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ABSTRACT

Breast cancer bone metastasis (BCBM) affects women’s health globally, calling
for the development of effective diagnosis and prognosis solutions. While deep
learning has exhibited impressive capacities across various healthcare domains, its
applicability in BCBM diseases is consistently hindered by the lack of an open,
large-scale, deep learning-ready dataset. As such, we introduce the Bone Metastasis
(BoneMet) dataset, the first large-scale, publicly available, high-resolution medical
resource, which is derived from a well-accepted murine BCBM model. The unique
advantage of BoneMet over existing human datasets is repeated sequential scans
per subject over the entire disease development phases. The dataset consists of
over 67 terabytes of multi-modal medical data, including 2D X-ray images, 3D
CT scans, and detailed biological data (e.g., medical records and bone quantitative
analysis), collected from more than five hundreds mice spanning from 2019 to
2024. Our BoneMet dataset is well-organized into six components, i.e., Rotation-
X-Ray, Recon-CT, Seg-CT, Regist-CT, RoI-CT, and MiceMediRec. We further
show that BoneMet can be readily adopted to build versatile, large-scale Al models
for managing BCBM diseases in terms of diagnosis using 2D or 3D images, prog-
nosis of bone deterioration, and sparse-angle 3D reconstruction for safe long-term
disease monitoring. Our preliminary results demonstrate that BoneMet has the
potentials to jump-start the development and fine-tuning of Al-driven solutions
prior to their applications to human patients. To facilitate its easy access and
wide dissemination, we have created the BoneMet package, providing three APIs
that enable researchers to (i) flexibly process and download the BoneMet data
filtered by specific time frames; and (ii) develop and train large-scale Al models for
precise BCBM diagnosis and prognosis. The BoneMet dataset is officially avail-
able on Hugging Face Datasets at ht tps://huggingface.co/datasets/
BoneMet /BoneMet. The BoneMet package is available on the Python Pack-
age Index (PyPI) at https://pypi.org/project/BoneMet. Code and
tutorials are available at https://github.com/Tiankuo528/BoneMet.

1 INTRODUCTION

Breast cancer stands as one of the most prevalent non-skin cancers affecting women globally (6).
Although the survival rate for breast cancer patients has been greatly improved due to the adoption of
cancer screening, early diagnosis, and more effective cancer treatments, the metastasis of breast cancer
to other organs including bone dramatically reduces the five-year survival rate and worsens the patient
suffering including severe pain, impaired mobility, and elevated risk of fatal fractures (11). Once
invading the bone, breast cancers activate bone resorption, which in turn drives cancer growth. The
“vicious cycle” between tumor and bone leads to the rapid decline of bone structural integrity (12). The
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conventional approaches for managing Breast cancer bone metastasis (BCBM) diseases utilize various
medical imaging modalities including i) 2D X-ray images (13; 30), ii) 3D computed tomography
(CT) scans (32; 3), and iii) combined localized metabolic imaging and CT scans (8; 46). However,
these imaging based diagnosis and prognosis approaches suffer from several limitations, such as low
sensitivity to small lesions in early-stage bone metastases (10), health risks of CT due to the exposure
to high ionizing radiation (5), and interpretation variability limited by radiologist’s experience and
expertise (33). The lack of sensitivity and specificity of the imaging tools and algorithms leads to the
current clinical guidelines against active monitoring of BCBM because the harms of false positive
diagnosis and radiation from longitudinal imaging outweigh potential benefits (15). This poses a
classic catch-22 dilemma. With clinicians being hesitant to image, we cannot feed and train Al
models for better diagnosis. Conversely, without effective early detection tools, we miss the critical
window of treating BCBM and fail to improve patient outcomes in a meaningful way.

Deep learning-based methods have shown significant improvements in identifying subtle patterns
and features that are likely missed by human eyes, in particularly when analyzing large volumes
of longitudinal data, reducing the scanning duration (radiation exposure) with efficient 3D CT
reconstruction, and providing consistent and objective analysis and more comprehensive insights
into patient health (24; 23; 44; 36). For BCBM diagnosis and prognosis applications, previous
studies (29; 47; 18) have attempted to leverage deep learning models, while their performances
appear to be hindered with low resolution images, inadequate diagnosis/prognosis labels (17), limited
dataset sizes (1; 48; 14), and lack of diverse modalities (20). Hence, although the utilization of Al
models to manage BCBM diseases offers a promising direction, the scarcity of large-scale, high-
quality, relevant datasets—containing high-resolution X-ray and CT images along with detailed
medical records—greatly impedes the development and application of large-scale Al models.

To further unleash the power of deep learning in BCBM diagnosis and prognosis, we first attack the
major obstacle—the scarcity of high-resolution image datasets of early-stage BCBM with sufficient
diagnostic and prognostic labeling—with our open-sourced large-scale BoneMet datasets. We
leverage the large preclinical images acquired over the past five years (i.e., 2019-2024) from well-
established mouse BCBM models (39). Mouse models, despite limitations, are valuable tools
in elucidating disease mechanisms, identifying diagnostic biomarkers, and testing treatments (9).
The small-sized mouse skeleton allows quick three-dimensional CT scans (< 4 min per scan) at
high resolution (7-10 micron per pixel) and low radiation exposure (<0.4 Gy) for multiple time
points over the span of breast cancer metastasis (39). Additional benefits include 1) the complete
control/documentation of the age of the experimental mice, the bone site of cancer cell metastasis,
and the type and number of breast cancer cells being introduced in each mouse, ii) the application
of various treatments to mimic human patient conditions such as chemo and radiation therapy, as
well as exercise regimen (40). The rigorous experimental design contains age-matched non-tumor
and placebo-treated controls, and thus the acquired image dataset reflects the complexity of human
breast cancer progression with superior image quality and labeling over available patient data. We
further demonstrate the utility of our BoneMet datasets in supporting the development of imaging
biomarkers and Al applications, such as multimodal large vision models (MLVM) with temporal and
spatial alignment, for the early diagnosis and prognosis of breast cancer bone metastasis as well as
improved predictive accuracy of the models used in clinical settings.

Specifically, our dataset is collected from more than five hundreds mice spanning 5 years from
2019 to 2024, with its total size over 67 terabytes. Each mouse undergoes 4 to 5 weekly sequential
skeletal scans, including scans of the tibiae, distal femurs and some vertebrae. Each session produces
260 high-resolution, multi-angle 2D X-ray images at 0.8° intervals. From these X-ray images, 3D
reconstructed CT images, segmented and registered CT scans, and Rol-cropped CT images of the
tibiae are obtained using processing tools such as commercial software and our developed APIs. In
addition, detailed biological data is recorded for each mouse, capturing critical medical details such
as age, body weight, sex, metastatic tumor growth status, bone structural and mechanical properties,
and other relevant data at each time point. To facilitate its effective use, this dataset is well-organized
into six key components: Rotational X-Ray Imagery (Rotation-X-Ray), Reconstructed CT Imagery
(Recon-CT), Segmented CT Imagery (Seg-CT), Registered CT Imagery (Regist-CT), Region of
Interest CT Imagery (RoI-CT), and Mice Medical Records (MiceMediRec). Figure 1 provides
an overview of our BoneMet dataset, showcasing examples of its six components, the processing
tools used to acquire them, and the detailed data collection procedures. Besides, we have developed
the BoneMet package, which includes three types of APIs for CT image segmentation, CT image
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Figure 1: The data collection, processing tools, and six components for our BoneMet dataset.

registration, and Rol-based CT image cropping, respectively. These tools have been released on
the Python Package Index (PyPI), aimed at assisting researchers and practitioners by providing
efficient, standardized methods for data processing. These APIs enhance reproducibility, streamline
the processing of large datasets, offer user-friendly interfaces, and ensure consistent data handling.

