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OUTLINE

This document provided supplementary materials to support our main paper. Section A provides
details of breast tumor bone metastasis model creations and data collection processes. Section B
presents additional experimental settings and results. Section C lists three examples of API for CT
Image Segmentation, Registration and RoI-based CT Image Cropping, and section D talks about
future potential application of our BoneMet dataset.

A DETAILS OF DATASET AND DATA COLLECTION

In order to build such large-scale BoneMet dataset, the team has spent more than five years with
three to four graduate students assisted with over ten undergraduates and summer students. The
experimental expenses include mice purchase, shipping, per diem, surgical tools, cell culture, and
user fee to access micro-CT scanners, mechanical testers, microscopy. Usually, it takes approximately
one year’s training to become an expert in inoculating cancer to mice and 2 to 3 month each batch
of the mice (around 20 mice) for data acquisition, image processing including CT reconstruction,
segmentation, registration, and image analysis.

Image Acquisition: For each scan, mice were anesthetized with 3% (v/v) isoflurane and held in the
built-in holder, which was rotated 208-degree with a step of 0.8 degrees and there are 260 X-ray
images taken in total. One frame was taken per step with the following settings: 900 ms exposure
time, X-ray of 200 mA current and 50 kVp, and a 0.5 mm Al filter, cone-beam angle Horizontal of
25.888290 (deg) and Vertical 17.423092 (deg). The in vivo scanning of the hindlimbs lasted around 4
min per animal and the accumulated radiation exposure (< 600 mGy) was low.

3D Reconstruction: The 3D volume or 2D cross-sectional images of micro-CT were reconstructed
from 260 X-ray projections using the NRecon® software (Bruker) with a voxel size of 7 to 10.6 µm.
The 3D reconstructed CT is acquired based on the traditional filtered backprojection (FBP),which
uses a 1D filter on the projection data before backprojecting (2D or 3D) the data onto the image space.
Then, the 3D bone reconstructed CT were optimized with the several steps such as center of rotation
adjustment,beam hardening correction,ring artifact reduction and reconstruction filtering in order
to get the reconstructed micro-CT images with high quality. Among these steps, center of rotation
adjustment is used to ensure that the reconstruction is symmetrical, beam hardening correction is to
compensate artifacts in the scan. Since the 260 X-ray images were taken by the rotation of cameras,
the ring artifacts generated during the reconstruction process is minimized by ring artifact reduction.
The median filter is employed to remove the salt-and-pepper noise in the reconstructed images, which
is the common noise happening in the medical images.

Segmentation:The the left and right tibiae were segmented from reconstructed CT images by our
python segmentation package. A global threshold value (75/255) was applied and the processed
images were found to agree well with the gray-scaled images. Two limbs of each mice were separated
by their momentum intensity in their relative positions and the tibia and femur of each limb were
segmented by identify the specific structure of the knee, where the position of the knee is found by
comparing the cross-sectional areas of each 2D slices of the bone and the minimal is where the knee
located.
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Registration (alignment): After the segmentation, the week 0 scans of each mice tibia were aligned
to a registration reference tibia CT, where the long axis positioned vertically and the anterior-posterior
and medial-lateral axes arranged orthogonally, and the transformation and rotation were manually
adjust by Dataviwer®. Then the registered tibiae CT at week 0 scans served as baseline scan for
their subsequent week scans. The mutual information maximizing between those of tibiae CT
from different mice at week 0 and the registration reference tibia CT, and between those of the
sequential scans and themselves week 0 baselines. The mutual information is a measure of the
statistical dependence or information shared between the image intensities of the two images. Before
transformation (rotation, translation, scaling, etc.), initial coarse alignment is performed to reduces
the search space for the registration algorithm, then transformation applied to the moving image,
maximizing the mutual information between the fixed image and the transformed moving image by
gradient descent optimization. Once the optimal parameters are found, the final transformation will
be applied to the moving image to align it with the fixed image.
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Figure 1: Examples of 3D CT scans from the Seg-CT and the Regist-CT imagery. Left: 3D CT
scans from the Seg-CT imagery (i.e, w/o registration); and Right: 3D CT scans from the Regist-CT
imagery, which are registered relative to their vertically aligned reference at various time points and
across different animals.

