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A. Related Work
Theory of CL. While there has been much progress in theoretically understanding CL, most prior work (Wang & Isola,
2020; Graf et al., 2021; Lee et al., 2021; Tosh et al., 2021a;b; Arora et al., 2019b; Tsai et al., 2020; HaoChen et al., 2021) are
focused on understanding how CL clusters examples using semantically meaningful information or providing generalization
guarantees on downstream tasks. Feature learning has only been studied by (Wen & Li, 2021; Ji et al., 2021) which show
that CL learns semantically meaningful features from the data. In contrast, we show that CL may not learn all semantically
relevant features. Other important recent work (Saunshi et al., 2022; HaoChen & Ma, 2022) studied the role of inductive
bias of the function class in the success of CL. Our analysis, however, is focused on understanding failure modes of CL i.e.
class collapse and feature suppression.

Class Collapse in Supervised CL. Chen et al. (2022) empirically demonstrates class collapse on test data, but does not
offer any rigorous theoretical explanation. Graf et al. (2021) proves that optimizing the supervised contrastive loss leads to
class-collapsed training set representations. However, we show that there exist many minimizers with such class-collapsed
training set representations and not all of them suffer from class collapse at test time. We also present the first theoretical
characterization of class collapse at test time.

Feature Suppression in Unsupervised CL. Feature suppression has been empirically observed by Tian et al. (2020);
Chen et al. (2021); Robinson et al. (2021) but we lack a theoretical formulation of this phenomenon. Li et al. (2023) shows
that InfoNCE has local minimums that exhibit feature suppression, thus attributing this phenomenon to failure of optimizing
the loss. However, Robinson et al. (2021) shows that the InfoNCE loss can be minimized by many models, some of which
learn all task-relevant features, while others do not. We put forth the only theoretical characterization of feature suppression
and consequently, use this understanding to suggest practical solutions to remedy this problem.

Joint Supervised and Unsupervised Contrastive Loss. Recently, several versions of loss functions that combine
supervised and unsupervised contrastive losses have been proposed. For example, Chen et al. (2022) put forth a weighted
sum of supervised CL loss and class-conditional InfoNCE (which has similar effect as LUCL in our setting) to avoid class
collapse. Islam et al. (2021) empirically observed that the joint objective of supervised and unsupervised contrastive loss
leads to better transferability of the learned models than their supervised counterparts. We provide the first theoretically
rigorous analysis of which features the minimum norm global minimizer of the joint loss learns, provably demonstrating
that it can avoid class collapse and feature suppression. To the best of our knowledge, this is the only theoretical result
that can be used to understand the empirical success of joint losses.

B. Problem Formulation
B.1. Data distribution

We define data distribution Dorig below. Each example (x, y, ysub) ∈ Dorig is generated as follows:

x =u+ ξ, where
u = (yϕ1 + µ1)v1+(ysubϕ2 + µ2)v2 + (ρkϕk + µk)vk,

and k is uniformly selected from 3, . . . ,K; and y, ysub, ρk are uniformly sampled from {−1, 1}.

Features and Noise. We assume features and noise form an orthonormal basis of Rd, i.e., a set of unit orthogonal vectors
{v1, . . . ,vd} inRd. W.l.o.g., one can let v’s be the standard basis, where the firstK basis are feature vectors. {ϕ1, . . . , ϕK}
are constants indicating the strength of each feature, and {µ1, . . . , µK} are the means of the corresponding entries in the
feature vectors. In particular:

• Class Feature: v1.
• Subclass Feature: v2.
• (Class and subclass) irrelevant features:1 v3, . . . ,vK .
• Noise ξ ∼ Dξ: Dξ is a uniform distribution over features σξv1, . . . , σξvd, where σξ indicates the variance of the noise.2

1In the rest of the paper, we use irrelevant features to refer to features that may have semantic meaning but are irrelevant to class and
subclass.

2This definition of noise is nearly identical to Gaussian noise N (0,
σ2
ξ

d
Id) in the high-dimensional regime but keeps the analysis clear.
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We sample n examples from Dorig to form the original dataset D̂orig.

Assumption B.1 (Balanced Dataset). All combinations of (yi, ysub,i, ki, ρi) are equally represented in D̂orig.3

A Concrete Example of the Above Data Distribution. Let y = 1 be dogs and y = −1 be cats, ysub = 1 if they are fluffy
and ysub = −1 if they are not-fluffy. Then (ϕ1 + µ1)v1 + (ϕ2 + µ2)v2 denotes a fluffy dog. Here, the background can be
interpreted as an irrelevant feature: let ρ3 = 1 for grass and ρ3 = −1 for forest. Then (ϕ1+µ1)v1+(ϕ2+µ2)v2+(ϕ3+µ3)v3
represents a fluffy dog on grass. Note that each example only selects one irrelevant feature, which mimics the real world,
where examples do not necessarily have all types of objects in the background i.e. many examples have neither grass or
forests as their background.

Rationale for Including Feature Means µi. In general, it is unreasonable to expect all features to have 0 expectation over
entire data, thus we introduce µ to further generalize our analysis. We find that considering a non-zero mean for the subclass
feature is sufficient to provide novel insights into class collapse (Theorem C.5). Therefore, for clarity, we set all the µ’s
except µ2 to zero.

Relation to Sparse Coding Model. This data distribution is a variant of the sparse coding model which is usually considered
as a provision model for studying the feature learning process in machine learning (e.g., (Zou et al., 2021; Wen & Li, 2021;
Liu et al., 2021)). It naturally fits into many settings in machine learning, and in general mimics the outputs of intermediate
layers of neural networks which have been shown to be sparse (Papyan et al., 2017). It is also used to model the sparse
occurrences of objects in image tasks (Olshausen & Field, 1997; Vinje & Gallant, 2000; Foldiak, 2003; Protter & Elad,
2008; Yang et al., 2009; Mairal et al., 2014) and polysemy of words in language tasks (Arora et al., 2018).

B.2. Data Augmentation A (·)

For each example in D̂orig, we generate m augmentations to form D̂aug. We consider the following augmentation strategy:
given an example x = u+ ξ, its augmentation is given by A (x) = u+ ξ′, where ξ′ is a new random variable from Dξ

independent of ξ. This is an abstract of augmentations used in practice where two augmentations from the same example
share certain parts of the features and have the correlation between their noise parts removed or weakened.

Assumption B.2 (High dimensional regime). d is at least ω(n2m2).

Assumption B.3 (Sufficient sample size). The noise-to-sample-size ratio is not too large
σ2
ξ

mn = o(1).

B.3. Linear Model

We consider a linear model with p outputs. The model has weights W ∈ Rp×d and bias b ∈ Rp where p ≥ 3. The function
represented by the model is fΘ(x) = Wx + b, where we define Θ ∈ Rp×(d+1) as the concatenated parameter [W b].
We establish theoretical proofs of class collapse and feature suppression for linear model, and also empirically verified
them for (non-linear) deep neural networks.

B.4. Loss function

For unsupervised contrastive learning, we use the unsupervised spectral contrastive loss popular in prior theoretical and
empirical work (HaoChen et al., 2021; Saunshi et al., 2022; HaoChen & Ma, 2022) and for supervised contrastive learning,
we consider the natural generalization of this loss to incorporate supervision. Let Ai denote the set of augmentations in D̂aug

generated from the i-th original example with A (·). Let S+1 and S−1 denote the set of augmentations in D̂aug with class
labels +1 and −1, respectively. Let Ê denote the empirical expectation. Then we have the following loss functions:

LUCL(Θ) =− 2Êi∈[n],x∈Ai,x+∈Ai

[
fΘ(x)

⊤fΘ(x
+)
]

+Êx∈D̂aug,x−∈D̂aug

[
(fΘ(x)

⊤fΘ(x
−))2

]
(1)

LSCL(Θ) =− 2Êc∈{−1,1},x∈Sc,x+∈Sc

[
fΘ(x)

⊤fΘ(x
+)
]

+Êx∈D̂aug,x−∈D̂aug

[
(fΘ(x)

⊤fΘ(x
−))2

]
. (2)

Our results can be extended to the Gaussian noise setting.
3This can be approximately achieved when n is sufficiently larger than K. While our analysis can be generalized to consider

imbalanced data, this is outside the scope of this work.
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C. Main Results
C.1. Simplicity Bias Contributes to Class Collapse in Supervised CL

We make two key observations through our theoretical analysis and experiments (henceforth we refer to class collapse
at test time simply as ‘class collapse’):

1. Theoretically, not all global minimizers exhibit class collapse, but the minimum norm minimizer does.

2. Theoretically and empirically, when the model is trained using (S)GD, some subclasses are provably learned early
in training. Empirically, however, those subclasses will eventually be unlearned i.e. S(GD) converges to minimizers
that exhibit class collapse.

Altogether, these observations suggest that class collapse, which has been observed in practice when certain gradient-based
algorithms are used to minimize the loss, cannot be explained by simply analyzing the loss function. This highlights the
importance of studying the dynamics and inductive bias of training algorithms in contrastive learning.

C.1.1. WHAT MINIMIZERS HAVE CLASS COLLAPSE?

We first define class collapse in terms of the alignment between the model weights and the subclass feature.

Definition C.1 (Exact class collapse). We say exact class collapse happens at test time when:

∀β ∈ Rp, Pr
(x,y,ysub)∼Dorig

(ysubβ
⊤fΘ(x) > 0) = 1/2.

The definition means that no linear classifier on the embeddings of examples drawn from Dorig can predict the subclass label
with accuracy beyond random guess.4

This is different from class collapse on the training set which is not defined on the population set Dorig but on the training
samples D̂orig.

Proposition C.2. For any Θ∗ ∈ minΘ LSCL(Θ), we havefΘ∗(xi) = fΘ∗(xj) for all xi,xj in the training set D̂aug such
that yi = yj .

This directly implies that minimizing the loss results in class collapse on the training set. However, the following theorem
C.3 shows that minimizing the loss does not necessarily lead to class collapse on the test set. To determine whether class
collapse occurs, we need to determine whether the model learns the subclass feature. With a linear model, this exactly
corresponds to constant alignment between weights and the subclass feature.

Theorem C.3 (Minimizing LSCL ̸⇒ Class Collapse). With high probability i.e. at least 1−O(m
2n2

d ) = 1− o(1), there
exists Θ∗ = [W ∗ b∗] such that Θ∗ ∈ minΘ LSCL(Θ)W ∗ has constant alignment with subclass feature v2 i.e.

∥W ∗v2∥ = Ω(1).