To the best of our knowledge, this dataset is the first of its kind, offering large-scale, high-resolution,
and multi-modal medical data specifically targeting the management of BCBM diseases. It can
support both supervised BCBM diagnosis and prognosis, thanks to its ground-truth labels, and
self-supervised pre-training, due to its vast amount of data samples. Our experimental results validate
the comprehensive applicability of our BoneMet dataset.

2 OUR BONEMET DATASET

Our BoneMet dataset is an open, large-scale, and multi-modal resource specifically designed for
BCBM diseases. It offers high-resolution multi-modal medical data, including 2D X-ray images,
3D CT scans, and medical records and quantitative analysis. This section details the collection and
preparation process of BoneMet dataset, its contents, and potential applications.

2.1 DATA COLLECTION AND PREPARATION

This dataset spans five years, from 2019 to 2024, and includes data over 500 either C57BL/6J
or Balb/C mice with the age varying from young (8 weeks) to aged (>70 weeks) mice. These
mice were divided randomly assigned into non-tumor and tumor groups, which further received
individual or combined cancer interventions such as exercise, radiation therapy, chemotherapy and
other experimental drugs (39). Breast cancer cells (1000-20,000 Py8119 cells or 3000-5000 4T1
cells) were directly injected into the proximal end of the mouse tibia of the tumor groups. Some mice
received tumor injections on both tibiae, while some mice received injection on one tibia. The tumor
and non-tumor carrying mice undergoing interventions or placebo treatments were then longitudinally
monitored by microCT scans over a period of 3-5 weeks. The overview of data collection and
preparation procedures is illustrated in Figure 1, and the details are presented as below, which produce
the BoneMet dataset into six well-organized components.

First, the Rotational X-Ray Imagery (Rotation-X-Ray) is captured weekly by the SkyScan® 1276
scanner (Bruker, Kontich, Belgium), starting from the beginning of the breast tumor inoculation to
the end of the sacrifice of the mice for 3 to 5 weeks. The camera revolved around the anesthetized
animal’s body from the anterior (front view) to the lateral and posterior (back view) aspects of the
hind limbs with a step of 0.8 degrees, with 260 X-ray projections for each scan and covering a total
rotation of 208°. The Rotation-X-Ray dataset collected in each week are organized for temporal
alignment. The total scanning process for each mouse takes around 10 minutes.
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Second, these 260 X-ray images are taken from variable angles are reconstructed by NRecon® with a
voxel size of 7 to 10.6 um as the Reconstructed CT Imagery (Recon-CT). The 3D reconstructed
CT is acquired based on the traditional filtered backprojection (FBP), which uses a 1D filter on the
projection data before backprojecting (2D or 3D) the data onto the image space. Then, the 3D bone
reconstructed CT is optimized to get the high quality reconstructed CT images. The reconstruction
process takes over 30 minutes per mouse.

Third, among the Recon-CT imagery, both left and right tibiae are segmented from the knee by either
our Seg-API or Dataviewer® software as the Segmented CT Imagery (Seg-CT). A global threshold
value (75/255) is applied and the processed images were found to agree well with gray-scaled images.
The segmentation of both left and right tibiae takes around 10 to 15 minutes per mouse.

Fourth, after segmentation, each tibia is registered to their reference (vertically aligned tibia) by our
Regist-API or Dataviewer® software as the Registered CT Imagery (Regist-CT). For the first scan
(week 0) of the time sequence, each segmented tibia is aligned to a reference tibia with its long
axis vertical and its anterior-posterior and medial-lateral axes orthogonally positioned. Subsequent
scans of the segmented tibia captured at later time points are aligned to their baseline (week 0). The
registration process of each tibia to their references takes about 15 minutes.

Fifth, the region of interest of tibiae (proximal end where the metastatic tumors are located) overlaid
to their baseline is selected by our Rol-API and the fibular are cropped manually by CTAn® as the
Region of Interest CT Imagery (RolI-CT). The overlapped composite RoI-CT images are generated
with different pixel values assigned in each pixel based on various criterion: the pixel with bone
(above threshold value of 75) both in baseline and sequential CTs are assigned to the value of 180
(light gray), the non-bone pixel (below threshold) at week 0 later became bone (above threshold) is
assigned to 240 (white), the bone pixels (above threshold) at week 0 later became non-bone (below
threshold) is set to 60 (dark gray), the pixel without bone in both time points were given the value
to 0 (black). After the generation of CT composite, the Rol section is selected with the proximal
tibia-fibula junction as the landmark, and the fibula was manually cropped by CTAn®. This process
takes approximately 20 minutes for each registered tibia.

Sixth, the quantitative analysis of the Rol-CT imagery by CTAn®, Abaqus®, and RSA-G2 Solids
Analyzer®, and the Pre-Op (Pre-Operation) and Post-Op (Post-Operation) medical records of the
mice with bone metastasis are combined as the Mice Medical Records (MiceMediRec). The
imaging diagnosis parameters include records of tumor growth status (if available), bone structural
properties, and mechanical properties. Tumor burden and growth are quantified via IVIS imaging of
luminescence-tagged tumor cells, with the average radiant efficiency measured from the tibia reported.
Bone structural properties, such as bone lesion occurrence, total bone volume changes, cortical
bone parameters (resorption, area, and thickness), and trabecular bone parameters (bone volume
fraction, number, thickness, and spacing), as well as bone mechanical properties (polar moment of
inertia (pMOI)) are measured by CTAn® based on the CT in the RoI-CT dataset. For some samples,
additional mechanical properties such as bone stiffness, yield strength, ultimate strength, and work to
fracture are simulated or measured by finite element analysis or 3-point bending tests. This process
takes over 30 minutes for each mouse.

Due to the page limit, further details on data collection and preparation processes, including breast
tumor tibial inoculation and medical image processing, are provided in Section A of the supplementary
materials.

2.2 DETAILS OF BONEMET DATASET

The total size of our BoneMet dataset is 67.87 TB, which includes six components, detailed as below.
The former five components are all visual data, stored in PNG format, while the last one is numerical
data, stored in CSV format.