Selection of Region of Interest: The overlapped composite RoI-CT images were generated with
different pixel values assigned in each pixel based on various criterion: the pixel with bone (above
threshold value of 75) in baseline and sequential scans were assigned to the value of 180 (light gray),
the non-bone pixel (below threshold) at week 0 later became bone (above threshold) is assigned to
240 (white),the bone pixels (above threshold) at week 0 later became non-bone (below threshold) is
set the value to 60 (dark gray), the pixel without bone in both time points were gave the value to 0
(black). After the generation of CT composites, the RoI section was selected automatically with the
proximal tibia-fibula junction as the landmark, where the number of contoured circles of bone tissues
in each 2D slice changes. Then, the fibula in the 2D slices was manually cropped by CTAn® with
interpolated mask.

Analysis and Quantification: The desired analysis such as bone volume changes was conducted on
the overlaid tibiae ROI or registered CT to access the bone structure morphology changes, metastatic
breast tumor disease progression and mechanical properties impairment over time with and without
treatment effects. Cortical polar moment inertia (Ct.pMOI), bone mineral density (Ct.BMD), and
tissue mineral density (Ct.TMD) as well as trabecular bone volume fraction (Tb.BV/TV), thickness
(Tb.Th), separation (Tb.Sp), bone mineral density (Tb.BMD), and tissue mineral density (Tb.TMD)
were calculated using CTan® 3D analysis software. The overlaid subsequent scans with the baseline
scan (Week 0) of the same tibia make it possible to quantify the changes (Delta values) of each tibia
at subsequent weeks relative to week 0.
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Table 1: Overview of the six components in our BoneMet dataset

Components Advantages Applications

Rotation-X-Ray Low cost, wide availability,
and minimal radiation exposure

Pre-training and fine-tuning deep
learning models for bone metastasis

early detection and monitoring

Recon-CT Reveal the precise location and size of bone lesions
with detailed 3D structure and 2D cross-sections

Training deep learning models for bone
metastasis localization, segmentation,

and sparse angle reconstruction

Seg-CT Enhance the diagnosis efficiency
by segmenting limited regions

Training deep learning models for
bone segmentation and region-specific

analysis of metastatic lesions

Regist-CT Increase sensitivity, making subtle changes
in the bone structures detectable

Training deep learning models for
longitudinal analysis, early diagnosis, prognosis of

metastatic changes, disease progression
and treatment effects analysis

RoI-CT Enable the precise diagnosis
and quantitative studies

Training deep learning models for quantitative analysis
and prediction of metastatic bone structural

and mechanical properties

MiceMediRec Detailed demographic information
about the animals and the disease

Enabling multimodal deep learning models for comprehensive
disease diagnosis, prognosis, and generalist biomedical AI diagnosis

Table 2: Details of MiceMediRec Dataset
Source Parameters Description

Medical record

Age Unit: week
Sex
Date The date of tumor inoculation

Body Weight Unit: g
Tibiae tumor inoculation Records of each tibiae with tumor or without tumor

Treatment Treatment to metastatic breast tumor, like chemotherapy. Dose Unit: µL/g
Diagnosis Diagnosis to bone metastasis, like bone lesion

Quantitative analysis

Average Radiant Efficiency IVIS signal to breast tumor in the bone. Unit: µW/cm2

Bone volume Bone total volumes. Unit: mm3

Cort. pMOI Cortical bone polar moment of inertia. Unit: mm4

Cort. Ar Cortical bone area. Unit: mm2

Cort. Th Cortical bone thickness. Unit: mm
Trab. BV/TV Trabecular bone volume relative to the marrow volume. Unit: %

Trab. Th The average thickness of the individual trabeculae. Unit: mm
Trab. N The number of trabeculae per unit length. Unit: mm−1

Trab. Sp The average distance between trabeculae. Unit: mm
Displacement the deformation of the bone in response to applied load. Unit: µm
Reaction force The force exerted by a constraint on the bone in response to an applied load. Unit: N

Stiffness Bone resists deformation in response to an applied force. Unit: N/m
Yield load The force where the bone begins to deform permanently. Unit: N