Hence, there exists a linear classifier in the embedding space that can predict subclass labels almost perfectly. I.e.,

∃β, s.t. Pr
(x,y,ysub)∼Dorig

(ysubβ
⊤W ∗x > 0|y) = 1− o(1).

We prove the theorem in Appendix G. The proof utilizes Lemma F.1 which implies that, due to the high-dimensionality, the
noise vectors have non-trivial effects on the empirical covariance matrix by rotating its kernel space. This results in the
kernel space to have a Θ(

σξ√
mn

) alignment with the subclass feature. Since minimizers of the loss can behave arbitrarily on
this kernel space, without any additional restriction, they can have any alignment with the subclass feature.

Next, we show that, the minimum norm minimizer exhibits class collapse.

4Actually we are able to analyze a stronger version of class collapse: Pr(x,y,ysub)∼Dorig(fΘ(x)|ysub) = Pr(x,y,ysub)∼Dorig(fΘ(x)),
which means the distributions of embeddings given and not given the subclass label are exactly the same. Nonetheless, we present this
simpler formulation for clarity.
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Theorem C.4 (Minimizing LSCL + Minimum Norm =⇒ Class Collapse). Assume µ2 = 0. Let Θ∗∗ = [W ∗∗ b∗∗] be the
minimum norm minimizer of LSCL, i.e.,

Θ∗∗ = argmin
Θ∗

∥Θ∗∥F s.t.Θ∗ ∈ argmin
Θ

LSCL(Θ).

Then with high probability i.e. at least 1−O(m
2n2

d ) = 1− o(1), W ∗∗ has no alignment with subclass feature v2 i.e.

∥W ∗∗v2∥ = 0.

This means class collapse occurs at test time (Definition C.1), and no linear classifier does better than random guess for
predicting subclass labels.

Theorems C.3 and C.4 show that minimizing the training loss does not necessarily lead to class collapse on test data, but
does with additional constraint on the weights of the model. This is not due to a degenerate solution, as we show that both
minimizers learn the class feature v1 (see corollary F.5).

C.1.2. INTRIGUING PROPERTIES OF GD

We now further our theoretical characterization of class collapse by investigating the setting where LSCL is minimized
by GD. This is an important step toward understanding class collapse in practice, where similar optimization algorithms
are used to minimize the loss. Our findings indicate that it is likely the simplicity bias of commonly used optimization
algorithms that eventually leads to class collapse.

We consider GD with a constant learning rate η. The weights are initialized from a Gaussian distribution, i.e., the initial
weight Θ0 has each of its element drawn from N (0,

σ2
0

d ). And the weights at training epoch t are given by:

Θt = Θt−1 − η∇ΘLSCL(Θt−1).

Early in Training Some Subclasses are Provably Learned. By analyzing the training dynamics of GD, we find that
subclasses are learned early in training.

Theorem C.5 (Early in training subclass features are learned). Assume σ0
√

p
d = o(1) and σξ = o(1). If the subclass feature

has a constant non-zero mean such that 1 + µ2 > ϕ21, then with probability at least 1−O(m
2n2

d + 1
poly(p) ) = 1− o(1) the

following holds:
• ∥W0v2∥ = o(1).

• ∃t = O(ln( 1
σ0

√
d
p )), s.t. ∥Wtv2∥ = Ω(1), and

• ∃β, s.t. Pr(x,y,ysub)∼Dorig(ysubβ
⊤Wtx>0|y)=1− o(1).

The above theorem shows that there exists an epoch where the weights have constant alignment with the subclass feature
and produce distinguishable subclass embeddings (proof in Appendix J).

The key step of our analysis is showing that early in training, GD aligns the weights with the first eigenvector of the
covariance matrix of class centers. This alignment grows exponentially faster than alignments with any other directions.
When 1 + µ2 > ϕ21, the subclass feature has a constant projection onto the first eigenvector and is therefore learned by the
model.

More importantly, the same phenomenon can be observed in neural networks. We use SGD to train a ResNet18 (He et al.,
2016) on CIFAR-100 (Krizhevsky et al., 2009) with supervised CL loss (Khosla et al., 2020) with 20 class (superclass)
labels, and perform linear evaluation on embeddings of test data with 100 subclass (class) labels (see details in Appendix
K). We observe that the subclass accuracy increases during the first 200 epochs before it starts to drop (Figure 3(a)). Some
subclasses can even achieve a high accuracy around 80% (Figure 3(b)). This is surprising as it confirms that models trained
with commonly used loss functions do learn subclass features early in training.

Empirical Evidence Showing that Class Collapse Eventually Happens in (S)GD. We simulate our theoretical analysis
using numerical experiments to show that gradient descent converges to a minimizer that exhibits class collapse, despite
learning subclasses early in training. We visualize the embeddings of test data at different epochs in Figure 1, and plot the

8
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(b) p = 500

Figure 2. ∥Wtv1∥ and ∥Wtv2∥ at different epochs. Both features are learned early in training, but v2 is unlearned later.
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Figure 3. (a) Average subclass accuracy and class accuracy. (b) Accuracy in subclasses ‘road’, ‘rocket’ and ‘sea’. In both plots, the
subclass accuracy increases and then decreases, which confirms that subclasses are learned early in training before class collapse happens.
The class accuracy only increases during training.

alignment between weights and class/subclass features in Figure 2. Subclasses are perfectly separated and the weights align
with both v1 and v2 after around 100 epochs of training. The model then starts unlearning v2 which causes the alignment to
drop, thus subclasses are merged in the embedding space. We also confirm that same conclusion holds for neural networks
in realistic settings. In Figure 3, we see that the subclass accuracy drops after around 200 epochs of training and eventually
reaches a low value. In contrast, the class accuracy does not drop during training.

Minimum Norm Minimizer Exhibits Class Collapse. Note that in Theorem C.5, assuming µ ̸= 0 leads us to discovering
that subclasses are learned early in training. Here, we extend Theorem C.4 to this setting under asymptotic class collapse.

Definition C.6 (Asymptotic Class Collapse). We say asymptotic class collapse happens when ∥Wv2∥ = O(
σξ√
mn

) = o(1).

This definition implies that: (1) representations of subclasses are not well separated, hence it is nearly impossible to
distinguish between them, and (2) the distinguishability of subclasses is at odds with generalization, which improves as
number of augmented views per example m and size of training data n increase. Thus, while this definition is a relaxation
of Definition C.1, practically, this results in equally severe class collapse.

Theorem C.7 (Extension of Theorem C.4 for µ2 ̸= 0). Let Θ∗∗=[W ∗∗ b∗∗] be the minimum norm minimizer of LSCL:

Θ∗∗ = argmin
Θ∗

∥Θ∗∥F s.t.Θ∗ ∈ argmin
Θ

LSCL(Θ).

Then with probability at least 1−O(m
2n2

d ) = 1− o(1), asymptotic class collapse happens, i.e.,

∥W ∗∗v2∥ = O(
σξ√
mn

) = o(1).

C.1.3. SIMPLICITY BIAS OF (S)GD

We reiterate our main findings:

1. Minimizing the supervised contrastive loss does not necessarily lead to class collapse.

2. However, simpler minimizers of the supervised contrastive loss (e.g. minimum norm) do suffer from class collapse.
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3. Optimizing with (S)GD does learn the subclass features early in training, but eventually unlearns them, resulting in
class collapse.

These coupled with the fact that (S)GD is known to have a bias towards simpler solutions (Kalimeris et al., 2019) prompt us
to conjecture:

The simplicity bias of (S)GD leads it to unlearn subclass features, thus causing class collapse.

The simplicity bias of (S)GD has not been rigorously studied for CL, and our results indicate the surprising role it may
play in class collapse. Note that, the supervised contrastive loss is different than common supervised objectives, where
the role of such bias of (S)GD is understood better (Gunasekar et al., 2018; Soudry et al., 2018; Ji & Telgarsky, 2019; Wu
et al., 2019; Lyu et al., 2021). Rather, the supervised CL objective can be reformulated as a matrix factorization objective,
where the debate on the bias of (S)GD (e.g., minimum norm (Gunasekar et al., 2017) or rank (Arora et al., 2019a; Razin
& Cohen, 2020)) is still ongoing.

C.2. Understanding Feature Suppression in Unsupervised CL

Empirically, feature suppression can be observed due to a variety of reasons (Li et al., 2023; Chen et al., 2021; Robinson
et al., 2021). Easy features for unsupervised CL are those that allow the model to discriminate between examples (highly
discriminative). Here, we consider different ways irrelevant features can be easy (highly discriminative) and characterize
how this can lead to feature suppression. We show that the types of feature suppression we consider can be largely attributed
to insufficient embedding dimensionality and/or poor data augmentations. Surprisingly, we find again that the minimum
norm simplicity bias is critical in explaining this phenomenon.

C.2.1. FEATURE SUPPRESSION DUE TO EASY IRRELEVANT FEATURES AND LIMITED EMBEDDING SPACE

In Theorem C.8, we show that easy (discriminative) irrelevant features can suppress the class feature when the embedding
dimensionality is limited. For clarity, we let µ2 = 0.

Theorem C.8 (Feature Suppression 1). Assume p ≤ K. Let L be the (K + 1)-element tuple
[
1, ϕ21, ϕ

2
2,

ϕ2
3

K−2 , . . . ,
ϕ2
K

K−2

]
whose last K elements are the variances of features. If ϕ21 is not among the p largest elements in L, then with probability at
least 1−O(m

2n2

d ) = 1− o(1): (1) there exists a global minimizer Θ∗ of LUCL such that ∥W ∗v1∥ = Ω(1), (2) However,
the minimum norm minimizer Θ∗∗ satisfies ∥W ∗∗v1∥ = 0.

We prove the theorem in Appendix H. The elements except the first one in tuple L can be interpreted as the variance of
examples at each coordinate vk, k = 1, 2, . . . ,K, which indicates how much the examples are discriminated by each feature.
The theorem shows that when the embedding space is not large enough to represent all the K features (which requires K +1
dimensions), the minimum norm minimizer only picks the most discriminative ones. In practice, the embedding space in un-
supervised CL is relatively low-dimensional (compared to input dimensionality) and thus the model cannot fit all the informa-
tion about inputs into the embedding space. As is suggested by Theorem C.8, if the training algorithm prefers functions with
certain simple structures, only the easiest (most discriminative) features that can be mapped into the embedding space by less
complex functions (e.g., smaller norm) are learned. The class features are suppressed if they are not amongst the easiest ones.
Remark C.9. Following the same analysis we can also show that when ϕ1 is among the p largest elements in L, i.e., the class
feature is among the easiest (most discriminative) ones, the class feature v1 is learned by the minimum norm minimizer;
when ϕ1 is exactly on par with some other element as the p-th largest, there exist both minimum norm minimizers that learn
and do not learn the class feature v1.