Rotation-X-Ray. The Rotational X-Ray Imagery consists of 651,300 X-ray images of subjects
with tumors and 676,000 X-ray images of subjects without tumors. Each image has a resolution of
4,032x4,032x1 pixels and a spatial resolution of 0.8°, captured at the hindlimb. This dataset has been
aligned both spatially and temporally with the temporal resolution of 1 week, and it offers 2D X-ray
images taken from multiple angles, from anterior (front) to lateral (side) and posterior (back) views,
providing a comprehensive examination of the subject. The total size of this imagery is 20.93 TB.
The left part of Figure 2 shows examples of the 2D X-ray images.
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Recon-CT. The Recon-CT dataset comprises 3D CT scans reconstructed from Rotation X-Ray
imagery and therefore is also temporally aligned with the temporal resolution of 1 week. The
reconstruction process is illustrated in the right part of Figure 2. These slices capture cross-sectional
views of the tibia, femur, and spine, with the dimensions varying according to the specific regions of
interest (Rol) identified during the micro-CT reconstruction process. This component includes 2,505
CT scans of subjects with tumors and 2,600 CT scans of subjects without tumors. Each CT scan is
composed of 2,685 2D slices with an image resolution of approximately 2,588x2,428x1 pixels, with
an example shown in the left image of Figure 3. The total size of this dataset is 45.23 TB.
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Figure 2: Examples of our Rotation-X-Ray and Recon-CT imagery. Left: 2D X-ray images are taken
from 260 variable angles with 0.8° intervals of the hindlimb of a mouse; and Right: The paired 3D
CT scan is reconstructed from these 2D X-ray images.

Seg-CT. These 3D CTs of tibiae are isolated from the 3D CT scans of hindlimb in the Recon-CT
imagery, as illustrated on the right side of Figure 3. This component includes 3,005 segmented CT
scans of subjects with tumors and 7,205 segmented CT scans of subjects without tumors. Each

scan is composed of approximately 1,700+200 2D slices with an image resolution of approximately
700£50x900+80x 1 pixels. The size of this dataset is 1.53 TB.
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Figure 3: Examples of 3D CT scans from the Recon-CT and the Seg-CT imagery. Left: 3D CT scans
of hindlimbs in the Recon-CT imagery; and Right: 3D CT scans of segmented tibiae in the Seg-CT
imagery. Notably, 3D CT scans are composed of 2D cross-sectional slices.

Regist-CT. This imagery includes registered 3D CT scans of tibiae taken at various time points and
from different animals, aligned to a reference, as shown in Figure 1 at Section A of supplementary
materials. This component includes 3,005 registered CT scans of subjects with tumors and 7,205
registered CT scans of subjects without tumors. Each scan is composed of 1,538 2D slices with an
image resolution of 509x539x1 pixels. The size of this dataset is 0.18 TB.

RoI-CT. This imagery focuses on the proximal end sections of the registered tibiae, where the effects
of metastasis are most pronounced, as shown in Figure 4. The Rol-CT imagery comprises 300 2D
slices below the proximal tibia-fibula junction, with overlaid registered CT scans aligned to their
baseline (week 0). In each 2D slice, light gray represents the reserved bone in the sequential scans,
white indicates bone formation where non-bone pixels at week O later became bone, and dark gray
signifies bone resorption where bone pixels at week 0 later became non-bone. This component
includes 3,005 CT scans of the proximal end sections of registered tibiae with tumors and 7,205 CT

scans of that without tumors. Each 2D slice has the image resolution of 509x539x1 pixels. The size
of this dataset is 8.00 GB.
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Figure 4: Examples of 3D CT scans from the RoI-CT imagery, including the proximal end of tibiae
without (Left) and with (Right) metastatic breast tumors.

MiceMediRec. The Mice Medical Records includes detailed records for individual mice regarding
animal ID, strain, date of birth, experiment data, tumor inoculation (left, right, or both tibiae),
treatment type, treatment regimen (dose, frequency or duration), scan time and frequency. If available,
quantitative analyses of bone from scans, FE simulations, IVIS readouts, and mechanical testing are
also included to provide a comprehensive overview of the animals, their bones, and their disease
conditions. More details can be found in Supplementary Materials, Section A, Table 7 . The size of
this dataset is 9.44 MB.

Table 1 lists more detailed and comprehensive information for our BoneMet dataset and its six
components.

Table 1: Overview of our BoneMet dataset details.

Number of Images/Records

(Positive: mouse receiving tumor injection; ’
! Image Anatomical ~ Temporal

Datasets Size Negative: normal non-tumor mice. Data Format : : Data Content
° . Size Region Resolution
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Medical record and
sitive: quantitative analysis
MiceMediRec 9.4 MB Positive: 501 Text NA NA 1 week results of 3D CT
Negative: 520

images, simulation and
mechanical testing

2.3 POTENTIAL APPLICATIONS

There are many applications can be supported by BoneMet database. Due to page limits, we only
validate some critical applications in Section 3, including i) 2D spatial-temporal X-ray imagery-based
BCBM diagnosis; ii) 3D CT imagery-based BCBM diagnosis; and iii) 3D multi-modal RoI-CT
imagery-based BCBM prognosis; and iv) Sparse-angle 3D CT reconstruction with one real 2D
X-ray images. Besides, more supportive applications, such as 3D CT auto-segmentation, generalist
biomedical Al diagnosis, among others, are listed in Supplementary Materials, Section A, Table 6 to
exhibit its broader applicability.

3 EXPERIMENTS AND RESULTS

We conduct experiments on our BoneMet dataset via developing various deep learning solutions to
exhibit its applicability and efficiency to manage BCBM disease. Currently, the positive and negative
labels are assigned at the animal level, rather than individual time points and individual X-ray images.
A positive label of a mouse indicates that a metastatic bone lesion occurs in the subject between week
0 and week 5. There are animal-to-animal variations in the times of bone lesion initiated and the
speed of lesion growth.

3.1 HYPERPARAMETERS AND DATASET SPLITTING

The hyperparameters used in our Breast cancer bone metastasis (BCBM) diagnosis experiments
follow the common practice of supervised ViT training. The key hyperparameters are detailed in
Table 2.
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For the experiments presented in our manuscript, we employ a train/test split with a ratio of 8:2.
Specifically, 80% of the mice were used for training the model, and the remaining 20% were
reserved for testing. Within the training dataset, we implemented a 5-fold cross-validation strategy.
This process is repeated five times, with each subset serv-

ing as the validation set once, so the validation data is never Table 2: Training Configuration
seen by the model during the training phases, ensuring that Config Value
there is no data leakage. In our trials, the data split is con- Optimizer AdamW

. . . Base learning rate le-3
ducted at the mice level, so the entire sets of images from Weight decay 0.05
individual mice were allocated either to the training or test- Optimizer momentum B1,B2 = 0.9,0.999
. .. Learning rate schedule Cosine decay
ing datasets. This is to ensure no overlap of data from the Warmup epochs s
same mice between the training and testing datasets, pre- Training epochs 100

Augmentation RandAug (9, 0.5)

venting any potential data leakage. All our experiments are
conducted on a high-performance workstation equipped
with an NVIDIA RTX A6000 GPU, which has 48GB of VRAM.