Maximum load The highest force the bone can safely withstand before failure. Unit: N
Work to fracture The energy bone absorbed before fracture. Unit: N·m

B SUPPORTING EXPERIMENTAL SETTINGS AND RESULTS

B.1 TIBIAE AUTO-SEGMENTATION

Conventional nnU-net as well as emerging foundation models such as MedSAM have demonstrated
the improved accuracy and robustness for universal medical image segmentation (4). TotalSeg-
mentator, which is pretrained on the nnU-Net segmentation algorithm with the dataset of 1204
CT examinations, presents a deep learning model to automatically and robustly segment all major
anatomic structures on body CT images (10). In this experiment, we use the TotalSegmentator to
segment the right tibia from hindlimb in our Recon-CT dataset with variable resolutions by down-
sizing, and employ our paired Seg-CT dataset as the ground truth. As shown in Figure 2, the left
side is the depiction of the 3D render of hindlimb CT from the Recon-CT dataset. After inference,
the nnU-Net model successfully identified the left tibia from other part of the hindlimb, including
the femur, spine, and hips in all CTs with variable resolutions and most of the tibiae are segmented
accurately by the TotalSegmentator, with better segmentation in higher resolution CT when compared
with the ground truth tibia from our Seg-CT dataset. This experiment underscores the importance
of high resolution dataset for effective bone segmentation. The segmentation of the tibia using the
nnU-Net deep learning model hold significant potential for applications in disease characterization,
surgical and radiation therapy planning.
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Recon-CT 0.15 0.18 0.21 0.24 0.27 0.30 Ground Truth CT

nnU-Net

Downsized scale factor:

Figure 2: Illustration of tibiae 3D CT auto-segmentation on the Recon-CT dataset from low (left)
to high (right) resolutions by adjusting the downsizing scale factor. The right tibia is segmented by
nnU-Net. Compared with the ground truth, the TotalSegmentator performs better on high resolution
CTs.
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Figure 3: Illustration of the training and inference process, and Generalist Biomedical AI platform
for diagnosis of breast tumor bone metastasis given a 2D cross-section image from RoI-CT dataset.

B.2 GENERALIST BIOMEDICAL AI DIAGNOSIS OF METASTATIC BREAST TUMOR ON BONE

Generalist medical AI (GMAI) models can flexibly interpret different combinations of medical
modalities, including data from imaging, electronic health records and laboratory results, and in
turn produce expressive outputs for disease diagnosis assistance with advanced medical reasoning
abilities (6). In this experiment, we used a LLaVA (Large Language and Vision Assistant), which is a
combination of the cutting-edge LLaMa 2 text generator and OpenAI’s CLiP for image embedding,
and fine-tuned with ROCO-dataset (the medical text-image pairs) and our RoI-CT imagery with
MiceMediRec text dataset pairs, to generate CT analysis to assist breast tumor bone metastasis
diagnosis (2) (5). As shown in Figure 3, the Web interface demonstrates the ability of fine-tuned
LLaVA model to generate the diagnosis given a 2D cross-sectional image with breast tumor bone
metastasis from RoI-CT dataset.

We have justified the selection of benchmark methods based on their relevance and performance in
similar tasks before, as well as their compatibility with the BoneMet dataset. Additionally, we plan to
include more comparative analyses with alternative methods in future work to further evaluate the
dataset and benchmarks.
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C THE DETAILS OF THREE APIS AND THEIR USAGE EXAMPLES

C.1 CT IMAGE SEGMENTATION.

This API provides a simple interface to segment the 3D Reconstructed CT (Recon-CT) images into
separate CT scans for the spine, left tibia, left femur, right tibia, and right femur. It can handle
individual or batched segmentation of the Recon-CT scans. The API reads the 3D CT scans, identifies
the appropriate indices to split the images, and saves the segmented scans to the specified output
paths. Given the time point (e.g., the week after tumor inoculation), the input folder path, and the
output folder path, Figure 4 exhibits how to utilize the CT Image Segmentation API to automatically
segment the tibiae.

config = {
"week": " week 0",
"masterfolder": r"F:\Recon-CT\week 0",
"masterout": r"F:\Seg-CT\week 0"

}

splitter = ReconCTSegmentation(config)

# Split a single image
input_folder = r"F:\Recon-CT\week 0\871"
image_title = "871"
splitter.split_image(input_folder, image_title, config["masterout"])

# Split multiple images
for folder in os.listdir(config["masterfolder"]):

if folder[0:10] in [871, 872, 873, ...]:
input_folder = os.path.join(config["masterfolder"], folder)
image_title = os.path.basename(folder)[0:12]
splitter.split_image(input_folder, image_title, config["masterout

"])

Figure 4: Example of our CT Image Segmentation API.