Numerical Experiments with GD. Our theory for the minimum norm minimizer matches the experimental results for

models trained with GD. We let p = K and let 1 ≥ ϕ22 ≥ ϕ2
3

K−2 ≥ · · · ≥ ϕ2
K−1

K−2 > ϕ21 so that ϕ21 must be among the smallest
two variances i.e. v1 is among the two most difficult features. Then we vary ϕK and see how the trained weights align with
v1. Consistent with Theorem 1, Figure 4 shows that v1 is suppressed when ϕ2

K

K−2 > ϕ21. Interestingly, we also see that the

result at ϕ2
K

K−2 = ϕ21 diverges, indicating that GD can find both minimizers that learn and do not learn v1 when the variances
at v1 and vK are the same.

Empirically Verifying Benefits of Larger Embedding Size. Theorem C.8 also provides one practical solution for feature
suppression due to limited embedding size: increasing the embedding size so that every feature can be learned by the model.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Which Features are Learned by Contrastive Learning?

10−2 10−1 100

ϕ2
K/(K−2)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

|W
fin

al
v 1
|

(a) K = 3, p = 3

10−2 10−1 100 101

ϕ2
K/(K−2)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

|W
fin

al
v 1
|

(b) K = 50, p = 50

Figure 4. The irrelevant feature suppresses the class feature when its variance is beyond the variance of the class feature (the red
vertical line). We let d = 2000, p = K, ϕ1 = 0.8, ϕ2 = 1, µ = 0, ϕ2

k
K−2

> ϕ1,∀k ∈ [K − 1] and vary ϕK . Thus whether ϕ2
1 is among

the p largest variances only depends on ϕK . We train the linear model to convergence. Plots show that the alignment between the trained

weights and v1 drops when ϕK increases. We report the average of 10 runs. The result diverges at ϕ2
K

K−2
= ϕ2

1 indicating that the model
can learn either v1 or vK in this case.
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Figure 5. Effect of embedding size on feature suppression in MNIST RandBit(Chen et al., 2021). Legends show the number of bits in
the extra channel which indicates how easy (discriminative) the irrelevant features are. We observe that (1) increasing the easiness of
irrelevant features exacerbates feature suppression; (2) increasing the embedding size alleviates feature suppression.

Table 2. Effect of embedding size on feature suppression in CIFAR-10/100 RandBit. ‘Acc’ refers to class accuracy and ‘Sub Acc’ refers
to subclass accuracy. We see that increasing embedding size alleviates feature suppression, improving class/subclass accuracy.

w
CIFAR-10 RandBit CIFAR-100 RandBit
Sub Acc Acc Sub Acc Acc

4 34.38 86.73 11.67 23.53
64 71.96 96.82 34.11 52.32

128 76.69 97.65 38.51 57.40

To provide empirical evidence for this, we conduct two sets of experiments:

First, we train 5-layer convolutional networks on the RandomBit dataset with the same setup as in (Chen et al., 2021),
but we vary the embedding size (see details in Appendix K). Varying the # bits in the extra channel intuitively controls
how discriminative the irrelevant feature are, i.e., how easy-to-learn it is for CL. In this setting, the random bit can suppress
the MNIST digits. We make two observations in Figure C.2.1: (1) with a fixed embedding size, increasing easiness (number
of random bits) of the irrelevant features exacerbates feature suppression; (2) with a fixed easiness of irrelevant features,
increasing the embedding size alleviates feature suppression.

Second, we train ResNet18 (He et al., 2016) on the CIFAR-10/100 RandBit Dataset, constructed similarly to the MNIST
RandBit dataset but with images from CIFAR-10/100 (Krizhevsky et al., 2009) (see Appendix K.1). For CIFAR-10, we
use 2 random bits, and for CIFAR-100, we use one random bit as the class irrelevant features. Table 2 presents the test
performance for different values of the model width w, where a larger w indicates a larger embedding size (see Appendix
K.3 for details). On both datasets, increasing the embedding size alleviates feature suppression, leading to improvements
in both class and subclass accuracies. We also provide additional experiments and discussion in Appendix K.3. Both
experimental results confirm the conclusion drawn from the theoretical analysis.
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C.2.2. FEATURE SUPPRESSION DUE TO HIGH-DIMENSIONAL IRRELEVANT FEATURES AND IMPERFECT
AUGMENTATION

Empirically, another form of feature suppression has been observed that cannot be remedied by larger embedding dimen-
sionality (Li et al., 2023). We characterize this form of feature suppression by defining easy irrelevant features as being:
(1) drawn from a high dimensional space so that the collection of irrelevant features is large and discriminating based on
irrelevant features is easier, (2) less altered by data augmentation compared to the class feature.

For (1), formally we assume K = ω(n2), as opposed to assumption D.1 which implies that K is smaller than n. A
consequence of this assumption is that with high probability the n original examples each have a unique irrelevant feature.
For (2) we consider the following imperfect data augmentation:
Definition C.10 (Imperfect data augmentation A ′(·)). For a given example x = µ+ ξ ∈ D̂orig,

A ′(x) =u+ ζ ′v1 + ζ ′′v2 + ξ′,

where ζ ′ ∼ N (0, σ′2
ζ ), ζ ′′ ∼ N (0, σ′′2

ζ ), σ′2
ζ , σ

′′2
ζ ̸= 0 and ξ′ is a new random variable drawn from N (ξ,Σξ) with

rank(Σξ) ≤ m
2 .

In the definition, the data augmentation adds small perturbations (ζ ′ and ζ ′′) to class and subclass features, weakly alters
the noise, but preserves the irrelevant features. For example, on Colorful-Moving-MNIST (Tian et al., 2020) constructed by
assigning each MNIST digit a background object image selected randomly from STL-10, the colorful background objects
are high-dimensional and the colors are invariant to data augmentations without color distortion.

Theorem C.11 (Feature Suppression 2). If K = ω(n2) and augmentation is A ′(·), with probability ≥ 1− o(n
2m2

d + 1
n ) =

1− o(1), the minimum norm minimizer Θ∗ = [W ∗, b∗] satisfies ∥W ∗v1∥ = 0.

This theorem shows that feature suppression can happen even when embedding dimensionality p is arbitrarily large and
helps understand empirical observations made both in our work (Figure C.2.1, the line with 15 bits) and previous work. For
example Li et al. (2023) showed that on Colorful-Moving-MNIST, the colorful background can suppress learning the digits
especially when color distortion is not used in augmentation, and increasing embedding size does not address the issue.

In conclusion, Theorem C.11 highlights that designing data augmentations that disrupt the highly-discriminative irrelevant
features is a key to addressing feature suppression.

C.3. Combining Supervised and Unsupervised CL Losses Can Avoid Both Class Collapse and Feature Suppression

We now consider the following loss which is a weighted sum of the supervised and unsupervised CL loss functions:

Ljoint,β(Θ) = βLSCL(Θ) + (1− β)LUCL(Θ).

Similar loss functions have been proposed recently with notable empirical success. For example, Chen et al. (2022) put
forth a weighted sum of supervised CL loss and class-conditional InfoNCE (which has similar effect as LUCL in our setting)
to avoid class collapse. Islam et al. (2021) empirically observed that the joint objective of supervised and unsupervised
contrastive loss leads to better transferability of the learned models than their supervised counterparts. However, we still
lack a theoretical understanding of why this weighted sum of losses can outperform both losses.

From our investigation of class collapse and feature suppression, the benefit of the joint objective Ljoint becomes evident:
the unsupervised term in Ljoint increases the chance of learning features that do not appear relevant to the labels but might
be useful for downstream tasks, while the supervised term in Ljoint ensures that even hard-to-learn class features are learnt.
Thus, Ljoint can learn rich representations capturing more task relevant information than either LUCL(Θ) or LSCL(Θ). We
show below that with an appropriate choice of β, Ljoint can provably succeed where LSCL fails due to collapse and LUCL
fails due to feature suppression (for clarity, we let µ = 0).

Theorem C.12. W.L.O.G., assume ϕ3 ≥ ϕ4 ≥ · · · ≥ ϕK . If p ≤ K, ϕ22 >
ϕ2
p−2

K−2 and ϕ21 <
ϕ2
p−1

K−2 , then by Theorem C.4
the minimum norm minimizer of LSCL suffers from class collapse and by Theorem C.8 the minimum norm minimizer of
LUCL suffers from feature suppresion. However, for constant β ∈ (0, 1), the minimum norm minimizer of Ljoint,β , denoted by
Θ∗ = [W ∗ b∗], satisfies ∥W ∗v1∥ = Ω(1) and ∥W ∗v2∥ = Ω(1).

Empirically Verifying Benefits of the Joint Loss. We empirically examine the impact of the joint loss on MNIST
RandBit, CIFAR-100, and CIFAR-100 RandBit. The training details are in Appenidx K.2. The results indicate that the
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Table 3. Joint loss alleviates class collapse on CIFAR-100.
Loss Subclass Acc
SCL 26.11

Joint loss (β = 0.8) 41.37

Table 4. Joint loss alleviates feature suppresion on MNIST RandBit.
Loss Class Acc
UCL 61.21

Joint loss (β = 0.5) 79.37

Table 5. Joint loss alleviates both class collapse and feature suppresion on CIFAR-100 RandBit.
Loss Subclass Acc Class Acc
SCL 28.13 61.10
UCL 34.11 52.32

Joint loss (β = 0.8) 35.72 63.94

joint loss significantly improves performance in scenarios where SCL suffers from class collapse (Table 3) and UCL
suffers from feature suppression (Table 4). Furthermore, on CIFAR-100 RandBit dataset, where both phenomena can occur
simultaneously, the joint loss effectively alleviates both issues (Table 5).

D. Preliminaries for The Proofs
D.1. Additional Assumptions, Propositions and Definitions

We assume the dataset is balanced. This can be approximately achieved when n is sufficiently larger than K. While our
analysis can be generalized to consider imbalanced data, this is outside the scope of this work.

Assumption D.1 (Balanced Dataset). All combinations of (yi, ysub,i, ki, ρi) are equally represented in D̂orig.

The following proposition shows that class collapse on training set is directly implied by minimizing the training loss.

Proposition D.2. For any Θ∗ ∈ minΘ LSCL(Θ), we havefΘ∗(xi) = fΘ∗(xj) for all xi,xj in the training set D̂aug such
that yi = yj .

The following definition defines asymptotic class collapse, which we will demonstrate in Theorem C.7.

Definition D.3 (Asymptotic Class Collapse). We say asymptotic class collapse happens when ∥Wv2∥ = O(
σξ√
mn

) = o(1).