3.2 APPLICABILITY OF OUR ROTATION-X-RAY DATASET FOR BCBM DIAGNOSIS

We conduct experiments to demonstrate the applicability of our Rotation-X-Ray dataset to manage
BCBM disease. Here, we employ two Vision Transformers (ViT) variants for the diagnosis of BCBM
using Rotation-X-Ray imagery: a simple ViT variant Swin-Base (25), and a spatial-temporal ViT
variant MMST-ViT (21). Notably, the 2D X-ray images within the Rotation-X-Ray imagery have
been carefully spatially and temporally aligned. For clarity, we denote MMST-VIiT as ViT (w/ STA),
indicating its ability to leverage spatial-temporal alignment (STA), and Swin-Base, as ViT (w/o
STA), indicating not utilizing STA. Table 3 presents the performance outcomes measured by the
metrics of Precision, Recall, F1-Score, and Accuracy. We have two observations. First, both ViT
(w/o STA) and ViT (w/ STA) can achieve decent diagnosis performance results, with the overall
accuracies of 79.1% and 89.0%, respectively. This suggests that our dataset is adaptable to various
ViT variants, from simple to more complex architectures, for effective BCBM diagnosis. Second,
we observe a significant training-test accuracy gap of 20.4% with ViT (w/o STA), indicating a
pronounced overfitting issue inherent to the ViT architecture. In contrast, the incorporation of STA in
the Rotation-X-Ray imagery substantially alleviates this issue, as demonstrated by the notably smaller
training-test accuracy gap of 6.0% achieved by ViT (w/ STA). This highlights the effectiveness of
STA in mitigating overfitting and enhancing model generalizability on our Rotation-X-Ray dataset.

Table 3: The BCBM diagnosis using ViT with and without STA on the Rotation-X-Ray imagery

Methods Training Test
Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy
ViT (w/o STA) 99.6 99.7 99.7 99.5 92.3 80.5 86.0 79.1
ViT (w/ STA) 95.4 96.9 96.1 95.0 92.1 90.6 91.3 89.0

3.3 APPLICABILITY OF 3D CT SCANS FOR BCBM DIAGNOSIS ACROSS VARIOUS MODEL
ARCHITECTURES

Here, we conduct experiments by utilizing 3D CT scans in the Regist-CT imagery for BCBM diagno-
sis. We utilize two CNN-based model architectures—BigTransfer (BiT-M) (16) and EfficientNetV2-
M (35)—along with one ViT-based model architecture, i.e., Swin-B, as the backbone networks.
These models extract slice-level features from each 2D slice within the CT volume and subsequently
aggregate these features into volume-level representations using a max-pooling layer.

Figures 5a, 5b, 5c, and 5d present the performance results. We observe BiT, EfficientNetV2, and
Swin-B exhibit commendable performance, achieving overall accuracies of 81.0%, 85.0%, and 92.0%,
respectively. These results validate that our BoneMet dataset is compatible with both CNN-based and
ViT-based model architectures, demonstrating its broad applicability. Furthermore, the Swin model
consistently outperforms its two CNN-based counterparts. For instance, in terms of the F1-Score,
it exceeds BiT and EfficientNetV2 by 9.3% and 5.9%, respectively. This superior performance is
attributed to the ViT-based model’s use of Multi-head Self-Attention (MSA) (38), which enhances its
ability to effectively aggregate slice-level features into volume-level representations.
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Figure 5: The diagnosis of BCBM using 3D CT scans from the Regist-CT imagery.

3.4 APPLICABILITY OF ROI-CT IMAGERY AND MICEMEDIREC DATASETS FOR
MULTI-MODAL PROGNOSTIC ASSESSMENT OF BONE MECHANICAL PROPERTIES

Managing pathological fractures associated with bone metastases is crucial for preserving a patient’s
mobility and quality of life. In this context, we explore the applicability of our RoI-CT dataset to
this critical scenario by assessing the mechanical competence of the bone at a future time point. We
formulate this task as a multi-modal prognostic assessment of bone mechanical properties. First,
the 3D CT scans in the Rol-CT imagery are used to train generative models to produce 3D CT
scans of future frames, reflecting the progression of bone lesions. Next, the biological data in the
MiceMediRec component is utilized to simulate the mechanical behaviors of axial compression of
the proximal end of tibiae with metastatic osteolysis.

Three generative models are taken into account: 3D Generative Adversarial Networks (3D-GAN) (2),
Temporal Variational Autoencoders (T-VAE) (43), and Spatial-Temporal Variational Autoencoders
(ST-VAE), for generating future 3D CT scans. The quality of these generated scans is measured using
PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity), and LPIPS (Learned Perceptual
Image Patch Similarity) metrics. Note that a higher PSNR (and SSIM) value or a lower LPIPS value
indicates better generation quality. Table 4 presents the quantitative results. We observe that all three
methods achieve high-quality future CT generations. For instance, the 3D-GAN, T-VAE, and ST-VAE
methods achieve SSIM values of 0.767, 0.817, and 0.860, respectively.

Table 4: Evaluations of the quality of 3D CT prediction using three metrics

Methods PSNR (1) SSIM (1) LPIPS (1)

3D-GAN 21.9 0.767 0.098
T-VAE 234 0.817 0.078
ST-VAE 355 0.860 0.041
CT Generation FE simulation Force vs Displacement
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‘ ' 12
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Figure 6: Evaluations of prognostic assessment of bone mechanical properties: (a) comparisons
between ST-VAE-generated 3D CT scan and its ground truth, along with the corresponding finite
element (FE) analysis of axial compression of proximal tibiae; and (b) comparisons between the
predicted and ground truth reaction force values at various displacement levels.

The visualization and quantitative results obtained using the ST-VAE model shows the quality of
3D CT prognosis, as exhibited in Figure 6. In Figure 6a, the predicted 3D rendering volume is
comparable to the ground truth, and the finite element (FE) simulations of axial compression on
meshes constructed from the predicted bone structures closely resemble those constructed from the
ground truth. Furthermore, Figure 6b illustrates the curves of the ground truth and predicted reaction
force values at various displacement levels. It is evident that the predicted reaction force curve closely
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matches the ground truth, achieving an impressive R? value of 0.956. These results underscore the
significance of our BoneMet data in the multi-modal prognostic assessment of bone mechanical
properties with metastatic bone lesions.

3.5 APPLICABILITY OF SPARSE-ANGLE CT RECONSTRUCTION

Conventional CT reconstruction methods require 2D X-ray images from multiple angles. For example,
using NRecon® software necessitates at least 260 X-ray images from different angles for accurate
reconstruction. This leads to prolonged exposure to ionizing radiation during the process of capturing
multiple 2D X-ray images, incurring severe adverse effects on the patient’s health. Here, we explore
the applicability of our Rotation-X-Ray dataset to sparse-angle CT reconstruction, which can be
validated by paired CTs in Recon-CT dataset. This task can significantly reduce radiation exposure
by reconstructing 3D CT scans with continuous viewpoint rotations from a single 2D X-ray image.