C.2 CT IMAGE REGISTRATION.

This API helps researchers with the tibia registration on Seg-CT dataset. It can handle individual or
batched registration of the segmented tibiae CTs. The API loads the reference and target CT scans,
performs initial transformation, and registers the target CT scan to the reference CT scan. Then the
registered CT scan and the transformation are saved to the specific output folder. Given the time point
(e.g., the week after tumor inoculation), the slices range of reference and target subjects, the input
folder path, the reference folder path, and the output folder path, Figure 5 illustrates how to utilize
the CT Image Registration API to automatically align the segmented tibiae.

C.3 ROI-BASED CT IMAGE CROPPING.

This API provides a simple interface to crop the region of interest (tibia proximal end) on Regist-CT
dataset. It can handle batched cropping of the Regist-CT dataset. The API reads the overlapped 3D
Regist-CT composite processed by our python package, identifies the proximal tibia-fibular junction,
selects appropriate indices to split the images, and saves the cropped to the specified output paths.
Given the input folder path, the output folder path, and index of the first selected slice below the
tibia-femoral junction, Figure 6 demonstrates how to utilize the RoI-based CT Image Cropping API
to automatically crop the proximal end of tibiae.

D BAD-CASE ANALYSIS

Regarding to the bad case analysis, we conducted the following analyses: label noise and data
imbalance. Label noise is not a concern in our primary dataset, as positive and negative labels are
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config = {
"workspace": r"F:\Seg-CT\week 0",
"outputdir": r"F:\Regist-CT\week 0",
"refdir": r"F:\reference",
"img_z_range": [None, None],
"ref_z_range": [None, None],
"initial_transform_angles": [np.pi * i / 16 for i in range(-16, 10)],
"BASELINE_REG": True, # week 0 (True) or sequencial scans (False)

}

# Initialize the registration instance
registration = CTRegistration(config)

# Register a single CT scan
input_folder = r"F:\Seg-CT\week 0"
ct_id = "871 week 0 left tibia"
week = 0
output_folder = config["outputdir"]
registration.register_ct(input_folder, ct_id, week, output_folder)

# Register a batch of CT scans
input_folder = r"F:\Seg-CT\week 0"
ct_ids = ["871 week 0 left tibia", "871 week 0 right tibia", "872 week 11

left tibia", ...]
week = 0
output_folder = config["outputdir"]
registration.batch_register(input_folder, ct_ids, week, output_folder)

Figure 5: Example of our CT Image Registration API.

# Configuration
config = {

"foldername": "selected 300 slices below proximal Tibia-fibular
junction",
"first_slice_selected": "first slice selected",
"last_slice_selected": "last slice selected",
"first_slice_selected_below_t-f_junction": 0 # Index of the first
selected slice below the tibia-fibular junction

}

# Initialize the RoICropper
cropper = RoICompositeCropper(config)

# Crop the RoI from CT images
input_folder = r"F:\Regist-CT\Tibia w0w5composite"
output_folder = os.path.join(input_folder, config["foldername"])
first_slice_selected = config["first_slice_selected"]
last_slice_selected = config["last_slice_selected"]
first_slice_below_tf_junction = config["first_slice_selected_above_t-

f_junction"]

cropper.crop_roi(input_folder, output_folder, first_slice_selected,
last_slice_selected, first_slice_below_tf_junction)

Figure 6: Example of our RoI-based CT Image Cropping API.
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assigned at the animal level. However, we manually created a separate dataset with noisy labels. To
address label noise in this separate dataset, we applied Label Smoothing (8) with a smoothing factor
of 0.1, following the DeiT approach (9). The model’s accuracy improved from 71.43% (without
Label Smoothing) to 95.86% (with Label Smoothing), demonstrating the technique’s effectiveness in
reducing errors associated with noisy labels.