D.2. Effective dataset

Analyzing training a linear model with bias on the data is equivalent to analyzing trainng a linear model without bias on:

{
[
1
xi

]
: xi ∈ Daug}. Equivalently we can consider a dataset distribution where

x =u+ ξ,

where u =v0 + yϕ1v1 + (ysubϕ2 + µ)v2 + ρϕkvk.

The definitions are identical to the one in Section B.1 except that each data now is in Rd+1 and has one constant feature v0

orthogonal to other v’s. We train a linear model f(x) = Wx on such data. The definition of other notations such as D̂aug in
the following analysis are also adapted to this dataset accordingly. Other notations such as D̂aug in the subsequent analysis
are adjusted accordingly to accommodate this dataset.
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D.3. Loss functions

The loss functions can be rewritten as follows

LSCL =− 2Êi∈[n],x∈Ai,x+∈Ai

[
x⊤W⊤Wx+

]
+ Êx∈D̂aug,x−∈D̂aug

[(
x⊤W⊤Wx−)2] (3)

=− Tr(2M+WW⊤) + Tr(MW⊤WMW⊤W )

LUCL =− 2Êc∈{−1,1},x∈Sc,x+∈Sc

[
x⊤W⊤Wx+

]
+ Êx∈D̂aug,x−∈D̂aug

[(
x⊤W⊤Wx−)2] (4)

=− Tr(2M̃WW⊤) + Tr(MW⊤WMW⊤W )

Ljoint =(1− β)LSCL + βLUCL (5)

=− Tr(2M̄WW⊤) + Tr(MW⊤WMW⊤W ),

where we define the following

Definition D.4. M ,M+,M̃ are the covariance matrices of training examples, class centers and augmentation centers,
respectively

M =
1

mn

mn∑
i=1

xix
⊤
i

M+ =
1

2

∑
c∈{−1,1}

(
2

mn

∑
x∈Sc

x)(
2

mn

∑
x∈Sc

x)⊤

M̃ =
1

n

n∑
i=1

(
1

m

∑
x∈Ai

x)(
1

m

∑
x∈Ai

x)⊤,

and

M̄ =(1− β)M+ + βM̃ .

E. Minimizers of Loss Functions
We start with a technical lemma which we will need:

Lemma E.1. The product of two positive semidefinite matrices is diagonalizable.

Next, we present a lemma that facilitates the analysis of minimizers for various contrastive loss functions. To apply the
lemma, simply substitute the respective covariance matrices (M , M+, M̃ ) into P and Q as indicated.

Lemma E.2. Let P ,Q ∈ Rd+1 be positive semidefinite matrices such that colsp(P ) ⊂ colsp(Q). Consider the function
L : Rp×(d+1) → R given by

L(W ) = Tr[−2W⊤WP +W⊤WQW⊤WQ] (6)

Then W is a global minimizer of L if and only if

W⊤WQ = [Q†P ]p

where notation [A]p represents the matrix composed of the first p eigenvalues and eigenvectors of a positive semidefinite A
(if p ≥ rankA then [A]p = A).

Moreover, if p ≥ rank(P ), then W ∗∗ is a minimum norm global minimizer if and only if

W ∗∗⊤W ∗∗ = Q†PQ†

Proof. First consider points that satisfy the first order condition

∇W (L) = −4WP + 4WQW⊤WQ = 0 (7)
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where ∇W (L) is the matrix of partial derivatives of L with respect to each entry of W .

Since Q is positive semidefinite, it decomposes Rd+1 into the orthogonal direct sum ker(Q) ⊕ colsp(Q). Observe that
both subspaces are invariant under both P and Q.

Now let v ∈ colsp(Q) ∩ ker(WQ). Note that Pv ∈ colsp(Q), so P v = QQ†P v. Then from equation 7,

0 = (WP −WQW⊤WQ)v = WQ(Q†P −W⊤WQ)v (8)

If in addition we assume v ∈ ker(WQ), then

0 = WQ(Q†Pv)

namely Q†Pv ∈ ker(WQ). But colsp(Q) is also Q†-invariant, so Q†Pv ∈ colsp(Q). We conclude that ker(WQ) ∩
colsp(Q) is Q†P -invariant. Since Q† and P are positive semidefinite, by E.1 Q†P is diagonalizable. The only invariant
subspaces of a diagonalizable operator are spans of its eigenvectors, so ker(WQ) ∩ colsp(Q) is the span of eigenvectors of
Q†P .

Let colsp(Q) = ker(WQ)∩ colsp(Q)⊕U , where U is the span of the remaining eigenvectors of Q†P in colsp(Q). Then
by equation 8, W⊤WQ = Q†P on U .

Thus we have a basis v1, . . . ,vr, . . . ,vs, . . . ,vd s.t. Span(v1, . . . ,vr) = U, Span(vr+1, . . . ,vs) = ker(WQ) ∩
colsp(Q), Span(vs+1, . . . , vd+1) = kerQ, and in this basis

Q†P =



λ1
. . .

λr
λr+1

. . .
λs

0
. . .

0



W⊤WQ =



λ1
. . .

λr
0

. . .
0

0
. . .

0



W⊤WP =



λ21
. . .

λ2r
0

. . .
0

0
. . .

0
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with λ1, . . . , λr, . . . , λq ̸= 0 for some r ≤ q ≤ s, where r = rankW ≤ p, q = rank(P ).

Then for all such W ,

L = Tr[−2W⊤WP +W⊤WQW⊤WQ]

= −2

r∑
i=1

λ2i +

r∑
i=1

λ2i

= −
r∑

i=1

λ2i

It is clear from the above expression that the minimum among critical points is achieved if and only if

W⊤WQ = [Q†P ]p

(note that if matching anything beyond the qth eigenvalue is trivial since all such eigenvalues are zero).

It remains to check the behavior as ∥W ∥F grows large. Equivalently, W⊤W has a large eigenvalue λ. Let w be a
corresponding eigenvector. If w ∈ kerQ, then Qw = Pw = 0, so we see that the loss is unchanged. Otherwise, w has
some nonzero alignment with colsp(W ). But then Tr[W⊤WQW⊤WQ] grows quadratically in λ, but Tr[−2W⊤WP ]
grows at most linearly in λ, hence the loss is large. We conclude that the previously found condition in fact specifies the
global minimizers of L.

From now on, assume that p ≥ q. Then the global minimum is achieved if and only if

W⊤WQ = Q†P (9)

Let us now consider the minimum norm solution, i.e. the one that minimizes Tr(W⊤W ). Note that W⊤W and Q†PQ†

are positive semidefinite. Let B be an orthonormal basis of eigenvectors for colsp(Q), C an orthonormal basis for kerQ.
Then in the orthonormal basis B ∪ C, we have the following block form of Q†PQ†

Q†PQ† =

(
A 0
0 0

)
(10)

where A is positive semidefinite.

Now equation 9 implies that WW⊤ has the form

W⊤W =

(
A B
B⊤ C

)
(11)

where C is also positive semidefinite matrix. Then ∥W ∥F = Tr[W⊤W ] is minimized exactly when Tr[C] = 0. But this
holds if and only if C = 0. Now suppose for the sake of contradiction B ̸= 0, say bij ̸= 0 for some i, j. Then W⊤W
contains a submatrix (

aii bij
bij 0

)
(12)

which has negative determinant. But this implies that W⊤W is not positive semidefinite, a contradiction. We conclude that
B = 0 so that the minimum norm solution is precisely

W ∗∗⊤W ∗∗ = Q†PQ†.

This completes the proof.
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F. Some Properties of The Covariance Matrices

We assume
σ2
ξ

mn = o(1).

With probability ≥ 1−O(m
2n2

d ), we have that ξ⊤i vk = 0, ∀k, i and ξ⊤i ξj = 0, ∀i, j. The following discussion focuses on
the properties of M , M+, and M̃ when this condition is met.

Write X = V

[
S

σξImn

]
where V = [v0,v1 . . . vK . . .vK+1 . . .vmn+K ] where vK+i is the noise vector selected by

example xi, and

S =



1 1 . . . 1
y1ϕ1 y2ϕ1 . . . ymnϕ1

µ+ ysub,1ϕ2 µ+ ysub,2ϕ2 . . . ysub,mnϕ2
ρ11k1=3ϕ3 ρ21k2=3ϕ3 . . . ρmn1kmn=3ϕ3
ρ11k1=4ϕ4 ρ21k2=4ϕ4 . . . ρmn1kmn=4ϕ4

...
...

. . .
...

ρ11k1=KϕK ρ21k2=KϕK . . . ρmn1kmn=KϕK


=S′Ȳ , (13)

where

S′ :=



√
mn 0 0 0 . . . 0
0

√
mnϕ1 0 0 . . . 0√

mnµ 0
√
mnϕ2 0 . . . 0

0 0 0
√

mn
K−2ϕ3 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . .
√

mn
K−2ϕK


,

and

Ȳ :=



1√
mn

1√
mn

. . . 1√
mn

y1
1√
mn

y2
1√
mn

. . . ymn
1√
mn

ysub,1
1√
mn

ysub,2
1√
mn

. . . ysub,mn
1√
mn

ρ11k1=3

√
K−2
mn ρ21k2=3

√
K−2
mn . . . ρmn1kmn=3

√
K−2
mn

ρ11k1=4

√
K−2
mn ρ21k2=4

√
K−2
mn . . . ρmn1kmn=4

√
K
mn

...
...

. . .
...

ρ11k1=K

√
K−2
mn ρ21k2=K

√
K−2
mn . . . ρmn1kmn=K

√
K−2
mn


It should be noted that the rows of Ȳ are orthonormal due to the assumption of a balanced dataset. Consequently, to obtain
the singular value decomposition (SVD) of S, it suffices to find the SVD of S′ = P ′Λ′Q′⊤. Moreover, the right singular
vectors of S with non-zero singular values are given by the rows of Q′⊤Ȳ .

We write M as V GV ⊤ where G is given by [
1

mnSS
⊤ σξ

mnS
σξ

mnS
⊤ σ2

ξ

mnImn

]
.

Now we are ready to show the following lemma which describes the SVD of G.
Lemma F.1. Let S ∈ R

K×nm be a rank-K matrix with SVD PΛQ⊤, where P ∈ R
K×K ,Λ ∈ R

K×mn and Q ∈
R

mn×mn. The mn none-zero eigenvalues of the following matrix G[
1

mnSS
⊤ σξ

mnS
σξ

mnS
⊤ σ2

ξ

mnImn

]
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are given by
σ2
ξ

mn +
λ2
1

mn ,
σ2
ξ

mn +
λ2
2

mn , . . . ,
σ2
ξ

mn +
λ2
K

mn ,
σ2
ξ

mn , . . . ,
σ2
ξ

mn , with the corresponding eigenvectors 1√
1+r21

p1

r1√
1+r21

q1

 ,
 1√

1+r22
p2

r2√
1+r22

q2

 , . . . ,
 1√

1+r2K
pK

rK√
1+r2K

qK

 , [ 0K

qK+1

]
, . . . ,

[
0K

qmn

]
, where rk =

σξ

λk
.