We have employed two NeRF-based methods: PixelNeRF (45) and MedNeRF (4), to reconstruct
3D CT scans. The reconstruction quality is measured by the PSNR (Peak Signal-to-Noise Ratio),
SSIM (Structural Similarity Index), FID (Fréchet Inception Distance), and KID (Kernel Inception
Distance) metrics. Notably, higher PSNR and SSIM values, along with lower FID and KID values,
indicate better reconstruction quality. Table 5 presents the quantitative results of reconstructing 3D
CT scans. It is observed that our dataset can support both NeRF-based methods for sparse-angle
CT reconstruction. For example, the MedNeRF can achieve superb reconstruction quality, with
a high PSNR (and SSIM) value of 30.2 (and 0.810) and a low FID (and KID) value of 91.5 (and
0.092). Moreover, we use the MedNeRF method to generate a complete set of CT projections within
a full vertical rotation from a given single-view X-ray of a CT slice, with results shown in Figure 7.
Despite the challenge of this task, the MedNeRF method produces high-quality reconstructions,
demonstrating the applicability of our BoneMet dataset for sparse-angle CT reconstruction.

Table 5: Quantitative evaluations of sparse-angle CT reconstruction

Methods PSNR (1) SSIM({) FID() KID()

PixeINeRF 20.2 0.740 155.2 0.128
MedNeRF 30.2 0.810 91.5 0.092

Given X-ray

Pred CT

-
FEXY SR ST

N 4
- ! §
o

Figure 7: Illustration of sparse-angle 3D CT reconstruction from a 2D X-ray image by MedNeRF
method. The first row also presents the given 2D X-ray image and X-ray images at other angles for
reference. The second row shows the reconstructed 3D CT scans, while the third row displays the
ground-truth 3D CT scans from the Recon-CT imagery.

Ground Truth

We have also conducted additional experiments, including tibiae auto-segmentation, to validate the
significance and broad applicability of our Recon-CT and Seg-CT dataset, and generalist biomedical
Al diagnosis of metastatic breast tumor on bone, to demonstrate the applicability of our RoI-CT
and MiceMediRec dataset. The details of these experiments are deferred to Sections B of the
supplementary materials. Besides, the future potential applications of the BoneMet dataset are
discussed in Sections D of the supplementary materials.

4 THE BONEMET PACKAGE

In addition to our BoneMet dataset, we also develop the BoneMet package, including three types of
APIs: 1) CT Image Segmentation, 2) CT Image Registration, and 3) Rol-based CT Image Cropping),
at the Python Package Index(PyPI), for public release to facilitate our dataset’s ease access. The
details of three APIs and their usage examples are deferred to Section C of supplementary materials.

9
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5 CONCLUSIONS

This paper introduces the BoneMet dataset, the first large-scale meticulously curated collection of
well-organized CT and X-ray images in angles, positions and time points designed specifically for the
diagnosis and prognosis of BCBM disease. It includes high-resolution images that are well-organized
across spatial and temporal dimensions, allowing for an in-depth analysis of bone responses to tumor
progression and treatment. The integration of detailed imaging with medical metadata enhances the
utility of the BoneMet dataset, enabling the development and validation of advanced deep learning
models. This dataset is also invaluable for developing high-quality CT reconstruction techniques
from sparse X-ray data and for performing 3D segmentation. Our extensive experimental evaluations
confirm that the dataset is compatible with various deep learning approaches. Alongside the dataset,
we have developed the BoneMet Package to assist researchers and practitioners in automatic Breast
cancer bone metastasis medical images processing such as 3D CT images segmentation, registration
and region of interest (Rol) selection, as well as constructing their own deep learning models. While
the primary aim of the BoneMet dataset is to advance deep learning models in disease diagnosis,
management and medical image processing techniques, its potential applications extend across
medical imaging, oncology, and computational pathology. We believe that our BoneMet dataset
will be a significant valuable asset to the fields of deep learning, medical radiology, orthopedics
and oncology, spurring further interdisciplinary research at the intersection field of healthcare and
artificial intelligence.

6 BROADER IMPACTS

The ultimate goal of our project is to unleash the power of deep learning in BCBM diagnosis
and prognosis. In this study, we have attempted to attack the major obstacle—the scarcity of
high-resolution image datasets of early-stage BCBM with sufficient diagnostic and prognostic
labeling—with our open-sourced large-scale BoneMet datasets based on murine models. Utilizing
our datasets, we have demonstrated the feasibility of generating multi-angle x-ray images of tibiae
and 3D CT reconstructions from sparse-angle x-rays. These generative 3D reconstruction techniques
developed using our murine dataset could be refined and applied to human patient x-ray images which
are more commonly used for screening. We believe that this regenerative approach will address the
radiation exposure concerns and help develop human breast cancer bone metastasis datasets that cover
all disease stages, especially the early phases and include sequential and safe imaging of the patients.
We anticipate that the human datasets would open the door to build and validate foundation models
for human BCBM. The two tasks could potentially form a positive feedback loop: a high-quality
dataset drives the performance of Al learning of more accurate and predictive foundation models,
which in turn increases the efficacy of the generative 3D reconstruction algorithm, leading to further
successful expansion of the dataset.

We wish to engage Al scientists, biomedical investigators, clinicians, and policymakers in developing
more effective diagnosis, prognosis, and treatments of cancer bone metastasis. By publishing our
BoneMet dataset, we envision that more stakeholders can benefit from full access to the dataset, which
could be used to develop early diagnostic tools for breast cancer metastasis with improved accuracy
and sensitivity. The dataset and the insights it generates could play a crucial role in advancing Al
applications, such as large vision models and multimodal approaches with temporal and spatial
alignment, for the early diagnosis and prognosis of breast cancer bone metastasis, particularly in
enhancing the predictive accuracy of models used in clinical settings when the disease progression
is relatively slower. As we continue to refine and expand our dataset, we aim to provide a robust
resource for better understanding, detection, and treatment of bone metastases in human breast cancer,
and further support future innovations in deep learning studies and clinical practices.
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OUTLINE

This document provided supplementary materials to support our main paper. Section A provides
details of Breast cancer bone metastasis model creations and data collection processes. Section B
presents additional experimental settings and results. Section C lists three examples of API for CT
Image Segmentation, Registration and Rol-based CT Image Cropping, and section D talks about
future potential application of our BoneMet dataset.

A DETAILS OF DATASET AND DATA COLLECTION

In order to build such large-scale BoneMet dataset, the team has spent more than five years with
three to four graduate students assisted with over ten undergraduates and summer students. The
experimental expenses include mice purchase, shipping, per diem, surgical tools, cell culture, and
user fee to access micro-CT scanners, mechanical testers, microscopy. Usually, it takes approximately
one year’s training to become an expert in inoculating cancer to mice and 2 to 3 month each batch
of the mice (around 20 mice) for data acquisition, image processing including CT reconstruction,
segmentation, registration, and image analysis.