We also examined the effects of data imbalance in our dataset, which had a negative-to-positive ratio
of 5:1. To mitigate the challenges posed by this imbalance, we implemented Focal Loss (3). The
model trained with Cross-Entropy Loss achieved an accuracy of 66.67%, whereas the model trained
with Focal Loss improved the accuracy to 69.36%.

E FUTURE POTENTIAL APPLICATION OF BONEMET DATASET

The BoneMet dataset also holds other significant promise for advancing various applications. For
example, it can be leveraged to develop foundation models and self-supervised contrastive learning
techniques (11), which will enhance the model’s ability to learn robust and generalizable features
from the dataset without extensive labeled data. Additionally, the dataset can facilitate the prediction
of multi-angle X-ray images, providing a comprehensive view of bone metastases from different
perspectives with reduced radiation exposure and improving diagnostic accuracy and aid in better
visualization of complex anatomical structures. Moreover, the BoneMet dataset can be utilized for
finite element analysis (FEA) prediction of metastatic bone mechanical properties (7). By integrating
FEA with deep learning models, researchers and clinic doctors can easily predict how metastatic
lesions affect the mechanical integrity of bones without running the complicated and time-consuming
finite element simulation, which is crucial for the broad application of finite element analysis in
assessing fracture risk and planning appropriate treatments. Lastly, the dataset can be used to train 3D
CT registration models, such as the Convolutional Neural Networks (ConvNets) and Deep Learning
Image Registration (DLIR) framework (1). These models can accurately align 3D CT scans over time
or across different imaging modalities, enabling precise monitoring of disease progression and the
effectiveness of treatments.

F ETHICAL STATEMENT

All the animal procedures including cancer implantation and micro CT scans have been approved
by the authors’ Institutional Animal Care and Use Committee (IACUC). We made every effort to
minimize animal suffering throughout the research process. In brief, the pain and stress associated
with cancer implantation and cancer growth were carefully monitored (via signs of inflammation, loss
of body weight, changes of normal behaviors, and tumor burden) and managed (via administration of
painkillers and humane sacrifice). Mice were anesthetized using 3% isoflurane gas, ensuring a deep,
stable sleep state that prevented movement during surgery and the imaging process with minimized
stress or discomfort. Additionally, to reduce radiation exposure, each mouse received 5 weekly micro
CT scans of lower limbs using a Bruker/Skyscan in vivo scanner (Bruker 1276). The advantage of
this scanner vs. other commercially available in vivo scanners is the low radiation exposure during
each session (< 500 mGy) due to the faster scan speed (900 ms) and fewer projections (260). The
radiation dose (< 0.5 Gy) is much lower than the lethal radiation dose for mice (10.5 Gy). Our
BoneMet dataset adheres to all relevant regulations, including those concerning animal welfare and
data protection. Furthermore, we are committed to following guidelines for ethical AI development,
including ensuring transparency in AI model development, avoiding bias, and maintaining data
privacy, ensuring that the use of this dataset aligns with best practices in responsible AI research.

G LIMITATIONS

Although animal models of breast cancers provide valuable insights into disease development
and allow testing the accuracy and sensitivity of various diagnosis methods, we acknowledge the
limitations of using animal models in general and the specific model adopted in our study. One
potential limitation is the difference in physiology and immune response between mice and humans,
leading to the dramatic divergence of the disease progression speed (weeks in mice vs. years in
humans). The other limitation is that the mice used in the study were inbred mice with highly
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homogeneous gene backgrounds, which were maintained under well-controlled living environments.
Thus, the animal subjects do not account for the large variability of human diversity regarding gene
background, lifestyles (such as diet and physical activities), and underlying health conditions (like
Parkinson’s disease and obesity). Despite these limitations, the large quantities with detailed labels
of animal datasets like ours provide sequential images covering the entire disease development and
progression time course, which can be useful to test the feasibility and performance of new diagnosis
and prognosis tools prior to human trials.
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