Proof. Let
[
Pa
Qb

]
where a ∈ RK and b ∈ Rmn be an eigenvector of G. By the definition of eigenvector there should exist

α such that G
[
Pa
Qb

]
= α

[
Pa
Qb

]
, i.e.,

{
1

mnPΛΛ⊤a+
σξ

mnPΛb = αPa
σξ

mnQΛ⊤a+
σ2
ξ

mnQb = αQb,

which reduces to {
(αIK − 1

mnΛΛ⊤)a =
σξ

mnΛb
σξ

mnΛ
⊤a = (α− σ2

ξ

mn )b.

Firstly, we observe that the rank of G is at most mn because G = 1
mn

[
S

σξImn

] [
S

σξImn

]⊤
. Then it is easy to check that

the eigenvalues and eigenvectors in Lemma F.1 satisfy the above conditions and the eigenvectors are indeed orthonormal,
which completes the proof.

Corollary F.2. The projection of v2 onto kerM has magnitude Θ(
σξ√
mn

).

Corollary F.3. . Assuming the dataset is balanced, then√
v⊤
2 M

†M+M †v2 =

{
0, if µ = 0

O(
σξ√
mn

), if µ ̸= 0 and µ = Θ(1).

Proof. Let LAL⊤ be the eigendecomposition of G. Then

M †v2 = V LA†L⊤



0
0
1
0
...
0


.

When µ = 0, we can express the SVD of S (equation 13) and apply Lemma F.1 to obtain the following result.

λ3 =
√
mnϕ2, a3 =

σ2
ξ

mn
+ ϕ22, r3 =

σξ√
mnϕ2

pk = ek, ∀k ∈ [K] and q3 =


1√
mn

ysub,1
1√
mn

ysub,2

...
1√
mn

ysub,mn

 , and l3 =

 1√
1+r23

p3

r3√
1+r23

q3

 .
Thus

M †v2 =
1

a3
√
1 + r23

V l3

=
1

a3
√
1 + r23

(
1√

1 + r23
v2 +

r3√
1 + r23

mn∑
i=1

1√
mn

ysub,ivK+i).
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Let x̄y be the average of examples with label y and let Sy collects indices of examples with label y. Then

x̄y = v0 + v1 +
2σξ
mn

∑
i∈Sy

vK+i, (14)

and

x̄⊤
y M

†v2 =
r3

a3(1 + r23)

2σξ
mn

∑
i∈Sy

1√
mn

ysub,i = 0.

Write M+ as

M+ =
1

2
(x̄+1x̄

⊤
+1 + x̄−1x̄

⊤
−1).

Then

v⊤
2 M

†M+M †v2 =
1

2
((v⊤

2 M
†x̄+1)

2 + (v⊤
2 M

†x̄−1)
2) = 0.

When µ ̸= 0, then there are at most two of pk’s that are not orthogonal to e3 (say p1 and p3). Additionally, all of their
elements, except for the first one, are zero. The remaining corresponding quantities satisfy.

λ1, λ3 = Θ(
√
mn),

a1 =
λ21
mn

+
σ2
ξ

mn
, a3 =

λ23
mn

+
σ2
ξ

mn

r1 =
σξ
λ1
, r3 =

σξ
λ3
,

and q1 and q3 are just linear combinations of ȳsub and 1√
mn

1, where ȳsub is a vector whose i-th element is 1√
mn

ysub,i. Then

M †v2 =V

[
1

a1

1√
1 + r21

c3,1l1 +
1

a3

1√
1 + r23

c3,3l3

]

where ci,j = p⊤
j ei are constants. For i = 0, 2

v⊤
0 M

†v2 =e⊤1

[
1

a1

1√
1 + r21

c3,1l1 +
1

a3

1√
1 + r23

c3,3l3

]

=
1

a1

1

1 + r21
c3,1c1,1 +

1

a3

1

1 + r23
c3,3c1,3

=(
mn

λ21
−Θ(

σ2
ξ

mn
))(1−Θ(

σξ
λ1

))c3,1c1,1 + (
mn

λ23
−Θ(

σ2
ξ

mn
))(1−Θ(

σξ
λ3

))c3,3c1,3

=

where |ϵ1| = O(
σξ√
mn

). Similarly,

v⊤
2 M

†v2 =
mn

λ21
c3,1c3,1 +

mn

λ23
c3,3c3,3 + ϵ2,

where |ϵ2| = O(
σξ√
mn

). For i > K

v⊤
i M

†v2 =viV

[
1

a1

1

1 + r21
c3,1l1 +

1

a3

1

1 + r23
c3,3l3

]
=e⊤i

[
1

a1

1

1 + r21
c3,1l1 +

1

a3

1

1 + r23
c3,3l3

]
=ϵ3,
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where |ϵ3| = O(
σξ

mn ). Additionally,

x̄y = v0 + v1 + µv2 +
2σξ
mn

∑
i∈Sy

vK+i.

Then

x̄⊤
y M

†v2 =
mn

λ21
c3,1c1,1 +

mn

λ23
c3,3c1,3 +

mn

λ21
c3,1c3,1 +

mn

λ23
c3,3c3,3 +O(

σξ√
mn

).

By straightforward calculation, we can verify that mn
λ2
1
c3,1c1,1 +

mn
λ2
3
c3,3c1,3 +

mn
λ2
1
c3,1c3,1 +

mn
λ2
3
c3,3c3,3 = 0. This equation

can be equivalently examined as the satisfaction of the following condition:

[1 µ]

[
1 µ
µ µ2 + ϕ22

]−1 [
0
1

]
= 0.

Therefore |x̄⊤
y M

†v2| = O(
σξ√
mn

), and consequently
√
v⊤
2 M

†M+M †v2 = O(
σξ√
mn

).

Corollary F.4. Similar to Corollary F.3, we also have
√
v⊤
k M

†M+M †vk = 0, k = 3, 4, . . . ,K.

Corollary F.5.
√

v⊤
1 M

†M+M †v1 = Θ(1). It can be proved using the same strategy as in Corollary F.3.

Lemma F.6. (1) The first K eigenvectors/eigenvalues of M̃ match those of M . (2) M †M̃ is identity on colsp(M̃) and
null on ker(M̃), i.e., M †M̃ = M̃ †M̃ .

Proof. We assign indices to the training examples such that the augmented examples from the same original example are
indexed from (l− 1)×m+ 1 to l×m, where l ranges from 1 to n. Next, we define matrix Ṽ = [ṽ1, ṽ2, . . . , ṽn] ∈ Rd×n,
where

ṽi =vi, ∀1 ≤ i ≤ K,

ṽi =
1√
m

m∑
j=1

vK+(i−1)×m+j , ∀K + 1 ≤ i ≤ n.

In other words, Ṽ can be written as

Ṽ = V T ,

where

T =


IK 0K×n

0mn×K


1√
m
1m×1 0 0 . . . 0

0 1√
m
1m×1 0 . . . 0

0 0 1√
m
1m×1 . . . 0




Note that, by the definition of our augmentation, the center of augmentations of the i-th original example, i.e., x̃i =
1
m

∑m
j=1 xK+(i−1)×m+j , can be considered as an example with the same features as xi but with an added noise term of

σξ√
m
ṽi. Therefore we can change the basis to Ṽ and express M̃ as

M̃ = Ṽ G̃Ṽ ⊤,

where

G̃ =

[
1
n S̃S̃

⊤ 1
n

σξ√
m
S̃

1
n

σξ√
m
S̃⊤ 1

n

σ2
ξ

m In

]

20



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Which Features are Learned by Contrastive Learning?

and

S̃ = S̃′Ȳorig, (15)

where

S̃′ :=



√
n 0 0 0 . . . 0
0

√
nϕ1 0 0 . . . 0√

nµ 0
√
nϕ2 0 . . . 0

0 0 0
√

n
K−2ϕ3 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . .
√

n
K−2ϕK


,

and

Ȳorig :=



1√
n

1√
n

. . . 1√
n

y1
1√
n

y2
1√
n

. . . yn
1√
n

ysub,1
1√
n

ysub,2
1√
n

. . . ysub,n
1√
n

ρ11k1=3

√
K−2
n ρ21k2=3

√
K−2
n . . . ρn1kn=3

√
K−2
n

ρ11k1=4

√
K−2
n ρ21k2=4

√
K−2
n . . . ρn1kn=4

√
K
n

...
...

. . .
...

ρ11k1=K

√
K−2
n ρ21k2=K

√
K−2
n . . . ρn1kn=K

√
K−2
n


orig

. (16)

We note that we use the subscript ‘orig’ of a matrix to indicate that its elements represent the corresponding quantities on
the original dataset (e.g., yi is the label of the i-th original example). Let P̃ ′Λ̃′Q̃′⊤ be the SVD of S̃. Similar to equation
13, we observe that P̃ ′Λ̃′(Q̃′⊤Ȳorig) serves as an eigendecomposition of S̃.

Now we make the following observations:

1. By Lemma F.1 (with G replaced by G̃) and the fact that Λ̃′ collects the eigenvalues of S̃, the eigenvalues of G̃ are
σ2
ξ

mn +
λ′2
1

n ,
σ2
ξ

mn +
λ′2
2

n , . . . ,
σ2
ξ

mn +
λ′2
K

n ,
σ2
ξ

n , . . . ,
σ2
ξ

n , which are also the eigenvalues of M̃ because Ṽ has orthonormal
columns. With the observation that S̃′ = 1√

m
S′ (S′ is defined in equation 13), we further conclude that the above

eigenvalues equal eigenvalues of G and therefore M .

2. Let q̃i be the i-th column of Ȳ ⊤
origQ̃

′. By Lemma F.1 (substitute G with G̃), the i-th (i ≤ K) eigenvector of G̃ is given

by

[ 1√
1+r̃2i

p̃′
i

r̃i
1+r̃2i

q̃i

]
=

[ 1√
1+r̃2i

pi

r̃i
1+r̃2i

q̃i

]
, where r̃i =

σξ√
mλ′

i
=

σξ

λi
. The corresponding eigenvector of M̃ is V T

[ 1√
1+r̃2i

pi

r̃i
1+r̃2i

q̃i

]
.