Image Acquisition: For each scan, mice were anesthetized with 3% (v/v) isoflurane and held in the
built-in holder, which was rotated 208-degree with a step of 0.8 degrees and there are 260 X-ray
images taken in total. One frame was taken per step with the following settings: 900 ms exposure
time, X-ray of 200 mA current and 50 kVp, and a 0.5 mm Al filter, cone-beam angle Horizontal of
25.888290 (deg) and Vertical 17.423092 (deg). The in vivo scanning of the hindlimbs lasted around 4
min per animal and the accumulated radiation exposure (< 600 mGy) was low.

3D Reconstruction: The 3D volume or 2D cross-sectional images of micro-CT were reconstructed
from 260 X-ray projections using the NRecon® software (Bruker) with a voxel size of 7 to 10.6 um.
The 3D reconstructed CT is acquired based on the traditional filtered backprojection (FBP),which
uses a 1D filter on the projection data before backprojecting (2D or 3D) the data onto the image space.
Then, the 3D bone reconstructed CT were optimized with the several steps such as center of rotation
adjustment,beam hardening correction,ring artifact reduction and reconstruction filtering in order
to get the reconstructed micro-CT images with high quality. Among these steps, center of rotation
adjustment is used to ensure that the reconstruction is symmetrical, beam hardening correction is to
compensate artifacts in the scan. Since the 260 X-ray images were taken by the rotation of cameras,
the ring artifacts generated during the reconstruction process is minimized by ring artifact reduction.
The median filter is employed to remove the salt-and-pepper noise in the reconstructed images, which
is the common noise happening in the medical images.

Segmentation:The the left and right tibiae were segmented from reconstructed CT images by our
python segmentation package. A global threshold value (75/255) was applied and the processed
images were found to agree well with the gray-scaled images. Two limbs of each mice were separated
by their momentum intensity in their relative positions and the tibia and femur of each limb were
segmented by identify the specific structure of the knee, where the position of the knee is found by
comparing the cross-sectional areas of each 2D slices of the bone and the minimal is where the knee
located.

Registration (alignment): After the segmentation, the week 0 scans of each mice tibia were aligned
to a registration reference tibia CT, where the long axis positioned vertically and the anterior-posterior
and medial-lateral axes arranged orthogonally, and the transformation and rotation were manually
adjust by Dataviwer®. Then the registered tibiae CT at week 0 scans served as baseline scan for
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their subsequent week scans. The mutual information maximizing between those of tibiae CT
from different mice at week O and the registration reference tibia CT, and between those of the
sequential scans and themselves week O baselines. The mutual information is a measure of the
statistical dependence or information shared between the image intensities of the two images. Before
transformation (rotation, translation, scaling, etc.), initial coarse alignment is performed to reduces
the search space for the registration algorithm, then transformation applied to the moving image,
maximizing the mutual information between the fixed image and the transformed moving image by
gradient descent optimization. Once the optimal parameters are found, the final transformation will
be applied to the moving image to align it with the fixed image.

Sample Sample registration
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Figure 8: Examples of 3D CT scans from the Seg-CT and the Regist-CT imagery. Left: 3D CT
scans from the Seg-CT imagery (i.e, w/o registration); and Right: 3D CT scans from the Regist-CT
imagery, which are registered relative to their vertically aligned reference at various time points and
across different animals.

Selection of Region of Interest: The overlapped composite Rol-CT images were generated with
different pixel values assigned in each pixel based on various criterion: the pixel with bone (above
threshold value of 75) in baseline and sequential scans were assigned to the value of 180 (light gray),
the non-bone pixel (below threshold) at week 0 later became bone (above threshold) is assigned to
240 (white),the bone pixels (above threshold) at week 0 later became non-bone (below threshold) is
set the value to 60 (dark gray), the pixel without bone in both time points were gave the value to 0
(black). After the generation of CT composites, the Rol section was selected automatically with the
proximal tibia-fibula junction as the landmark, where the number of contoured circles of bone tissues
in each 2D slice changes. Then, the fibula in the 2D slices was manually cropped by CTAn® with
interpolated mask.

Analysis and Quantification: The desired analysis such as bone volume changes was conducted on
the overlaid tibiae ROI or registered CT to access the bone structure morphology changes, metastatic
breast cancer disease progression and mechanical properties impairment over time with and without
treatment effects. Cortical polar moment inertia (Ct.pMOI), bone mineral density (Ct.BMD), and
tissue mineral density (Ct.TMD) as well as trabecular bone volume fraction (Tb.BV/TV), thickness
(Tb.Th), separation (Tb.Sp), bone mineral density (Tb.BMD), and tissue mineral density (Tb.TMD)
were calculated using CTan® 3D analysis software. The overlaid subsequent scans with the baseline
scan (Week 0) of the same tibia make it possible to quantify the changes (Delta values) of each tibia
at subsequent weeks relative to week 0.

B SUPPORTING EXPERIMENTAL SETTINGS AND RESULTS

B.1 TIBIAE AUTO-SEGMENTATION

Conventional nnU-net as well as emerging foundation models such as MedSAM have demonstrated
the improved accuracy and robustness for universal medical image segmentation (26). TotalSeg-
mentator, which is pretrained on the nnU-Net segmentation algorithm with the dataset of 1204
CT examinations, presents a deep learning model to automatically and robustly segment all major
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Table 6: Overview of the six components in our BoneMet dataset

Components Advantages Applications

Pre-training and fine-tuning deep
learning models for bone metastasis
early detection and monitoring

Low cost, wide availability,

Rotation-X-Ray and minimal radiation exposure

. . . . . Training deep learning models for bone
Reveal the precise location and size of bone lesions 1ng deep s

Recon-CT with detailed 3D structure and 2D cross-sections metastasis localization, segmentation,
and sparse angle reconstruction
Enhance the diagnosis efficiency Training deep learning “?"dels fOAr
Seg-CT by s PP L bone segmentation and region-specific
y segmenting limited regions e . .
analysis of metastatic lesions
Training deep learning models for
. Increase sensitivity, making subtle changes longitudinal analysis, early diagnosis, prognosis of
Regist-CT . . . -
in the bone structures detectable metastatic changes, disease progression
and treatment effects analysis
Lo . Training deep learning models for quantitative analysis
Rol-CT Enable the p recise dlagposw and prediction of metastatic bone structural
and quantitative studies . .
and mechanical properties
MiceMediRec Detailed demographic information Enabling multimodal deep learning models for comprehensive
about the animals and the disease disease diagnosis, prognosis, and generalist biomedical AI diagnosis
Table 7: Details of MiceMediRec Dataset
Source Parameters Description
Age Unit: week
Sex
Medical record Date‘ The date of cancer inoculation
Body Weight Unit: g
Tibiae cancer inoculation Records of each tibiae with cancer or without cancer
Treatment Treatment to metastatic breast cancer, like chemotherapy. Dose Unit: pL/g
Diagnosis Diagnosis to bone metastasis, like bone lesion
Average Radiant Efficiency IVIS signal to breast cancer in the bone. Unit: uW/cm?
Bone volume Bone total volumes. Unit: mm®
Cort. pMOI Cortical bone polar moment of inertia. Unit: mm*
Quantitative analysis Cort. Ar Cortical bone area. Unit: mm?
Cort. Th Cortical bone thickness. Unit: mm
Trab. BV/TV Trabecular bone volume relative to the marrow volume. Unit: %
Trab. Th The average thickness of the individual trabeculae. Unit: mm
Trab. N The number of trabeculae per unit length. Unit: mm™~!
Trab. Sp The average distance between trabeculae. Unit: mm
Displacement the deformation of the bone in response to applied load. Unit: um
Reaction force The force exerted by a constraint on the bone in response to an applied load. Unit: N
Stiffness Bone resists deformation in response to an applied force. Unit: N/m
Yield load The force where the bone begins to deform permanently. Unit: N
Maximum load The highest force the bone can safely withstand before failure. Unit: N
‘Work to fracture The energy bone absorbed before fracture. Unit: N-m

