.26

Table 13: Performance Comparison with the Best Prototypes.

A.14 HYPER-PARAMETERS ANALYSIS

We report the effects of varying the loss coefficients λ1 and λ2 for ℓmax and ℓdec on ImageNet.
As shown in Fig. 10, both hyper-parameters achieve the best performance at 3.
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Figure 10: Hyper-parameter sensitivity

A.15 PROMPTS

We randomly select some prompt samples from 11 datasets to present in Table 14. We mainly use
the following five prompts for GPT-3 to generate the prototypes. c is the category name and length
is the expected length of the generated prompts.

1. t1 = f”Describe a photo of c) in one short sentence, no more than length words.”
2. t2 = f”How does a c look like? Answer in no more than length words.”
3. t3 = f”Summarize visual features of c in no more than length words.”
4. t4 = f”Tell me what c looks like in a short sentence, less than length words.”
5. t5 = f”Use less than length words to outline the look of c.”
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Table 14: Prompt Samples of 11 Datasets

Dataset Prompt Samples

ImageNet

There are many different types of military uniforms, but they all share some com-
mon features.
The image is of a red and white mitten with a green background.
A graduation cap typically has a square or pyramid shape and is made of stiff paper
or fabric.

Caltech-101

A motorbike with two wheels and a seat.
The image shows an airplane flying through the sky.
You can identify a ant by its long, segmented body and its long, bent antennae.

Oxford Pets

The Russian Blue has a sleek and elegant coat of bluish-gray fur with bright green
eyes.
The Scottish Terrier is a small, sturdy breed with a distinctive wiry coat and a
distinctive beard.
A hairless cat breed with wrinkled skin, large ears, and a slim muscular body.

Stanford Cars

The 2007 Dodge Dakota Club Cab is a four-door truck with aRaised Crew Cab and
Extended Cab.
A 1993 Geo Metro Convertible would look like a small, boxy car with a convertible
top.
The image is of a silver 2012 Dodge Charger Sedan.

Oxford Flowers

Cyclamen have heart-shaped leaves with vibrant flowers that come in various
shades of pink, red, white, and purple.
Frangipani is a stunning tropical flower with vibrant, star-shaped petals and a cap-
tivatingly sweet fragrance.
The sword lily features tall, slender stalks topped with vibrant, sword-shaped
blooms in various hues.

Food101

A baklava is a layered pastry made with nuts, honey, and phyllo dough.
The image is of a beet salad with goat cheese, arugula, and pistachios.
A bread pudding generally has a bread base with eggs, milk, and sugar added.

FGVC Aircraft

A 737-300 aircraft operated by SouthWest Airlines takes off from the Ronald Rea-
gan Washington National Airport.
The image is of an aircraft 737-400 with the engines running. The plane is on the
runway ready for take off.
Bustling with activity, this Gulfstream IV is parked on the tarmac, with ground
crew attending to it.

SUN397

This image is of the Abbey of Saint-Denis, a large abbey located in the northern
suburbs of Paris, France.
An image of an amusement arcade shows a large room with brightly lit machines
and people playing games.
A ticket booth and information desk are visible in this shot of the indoor seating
area of a movie theater.

Describable Textures

A bubbly texture can look like small mountains with peaks that are round and
smooth.
A chequered texture is a texture that has a repeating pattern of light and dark
squares.
The crystalline texture is characterized by having a distinct, three-dimensional crys-
tal structure.

EuroSAT

A centered satellite image of a River displays areas of human settlement protected
by levees or embankments.
A centered satellite image of Residential Buildings displays clusters of chimneys
or rooftop vents.
A centered satellite image of Forest displays clear linear patterns, indicating log-
ging roads or forest trails.

UCF101

A person is applying lipstick in the image.
A person doing Baby Crawling looks like a human infant crawling on all fours.
The person is doing a handstand on the balance beam.
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