Observe that T Ȳ ⊤
orig = Ȳ ⊤, therefore V T

[ 1√
1+r̃2i

pi

r̃i
1+r̃2i

q̃i

]
= V

[ 1√
1+r2i

pi

ri
1+r2i

qi

]
which is the i-th eigenvector of M .

Combining the above two leads to the conclusion that the firstK eigenvectors/eigenvalues of M̃ and M match. Additionally,
we observe that colsp(M̃) ⊆ colsp(M). Therefore the span of the last n−K eigenvectors of M̃ is a subspace of the span
of the last mn−K eigenvectors of M . Since Lemma F.1 tells us that the remaining mn−K eigenvalues of M are equal,
M is identity on the span of the last mn−K eigenvectors. Thus M is identity on the span of the last n−K eigenvectors
of M̃ . Now we can conclude that M †M̃ = M̃ †M̃ .

Lemma F.7. Suppose that the first mn
2 examples have class label +1 and the others have class label −1. Let L+A+L+⊤
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(where L+ ∈ Rd×2) be the eigendecomposition of M+, then

l+1 = V



1√
1+µ2+

σ2
ξ

mn

0
µ√

1+µ2+
σ2
ξ

mn

0(K−2)×1
σξ

mn

√
1+µ2+

σ2
ξ

mn

1mn
2 ×1

σξ

mn

√
1+µ2+

σ2
ξ

mn

1mn
2 ×1


, l+2 = V



0
ϕ1√

ϕ2
1+

σ2
ξ

mn

0
0(K−2)×1
σξ

mn

√
ϕ2
1+

σ2
ξ

mn

1mn
2 ×1

−σξ

mn

√
ϕ2
1+

σ2
ξ

mn

1mn
2 ×1


, (17)

a1 = 1 + µ2 +
σ2
ξ

mn
, a2 = ϕ21 +

σ2
ξ

mn

G. Class Collapse in Supervised CL
G.1. Proof of Theorem C.3

Let l⊥ be the projection of v2 onto kerM . By Corollary F.2, ∥l⊥∥ = Θ(
σξ√
mn

). Let a = mn
σ2
ξ
l⊥. We can construct a W ∗

that satisfies the following

W ∗⊤W ∗ = M †M+M † + aa⊤,

which, by Lemma E.2, satisfies the condition for being a minimizer of the loss. In the meantime, W ∗ also satisfies
∥W ∗v2∥ = Θ(1) by Corollary F.2. Note that both v2 and the projection of v2 onto colsp(M) is orthogonal to vk (1 ≤
k ≤ K, k ̸= 2) as well as vk (k > mn) by Lemma F.1, therefore

l⊥is also orthogonal to vk, for any k s.t. 1 ≤ k ≤ K, k ̸= 2 and k > mn. (18)

Then, for x from Dorig the following holds true

W ∗x = c0v0 + c1yv1 + ysubc2v2 + hx +W ∗ξ,

where c1, c2 are Θ(1), and hx is orthogonal to vk, k = 0, . . . ,K and hx ∈ colsp(M) (by Lemmas F.1, F.5, F.4, equation
18 and that ∥W ∗v2∥ = Θ(1)). Let β = c2v2, then

β⊤W ∗x = ysubc
2
2 + β⊤W ∗ξ.

With probability ≥ 1− mn
d , ξ /∈ {vk}mn

k=1, which indicates that W ∗ξ = 0 by Lemma F.1 and equation 18. Therefore we
can conclude

Pr(ysubβ
⊤W ∗x > 0|y) ≥ 1− mn

d
= 1− o(1).

G.2. Proof of Theorems C.4 and C.7

Theorems C.4 and C.7 and can be proved by invoking Lemma E.2 and Corollary F.3.

H. Feature Suppression in Unsupervised CL
H.1. Feature Suppression 1

By Lemmas E.2 and F.6, when p < K, any global minimizer of LUCL satisfies

W⊤WM =

p∑
i=1

rir
⊤
i , (19)
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where {ri}pi=1 can be an orthonormal basis of any p-dimensional subspace of colsp(M̃). By equation 13 and Lemmas F.1

and F.6, M and M̃ each have an eigenvector c1 with eigenvalue
σ2
ξ

mn + ϕ21 and a 1√
1+

σ2
ξ

mnϕ2
1

alignment with v1, with the

other eigenvectors having no alignment with v1. Thus if we include c1 in {ri}pi=1 and let W⊤W be null on kerM , then
the constructed W is a minimizer of LUCL with Θ(1) alignment with v1. Now let’s look at the minimum norm minimizer,
which should satisfy

W⊤W =

p∑
i=1

rir
⊤
i M

†,

where {ri}pi=1 is selected such that W has the smallest norm. By Lemma F.6, {ri}pi=1 should be the p-
eigenvectors of M with largest eigenvalues (so that the inverse of the eigenvalues are among the smallest). If among
(1+µ2+ϕ2

2)+
√

(1+µ2+ϕ2)2−4ϕ2
2

2 ,
(1+µ2+ϕ2

2)−
√

(1+µ2+ϕ2)2−4ϕ2
2

2 , ϕ3√
K−2

, . . . , ϕK√
K−2

there are p elements larger than ϕ1, then
σ2
ξ

mn + ϕ21 is not among the p largest eigenvalues of M . Thus c1 is not included in {ri}pi=1 and the corresponding W is
orthogonal to v1.

H.2. Feature Suppression 2

We first present our result under slightly technical conditions.

Lemma H.1. Let v1, . . . ,vC ∈ Rd be nonzero and orthogonal, U,A are subspaces that are orthogonal to each other and
all the vi. Suppose we have a data distribution D = {(vyi +uyi +ai, yi)}ni=1 ⊂ Rd×{1, . . . , C}, where ui ∈ U,ai ∈ A
for all i ∈ {1, . . . , n} (namely all examples in the same class c share the same vc and uc).

Denote zyi = vyi + uyi , and let M ,M+ be the matrices defined for this dataset, and let Z,Z+ and A,A+ be the
corresponding matrices when the data is {(zyi

, yi)} and {(ai, yi)}, respectively. Suppose that (A −A+)v ̸= 0 for all
v ∈ Rd s.t. Av ̸= 0 and the output dimension p ≥ C. Then W⊤W = Z† is the minimum norm solution to the contrastive
learning objective on D.

Proof. In this proof, we will use E to represent the empirical expectation over the dataset D. Also, let nc denote the number
of examples in class c.

We first derive the following expression for A+:

A+ = E[aiz
⊤
yi
]Z†

E[zyia
⊤
i ] (20)

Define B = [
√
n1z1 . . . ,

√
nCzC ] ∈ Rd×C ,C = [a∗

1, . . . ,a
∗
C ] ∈ Rd×C , where nc is the number of examples in class c

and a∗
c = 1√

nc

∑
yi=c ai. Then

E[aiz
⊤
yi
]Z†

E[zyia
⊤
i ] =

1

n
CB⊤

(
1

n
BB⊤

)†
1

n
BC⊤ (21)

Now B has full column rank, so B⊤(BB⊤)†B = I . Thus

E[aiz
⊤
yi
]Z†

E[zyi
a⊤
i ] =

1

n
CC⊤ (22)

=

C∑
c=1

nc
n
Eyi=c[ai]Eyi=c[ai]

⊤ (23)

= A+ (24)

Now we show that W⊤W = Z† is a global minimizer. It suffices to show that MW⊤WM = M+. Note that by
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assumption, we have ⟨zi,aj⟩ = 0 for all i ∈ {1, . . . , C}, j ∈ {1, . . . , n}, so we have

MZ†M = E[(zyi
+ ai)(zyi

+ ai)
⊤]M †

∗E[(zyi
+ ai)(zyi

+ ai)
⊤] (25)

= (Z +E[zyi
a⊤
i ] +E[aiz

⊤
yi
] +A)Z†(Z +E[zyi

a⊤
i ] +E[wiz

⊤
yi
] +A) (26)

= ZZ†Z +ZZ†
E[zyi

a⊤
i ] +E[aiz

⊤
yi
]Z†Z +E[aiz

⊤
yi
]Z†

E[zyi
a⊤
i ] (27)

= Z +E[zyi
a⊤
i ] +E[aiz

⊤
yi
] +A+ (28)

= Z+ +E[zyi
a⊤
i ] +E[aiz

⊤
yi
] +A+ (29)

= M+ (30)

We now want to show that this is the minimum norm solution. It is sufficient to show that im(W⊤W ) = im(Z†) =
im(Z) ⊂ im(M). Note that im(M) ⊂ im(A)⊕ im(Z), so we can restrict M to this subspace. We will show that M is
invertible on im(A)⊕ im(Z). Suppose v = z + a with z ∈ im(Z),a ∈ im(A),Mv = 0. This implies that

Zz +E[zyi
a⊤
i ]a = 0 (31)

E[aiz
⊤
yi
]z +Aa = 0 (32)

Left-multiplying the first equation by E[ n
nyi

∥vyi
∥2aiv

⊤
i ], by orthogonality we have

0 = E

[
n

nyi
∥vyi

∥2
aiv

⊤
yi

] (
E[zyi

z⊤
yi
]z +E[zyi

a⊤
i ]a

)
= E

[
n

nyi
∥vyi

∥2
aiv

⊤
yi

] (
E[(vyi

+ uyi
)z⊤

yi
]z +E[(vyi

+ uyi
)a⊤

i ]a
)

= E

[
n

nyi
∥vyi

∥2
aiv

⊤
yi

] (
E[uyi(z

⊤
yi
z + a⊤

i a)] +E[vyi(z
⊤
yi
z + a⊤

i a)]
)

= E

[
n

nyi∥vyi∥2
aiv

⊤
yi

]
E[vyi(z

⊤
yi
z + a⊤

i a)]

=

C∑
c=1

1

nnc∥vc∥2

(∑
yi=c

ai

)
v⊤
c vc

(
ncz

⊤
c z +

∑
yi=c

a⊤
i a

)

=

C∑
c=1

1

nnc

(∑
yi=c

ai

)(
ncz

⊤
c z +

∑
yi=c

aia

)

=
1

n2

C∑
c=1

1

n

(∑
yi=c

ai

)
z⊤
c z +

1

nnc

(∑
yi=c

ai

)(∑
yi=c

ai

)⊤

a

= E[aiz
⊤
yi
]z +A+a

Now substituting into the second equation, we find that

(A−A+)a = 0 (33)

But our assumptions imply that a = 0. Returning to the first equation, we now have Zz = 0. But since Z is diagonalizable,
Z must be invertible on its image, hence z = 0. We conclude that v = 0. This completes the proof.