anatomic structures on body CT images (41). In this experiment, we use the TotalSegmentator to
segment the right tibia from hindlimb in our Recon-CT dataset with variable resolutions by down-
sizing, and employ our paired Seg-CT dataset as the ground truth. As shown in Figure 9, the left
side is the depiction of the 3D render of hindlimb CT from the Recon-CT dataset. After inference,
the nnU-Net model successfully identified the left tibia from other part of the hindlimb, including
the femur, spine, and hips in all CTs with variable resolutions and most of the tibiae are segmented
accurately by the TotalSegmentator, with better segmentation in higher resolution CT when compared
with the ground truth tibia from our Seg-CT dataset. This experiment underscores the importance
of high resolution dataset for effective bone segmentation. The segmentation of the tibia using the
nnU-Net deep learning model hold significant potential for applications in disease characterization,
surgical and radiation therapy planning.

B.2 GENERATIVE AI MODEL FOR DIAGNOSIS OF METASTATIC BREAST CANCER ON BONE

Generative Al (GenAl) models can flexibly interpret different combinations of medical modalities,
including data from imaging, electronic health records and laboratory results, and in turn produce
expressive outputs for disease diagnosis assistance with advanced medical reasoning abilities (28). In
this experiment, we used a LLaVA (Large Language and Vision Assistant), which is a combination of
the cutting-edge LLaMa 2 text generator and OpenAI’s CLIP for image embedding, and fine-tuned
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Figure 9: Illustration of tibiae 3D CT auto-segmentation on the Recon-CT dataset from low (left)
to high (right) resolutions by adjusting the downsizing scale factor. The right tibia is segmented by
nnU-Net. Compared with the ground truth, the TotalSegmentator performs better on high resolution
CTs.
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Figure 10: Illustration of the training and inference process, and Generative Al platform for diagnosis
of breast cancer bone metastasis given a 2D cross-section image from Rol-CT dataset.

with ROCO-dataset (the medical text-image pairs) and our Rol-CT imagery with MiceMediRec text
dataset pairs, to generate CT analysis to assist Breast cancer bone metastasis diagnosis (19) (27).
As shown in Figure 10, the Web interface demonstrates the ability of fine-tuned LLaVA model to
generate the diagnosis given a 2D cross-sectional image with breast cancer bone metastasis from
RoI-CT dataset.

We have justified the selection of benchmark methods based on their relevance and performance in
similar tasks before, as well as their compatibility with the BoneMet dataset. Additionally, we plan to
include more comparative analyses with alternative methods in future work to further evaluate the
dataset and benchmarks.

C THE DETAILS OF THREE APIS AND THEIR USAGE EXAMPLES

C.1 CT IMAGE SEGMENTATION.

This API provides a simple interface to segment the 3D Reconstructed CT (Recon-CT) images into
separate CT scans for the spine, left tibia, left femur, right tibia, and right femur. It can handle
individual or batched segmentation of the Recon-CT scans. The API reads the 3D CT scans, identifies
the appropriate indices to split the images, and saves the segmented scans to the specified output
paths. Given the time point (e.g., the week after cancer inoculation), the input folder path, and the
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output folder path, Figure 11 exhibits how to utilize the CT Image Segmentation API to automatically
segment the tibiae.

config = {
"week": " week 0",
"masterfolder": r"F:\Recon-CT\week 0",
"masterout": r"F:\Seg-CT\week 0"

}

splitter = ReconCTSegmentation (config)

# Split a single image

input_folder = r"F:\Recon-CT\week 0\871"

image_title = "871"

splitter.split_image (input_folder, image_title, config["masterout"])

# Split multiple images
for folder in os.listdir (config["masterfolder"]):
if folder[0:10] in [871, 872, 873, ...]:
input_folder = os.path.join(config["masterfolder"], folder)
image_title = os.path.basename (folder) [0:12]
splitter.split_image (input_folder, image_title, config["masterout
"])

Figure 11: Example of our CT Image Segmentation APIL

config = {
"workspace": r"F:\Seg-CT\week 0",
"outputdir": r"F:\Regist-CT\week 0",
"refdir": r"F:\reference",
"img_z_range": [None, None],
"ref_z_range": [None, None]l,
"initial_transform_angles": [np.pi * 1 / 16 for i in range(-16, 10)],
"BASELINE_REG": True, # week 0 (True) or sequencial scans (False)
}

# Initialize the registration instance
registration = CTRegistration (config)

# Register a single CT scan

input_folder = r"F:\Seg-CT\week 0"

ct_id = "871 week 0 left tibia"

week = 0

output_folder = config["outputdir"]

registration.register_ct (input_folder, ct_id, week, output_folder)

# Register a batch of CT scans

input_folder = r"F:\Seg-CT\week 0"

ct_ids = ["871 week 0 left tibia", "871 week 0 right tibia", "872 week 11
left tibia", ...]

week = 0

output_folder = config["outputdir"]

registration.batch_register (input_folder, ct_ids, week, output_folder)

Figure 12: Example of our CT Image Registration APIL.

C.2 CT IMAGE REGISTRATION.

This API helps researchers with the tibia registration on Seg-CT dataset. It can handle individual or
batched registration of the segmented tibiae CTs. The API loads the reference and target CT scans,
performs initial transformation, and registers the target CT scan to the reference CT scan. Then the
registered CT scan and the transformation are saved to the specific output folder. Given the time point
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# Configuration

config = {
"foldername": "selected 300 slices below proximal Tibia-fibular
junction",
"first_slice_selected": "first slice selected",
"last_slice_selected": "last slice selected",
"first_slice_selected_below_t-f_ junction": 0 # Index of the first

selected slice below the tibia-fibular junction

}

# Initialize the RoICropper
cropper = RoICompositeCropper (config)

# Crop the RoI from CT images
input_folder = r"F:\Regist-CT\Tibia wOwScomposite"
output_folder = os.path.join (input_folder, config["foldername"])

first_slice_selected = config["first_slice_selected"]
last_slice_selected = config["last_slice_selected"]
first_slice_below_tf_junction = config["first_slice_selected_above_t-

f_junction"]

cropper.crop_roi (input_folder, output_folder, first_slice_selected,
last_slice_selected, first_slice_below_tf_junction)

Figure 13: Example of our Rol-based CT Image Cropping APL

(e.g., the week after cancer inoculation), the slices range of reference and target subjects, the input
folder path, the reference folder path, and the output folder path, Figure 12 illustrates how to utilize
the CT Image Registration API to automatically align the segmented tibiae.

C.3 RoOI-BASED CT IMAGE CROPPING.

This API provides a simple interface to crop the region of interest (tibia proximal end) on Regist-CT
dataset. It can handle batched cropping of the Regist-CT dataset. The API reads the overlapped 3D
Regist-CT composite processed by our python package, identifies the proximal tibia-fibular junction,
selects appropriate indices to split the images, and saves the cropped to the specified output paths.
Given the input folder path, the output folder path, and index of the first selected slice below the
tibia-femoral junction, Figure 13 demonstrates how to utilize the Rol-based CT Image Cropping API
to automatically crop the proximal end of tibiae.

D BAD-CASE ANALYSIS

Regarding to the bad case analysis, we conducted the following analyses: label noise and data
imbalance. Label noise is not a concern in our primary dataset, as positive and negative labels are
assigned at the animal level. However, we manually created a separate dataset with noisy labels. To
address label noise in this separate dataset, we applied Label Smoothing (34) with a smoothing factor
of 0.1, following the DeiT approach (37). The model’s accuracy improved from 71.43% (without
Label Smoothing) to 95.86% (with Label Smoothing), demonstrating the technique’s effectiveness in
reducing errors associated with noisy labels.

We also examined the effects of data imbalance in our dataset, which had a negative-to-positive ratio
of 5:1. To mitigate the challenges posed by this imbalance, we implemented Focal Loss (22). The
model trained with Cross-Entropy Loss achieved an accuracy of 66.67%, whereas the model trained
with Focal Loss improved the accuracy to 69.36%.

E FUTURE POTENTIAL APPLICATION OF BONEMET DATASET

The BoneMet dataset also holds other significant promise for advancing various applications. For
example, it can be leveraged to develop foundation models and self-supervised contrastive learning

19



Published as a conference paper at ICLR 2025

techniques (49), which will enhance the model’s ability to learn robust and generalizable features
from the dataset without extensive labeled data. Additionally, the dataset can facilitate the prediction
of multi-angle X-ray images, providing a comprehensive view of bone metastases from different
perspectives with reduced radiation exposure and improving diagnostic accuracy and aid in better
visualization of complex anatomical structures. Moreover, the BoneMet dataset can be utilized for
finite element analysis (FEA) prediction of metastatic bone mechanical properties (3 1). By integrating
FEA with deep learning models, researchers and clinic doctors can easily predict how metastatic
lesions affect the mechanical integrity of bones without running the complicated and time-consuming
finite element simulation, which is crucial for the broad application of finite element analysis in
assessing fracture risk and planning appropriate treatments. Lastly, the dataset can be used to train 3D
CT registration models, such as the Convolutional Neural Networks (ConvNets) and Deep Learning
Image Registration (DLIR) framework (7). These models can accurately align 3D CT scans over time
or across different imaging modalities, enabling precise monitoring of disease progression and the
effectiveness of treatments.

F ETHICAL STATEMENT

All the animal procedures including cancer implantation and micro CT scans have been approved
by the authors’ Institutional Animal Care and Use Committee (IACUC). We made every effort to
minimize animal suffering throughout the research process. In brief, the pain and stress associated
with cancer implantation and cancer growth were carefully monitored (via signs of inflammation, loss
of body weight, changes of normal behaviors, and cancer burden) and managed (via administration of
painkillers and humane sacrifice). Mice were anesthetized using 3% isoflurane gas, ensuring a deep,
stable sleep state that prevented movement during surgery and the imaging process with minimized
stress or discomfort. Additionally, to reduce radiation exposure, each mouse received 5 weekly micro
CT scans of lower limbs using a Bruker/Skyscan in vivo scanner (Bruker 1276). The advantage of
this scanner vs. other commercially available in vivo scanners is the low radiation exposure during
each session (< 500 mGy) due to the faster scan speed (900 ms) and fewer projections (260). The
radiation dose (< 0.5 Gy) is much lower than the lethal radiation dose for mice (10.5 Gy). Our
BoneMet dataset adheres to all relevant regulations, including those concerning animal welfare and
data protection. Furthermore, we are committed to following guidelines for ethical Al development,
including ensuring transparency in Al model development, avoiding bias, and maintaining data
privacy, ensuring that the use of this dataset aligns with best practices in responsible Al research.

G LIMITATIONS

Although animal models of breast cancers provide valuable insights into disease development
and allow testing the accuracy and sensitivity of various diagnosis methods, we acknowledge the
limitations of using animal models in general and the specific model adopted in our study. One
potential limitation is the difference in physiology and immune response between mice and humans,
leading to the dramatic divergence of the disease progression speed (weeks in mice vs. years in
humans). The other limitation is that the mice used in the study were inbred mice with highly
homogeneous gene backgrounds, which were maintained under well-controlled living environments.
Thus, the animal subjects do not account for the large variability of human diversity regarding gene
background, lifestyles (such as diet and physical activities), and underlying health conditions (like
Parkinson’s disease and obesity). Despite these limitations, the large quantities with detailed labels
of animal datasets like ours provide sequential images covering the entire disease development and
progression time course, which can be useful to test the feasibility and performance of new diagnosis
and prognosis tools prior to human trials.

Despite of being a limitation, the use of preclinical models is well justified and necessary in human
cancer research. As elaborated in the “Guidelines for the welfare and use of animals in cancer
research” (42), animal experiments remain essential to understand the fundamental mechanisms
driving malignancy and to develop individualized molecularly targeted cancer therapies for humans.
With the explosion of newly created genetic animal models, the various genes, signaling pathways,
and risk factors that give rise to cancer dependencies and vulnerabilities have been identified, and the
responses to cancer treatments can be comprehensively tested. Thus animal models and testing not
only extend our genetic, molecular, and holistic understanding of cancer but also gather necessary
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safety and efficacy information that is required to introduce new drugs and diagnostic tools into
clinics. Specifically, our dataset was collected from mice implanted with triple-negative breast cancer,
which is the most aggressive among all subtypes of breast cancer with limited treatment options.
This dataset takes advantage of our animal models, which mimics the full course of the disease
development from microscopic metastasis lesions to macroscopic metastasis (whole bone failure).
Currently, we have collected 2D and 3D images of the whole bone and cancer-affected regions at
five-time points, along with the biometrics of the animal subjects such as their age and body weight.
The Dataset is designed to expand and include additional biochemical data such as cancer burden,
sera biomarkers, gene transcripts, and histological results. Preclinical research in the cancer field
as well as our own studies support the similarities between the mice and humans in terms of the
fundamental mechanisms driving cancer spread and growth in the bone environment. Our specific
goal is to reveal specific imaging biomarkers associated with cancer growth and bone metastasis,
and further make it possible to translate into clinical applications, enabling better understanding,
detection, and treatment of bone metastases in human breast cancer.
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