We now want to show that we can simplify some of the conditions of the previous lemma to linear independence.

Lemma H.2. Suppose d ≥ 3n − 2 and x1, . . . ,xn ∈ Rd are linearly independent. Then there exists a set of nonzero
orthogonal vectors v1, . . . ,vn s.t. xi = vi + ui and vi,uj are orthogonal for all i,∈ {1, . . . , n}.
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Proof. WLOG assume the xi are contained in the span of the first n basis vectors. The lemma amounts to finding an

orthonormal matrix Ω =

(
A B
C D

)
s.t.

(
A B
C D

)(
X
0

)
=

(
AX
CX

)
=

(
Σ
F

)
(34)

where Σ is diagonal. Since the xi are linearly independent, X is invertible, so there exists A′ s.t. A′X is diagonal.

We now want to construct a matrix C such that
(
A′

C ′

)
has orthogonal columns, all with norm l > 0. Note that C ′ has at

least 2n − 2 rows. Set C ′
11 = 1, and the remaining entries in the first row so that when considering A and the first row

of C ′, the first column is orthogonal to every other column. Now leave C ′
21 = 0, set C ′

22 = 1, and fill out the remaining
entries in the second row so that when considering A and the first two rows of C ′, the second column is orthogonal to the
remaining columns. Note that the first column remains orthogonal to all other columns. Continuing in this fashion, we can
use the first n− 1 rows of C ′ to guarantee that all n columns are orthogonal. Finally, suppose without loss of generality that
whhen considering the A′ and the first n− 1 rows of C ′, the first column has the largest norm l. For each of the remaining
n − 1 rows, set the jth row to have all zero entries except possibly in the (j + 1)-th column, which is set so that the jth
column will also have norm l. Note that the columns remain orthogonal under this construction.

Now 1
l

(
A′

C ′

)
has orthonormal columns and 1

lA
′X is still diagonal. By Gram-Schmidt, we can fill out the remaining

columns of Ω to construct an orthonormal matrix.

We now present the feature result with simplified assumptions.

Lemma H.3. Let Z,A be orthogonal subspaces. Suppose we have a data distribution D = {(zyi + ai, yi)}ni=1 ⊂
Rd × {1, . . . , C}, where zi ∈ Z,ai ∈ A for all i ∈ {1, . . . , n}, and the zi are linearly independent.

Let M ,M+ be the matrices defined for this dataset, and let Z,Z+ and A,A+ be the corresponding matrices when the
data is {(zyi , yi)} and {(ai, yi)}, respectively. Suppose that (A−A+)v ̸= 0 for all v ∈ Rd s.t. Av ̸= 0 and the output
dimension p ≥ C. Then W⊤W = Z† is the minimum norm solution to the contrastive learning objective on D.

Proof. Assume that d ≥ 3C−2, otherwise embed the distribution in a space of sufficiently large dimension. By Lemma E.2,
the minimum norm minimizer is unaffected by adding extra dimensions. Then Lemma H.2 applies, so linear independence
of the zyi is sufficient to be able to construct v1, . . . ,vC ,y1, . . . ,yC satisfying Lemma H.1, from which the conclusion
follows.

I. Minimizer of The Joint Loss
For simplicity we assume µ = 0. Same strategy can be applied to prove the theorem when µ ̸= 0 but a more detailed
discussion on the selection of β may be required.

By Lemmas F.7 and F.1 and the expression of S (equation 13), we observe that the two eigenvectors of M+ match two of
the eigenvectors of M . By combining this with Lemma F.6, we obtain that βM †M+ + (1− β)M †M̃ = l+1 l

+⊤
1 + l+2 l

+⊤
2

on span({l+1 , l
+
2 }) and βM †M+ + (1 − β)M †M̃ = (1 − β)M̃ †M̃ on span({l+1 , l

+
2 })⊥. Thus the eigenvalues of

βM †M+ + (1 − β)M †M̃ are 1, 1, 1 − β, 1 − β, . . . , 1 − β. When β ∈ (0, 1), l+1 and l+2 are the two eigenvectors
of βM †M+ + (1 − β)M †M̃ with largest eigenvalues. For the remaining eigenvectors, since they have equally large
eigenvalues (same as analyzed in H), the minimum norm minimizer will select the largest p− 2 of them. In the setting of

Theorem C.12 (1− β)(ϕ22 +
σ2
ξ

mn ) is one of the p− 2 largest of the remaining. As a result, both components aligned with v1

and v2 are selected by the minimum norm minimizer of the joint loss.

J. Early in Training Subclasses Are Learned
We assume σξ = O(1).

25



1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Which Features are Learned by Contrastive Learning?

J.1. Lemmas

Lemma J.1 (Laurent-Massart (Laurent & Massart, 2000) Lemma 1, page 1325). Let v1, . . . , vd be i.i.d. Gaussian variables
drawn from N (0, 1). Let a = (a1, . . . , ad) be a vector with non-negative components. Let Z =

∑d
i=1 ai(v

2
i − 1). The

following inequalities hold for any positive t:

Pr(Z ≥ 2∥a∥2
√
t+ 2∥a∥∞t) ≤ e−t,

Pr(Z ≤ −2∥a∥2
√
t) ≤ e−t. (35)

Lemma J.2 (Mills’ ratio. Exercise 6.1 in (Shorack & Shorack, 2000).). Let v be a Gaussian random variable drawn from
N (0, 1). Then for all λ > 0,

λ

λ2 + 1

1√
2π
e−

λ2

2 < Pr(v ≥ λ) <
1

λ

1√
2π
e−

λ2

2 .

Corollary J.3. Given a vector q, and a random vector z drawn from N (0, σd Id), w.p. ≥ 1 − O( δ√
log 1/δ

), |z⊤q| =

O(
∥q∥σ

√
log 1

δ√
d

).

Proof. This can be proven by considering the fact that q⊤z is a Gaussian variable and applying Lemma J.2.

Lemma J.4. Let each element of W0 ∈ Rp×d be randomly drawn from N (0,
σ2
0

d Id). Let u ∈ Rd be a unit vector. With
probability at least 1− δ, we have

∥W0u∥ ≥σ0
√
p

d

√√√√1− 2

√
ln 2/δ

p

∥W0u∥ ≤σ0
√
p

d

√√√√1 + 2

√
ln 2/δ

p
+ 2

ln 2/δ

p
.

Proof. Firstly rewrite ∥W0u∥ as

∥W0u∥ =

√√√√ p∑
i=1

(w
(i)⊤
0 u)2 = σ0

√
p

d

√√√√1

p

p∑
i=1

(

√
d

σ0
w

(i)⊤
0 u)2.

By spherical symmetric, each
√
d

σ0
w

(i)⊤
0 u is a random Gaussian variable drawn from N (0, 1). By lemma J.1 we have

Pr

(
1

p

p∑
i=1

(

√
d

σ0
w

(i)⊤
0 u)2 ≤ 1− 2

√
ln 2/δ

p

)
≤δ/2

Pr

(
1

p

p∑
i=1

(

√
d

σ0
w

(i)⊤
0 u)2 ≥ 1 + 2

√
ln 2/δ

p
+ 2

ln 2/δ

p

)
≤δ/2

which completes the proof.

J.2. Proof of Theorem C.5

We assume the dataset satisfies the condition in Section F (wich holds with probability 1−O(m
2n2

d )). Let LAL⊤ (where
C ∈ Rd×mn) be the eigendecomposition of M . By equation 13 and Lemma F.7 and Lemma F.1, we observe that when
µ ̸= 0 all but three of M ’s eigenvectors are orthogonal to l+1 , l+2 . W.L.O.G., let l1, l2 and l3 be those three eigenvectors.
The corresponding three eigenvalues are all constants. Let l+3 be a unit vector in span({l1, l2, l3}) − span({l+1 , l

+
2 }).
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Decompose v2 as µ√
1+µ2+

σ2
ξ

mn

l+1 +

√
1+

σ2
ξ

mn√
1+µ2+

σ2
ξ

mn

l⊥ where l⊥ is a unit vector that is orthogonal to l+1 . Since v2 ⊥ l+2 , we

have l⊥ ⊥ l+2 thus M+l⊥ = 0.

Define
√
M :=L

√
A

Γi(t) :=∥Wtl
+
i ∥, i = 1, 2, 3

Γ⊥(t) :=∥Wtl⊥∥

Γ:3(t) :=

√√√√ 3∑
i=1

∥Wtl
+
i ∥2

B :=[
√
a4l4

√
a5l5 . . .

√
amnlmn]

ΓB(t) :=∥WtB∥F
s :=∥

√
M∥ = O(1)

h :=∥
√
M

⊤
B∥ =

√√√√mn∑
i=4

a2i =

√√√√ K∑
i=3

(
σ2
ξ

mn
+

ϕ2i
(K − 2)

)2 + (mn−K)
σ4
ξ

m2n2

=O(

√
σ2
ξ

mn
+

1

K
+

σ4
ξ

mn
) = O(1)

Then we bound ∥Wt

√
M∥F

∥Wt

√
M∥F =∥WtL

√
A∥F

=∥[Wt

√
a1l1 Wt

√
a2l2 . . . Wt

√
amnlmn]∥F

=

√√√√ 3∑
i=1

∥Wt

√
aili∥2 +

mn∑
i=4

∥Wt

√
aili∥2

≤
√
cΓ:3(t)2 + ΓB(t)2,

where c is a constant because a1, a2, a3 are all O(1) (by Lemma F.1) and each li (i = 1, 2, 3) is a linear combination of
l++
1 , l++

2 , l+3 with O(1) coefficients, with l++
1 , l++

2 representing the projections of l+1 , l
+
2 onto span({li}3i=1).

By the rule of gradient descent we have

Wt+1 =Wt + η(4WtM
+ − 4WtMW⊤

t WtM) (36)

=Wt + 4ηWtM
+ − 4ηWtMW⊤

t WtMm

This is followed by Lemma J.5.

Lemma J.5. By the update rule of GD we have the following recurrence relations

Γ1(t+ 1) ≥(1 + 4ηa+1 )Γ1(t)− 4η(cΓ2
:3(t) + ΓB(t)

2)3/2s

Γ1(t+ 1) ≤(1 + 4ηa+1 )Γ1(t) + 4η(cΓ2
:3(t) + ΓB(t)

2)3/2s

Γ2(t+ 1) ≤(1 + 4ηa+2 )Γ2(t) + 4η(cΓ2
:3(t) + ΓB(t)

2)3/2s

Γ3(t+ 1) ≤Γ3(t) + 4η(cΓ2
:3(t) + ΓB(t)

2)3/2s

Γ⊥(t+ 1) ≤Γ⊥(t) + 4η(cΓ2
:3(t) + ΓB(t)

2)3/2s

ΓB(t+ 1) ≤ΓB(t) + 4η(cΓ2
:3(t) + ΓB(t)

2)3/2h.

Then we prove the following Lemma
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Lemma J.6. At initialization the following holds with probability ≥ 1−O( 1
poly(p) )

ΓB(0)

Γ1(0)
=O(1)

Γi(0) =σ0

√
p

d

(
1±O(

√
log p

p
)

)
, i = 1, 2, 3

Γ⊥(0) =σ0

√
p

d

(
1±O(

√
log p

p
)

)

Proof. We first bound ΓB(0)

ΓB(0) =

√√√√mn∑
i=4

ai∥W0li∥2

=

√√√√mn∑
i=4

ai

p∑
j=1

∥w⊤
0,jli∥2

≤

√√√√ ϕ2max

K − 2

K+1∑
i=4

p∑
j=1

∥w⊤
0,jli∥2 +

σ2
ξ

mn

mn∑
i=K+2

p∑
j=1

∥w⊤
0,jli∥2

=O(

√
pσ2

0

d
+ σ2

ξ

pσ2
0

d
) 1⃝

=O(σ0

√
p

d
).

Inequality 1⃝ holds with probability ≥ 1−O( 1
poly(mnp) ). It is obtained by obsreving that w⊤

0,jli’s are independent Gaussian
variables (by the orthogonality of li’s) and applying Lemma J.1 to the sum of ∥w⊤

0,jli∥2’s.

By Lemma J.4 and the above, at initialization the following holds with probability ≥ 1−O( 1
poly(p) +

1
poly(mnp) )

ΓB(0)

Γ1(0)
=O(1)

Γi(0) =σ0

√
p

d

(
1±O(

√
log p

p
)

)
, i = 1, 2, 3

Γ⊥(0) =σ0

√
p

d

(
1±O(

√
log p

p
)

)
.

Let ψ,ψB be constants. Define

π :=
ΓB(0)

Γ1(0)
= O(1) by Lemma J.6

τ :=(c(1 + 2(1 + ψ)2) + (π + ψB)
2)3/2 = Θ(1).

Let γ be a constant satisfying the following

γ ≤ min


√

(a+1 − a+2 )ψ

τ(s+ sψ)
,

√
a+1 ψ

τ(s+ sψ)
,

√
a+1 ψB

τ(h+ sψB)
,

√
a+1 − a+2
τs

 .
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Note that a+1 − a+2 > 0 because µ2 + 1 > ϕ21. Additionally, we define the following shorthand

ϵ :=4ητγ2s,

ϵB :=4ητγ2h

α :=1 + 4ηa+1 − ϵ

α̂ :=1 + 4ηa+1 + ϵ

κ2 :=
1 + 4ηa+2

α
< 1 because µ2 + 1 > ϕ21

κ3 :=
1

α

κ⊥ :=
1

α

κB :=
1

α
.

Now we are ready to prove the following Lemma.

Lemma J.7. If ∀t ≤ T , Γ1(t) ≤ γ. For any constants ψ,ψB , the following holds ∀t ≤ T+1 with probability 1−O( 1
poly(p) ),

• Γ1(t) ≥ αtΓ1(0)

• Γ1(t) ≤ α̂tΓ1(0).

• Γi(t) ≤ (κti + ψ)Γ1(t), i = 2, 3.

• Γ⊥(t) ≤ (κt⊥ + ψ)Γ1(t).

Proof. Let S(k) be the following statement: ∀t′ such that 0 ≤ t′ ≤ k, the following holds

• Γ1(t
′) ≥ αt′Γ1(0),

• Γ1(t) ≤ α̂tΓ1(0),

• Γi(t
′) ≤ (κt

′

i + ψ)Γ1(t
′), i = 2, 3,

• Γ⊥(t
′) ≤ (κt

′

⊥ + ψ)Γ1(t
′),

• ΓB(t
′) ≤ (κt

′

Bπ + ψB)Γ1(t
′).

By Lemma J.6, S(0) holds with high probability. Next we show that, ∀t ∈ [0, T + 1], if S(t− 1) holds then S(t) also holds.
By Lemma J.5, the induction hypothesis and κ2, κ3, κ⊥, κB < 1 , Γ1(t− 1) ≤ γ, we have the following

Γ1(t) ≥αΓ1(t− 1) (37)
Γ1(t) ≤α̂Γ1(t− 1) (38)

Γ2(t) ≤
(
(1 + 4ηa+2 )(κ

t
2 + ψ) + ϵ

)
Γ1(t)

Γ3(t) ≤
(
(κt3 + ψ) + ϵ

)
Γ1(t)

Γ⊥(t) ≤
(
(κt⊥ + ψ) + ϵ

)
Γ1(t)

ΓB(t) ≤
(
(κtBπ + ψB) + ϵB

)
Γ1(t).

By the construction of our κ’s, α’s, ϵ’s and ψ’s, the last three items in statement S(t) hold. Combining the induction
hypothesis with equations 37 and 38 yields the first two items in S(t), which completes the proof.

Now we are ready to prove the theorem.
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Theorem J.8. If σ0
√

p
d = o(1) and σξ = o(1), with probability at least 1−O(m

2n2

d + 1
poly(p) ) = 1− o(1), the following

holds

• ∥W0v2∥ = o(1).

• ∃t = O(ln( 1
σ0

√
d
p )), s.t. ∥Wtv2∥ = Ω(1).

Proof. ∥W0v3∥ = o(1) follows Lemma J.4 and the assumption that σ0
√

p
d = o(1). Select a constant ψ such that

ψ < µ√
1+

σ2
ξ

mn

. Note that µ√
1+

σ2
ξ

mn

− ψ = Θ(1). Let T = ⌊ ln(γ/Γ1(0))
lnα ⌋ = Θ(ln 1

σ0

√
d
p ). There are two cases to consider.

• If ∀t ≤ T , Γ1(t) ≤ γ, by Lemma J.7 we have Γ1(T + 1) ≥ γ and Γ⊥(T + 1) ≤ (o(1) + ψ)Γ1(T + 1). Then

∥WT+1v2∥ ≥ µ√
1 + µ2 +

σ2
ξ

mn

∥WT+1l
+
1 ∥ −

√
1 +

σ2
ξ

mn√
1 + µ2 +

σ2
ξ

mn

∥WT+1l⊥∥

≥(
µ√

1 + µ2 +
σ2
ξ

mn

−

√
1 +

σ2
ξ

mn√
1 + µ2 +

σ2
ξ

mn

ψ − o(1))γ

=Ω(1).

• If ∃t ≤ T s.t. Γ1(t) > γ, we define T ∗ =
ln( γ

Γ1(0)
)

ln α̂ and t∗ = min t s.t. Γ1(t) > γ. It follows that ∀t ≤ t∗−1,Γ1(t) ≤
γ. Then we can apply Lemma J.7 to obtain Γ1(t

∗) ≤ α̂t∗Γ1(0). If t < T ∗, the above yields Γ1(t
∗) < γ, which

contradicts the definition of t∗. Therefore we conclude t∗ ≥ T ∗. Lemma J.7 also tells that Γ⊥(t
∗) ≤ (κt

∗

⊥ + ψ)Γ1(t
∗).

Since t∗ ≥ T ∗ and κ⊥ < 1, we have κt
∗

⊥ ≤ (Γ1(0)
γ )

ln(1/κ3)
ln α̂ = o(1). Therefore Γ⊥(t

∗) ≤ (o(1) + ψ)Γ1(t
∗). By the

definition of t∗, Γ1(t
∗) > γ. Then we can lower bound ∥Wt∗v2∥ in the same way as in the previous case

∥Wt∗v2∥ ≥ µ√
1 + µ2 +

σ2
ξ

mn

∥Wt∗l
+
1 ∥ −

√
1 +

σ2
ξ

mn√
1 + µ2 +

σ2
ξ

mn

∥Wt∗l⊥∥

≥(
µ√

1 + µ2 +
σ2
ξ

mn

−

√
1 +

σ2
ξ

mn√
1 + µ2 +

σ2
ξ

mn

ψ − o(1))γ

=Ω(1).
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Table 6. increasing k improves both subclass and class accuracies on CIFAR-10 RandBit.

k Sub Acc Acc
1 34.38 86.73

16 58.12 94.09

K. Experimental Setup and Additional Experimental Results
K.1. Datasets

CIFAR-10/100. The two datasets each consist of 60000 32x32 colour images (Krizhevsky et al., 2009). In the case of
CIFAR-10, the ‘classes’ refer to the original 10 classes defined in the dataset, while we define ‘subclasses’ as two subclasses:
vehicles (airplane, automobile, ship, truck) and animals (bird, cat, deer, dog, frog, horse). On CIFAR-100, we refer to the
10 super-classes (e.g. aquatic mammals, fish, flowers) as our ’classes’ and the 100 classes as our ’sub-classes’. These two
datasets illustrate a natural setting where class collapse is extremely harmful, as it results in learning representations that do
not capture much of the semantically relevant information from the data.

MNIST RandBit. The MNIST RandBit dataset Chen et al. (2021) is created by setting n, the # of bits that specifies how
easy the useless feature will be. Larger n makes the feature more discriminative, thus ‘easier’ and more problematic for
feature suppression. An extra channel is concatenated to MNIST images where each value in the feature map corresponds to
a random integer between 0 and 2n.

CIFAR-10/100 RandBit. The two datasets are constructed in a similar way as MNIST RandBit, but with images from
CIFAR-10/100.

K.2. Training details

For the experiments on CIFAR-10/100 or CIFAR-100 RandBit, we use a ResNet-18 trained with (Momentum) SGD using
learning rate = 0.01 and momentum = 0.9. We train with batch size set to 512 for 1000 epochs. For data augmentations, we
consider the standard data augmentations from Chen et al. (2020).

For the feature suppression experiments on MNIST RandBit, we directly use the code provided by Chen et al. (2021). We
consider a 5-Layer convolutional network. For our data augmentations, we consider the standard set of data augmentations
for images and do not alter the useless feature (extra channel concatenated of RandBits).

K.3. Details and additional experiments on varying embedding size

In the experiments presented in Table 2, we vary the width, denoted by w, of the ResNet, which is controlled by the number
of convolutional layer filters. For width w, there are w, 2w, 4w, 8w filters in each layer of the four ResNet blocks.

In addition, we explore an alternative way of varying the embedding size, which isolates the effect of the last layer’s
embedding size from the size of the lower layers. Specifically, we set the width parameter w = 4 and multiply the width
of only the last ResNet block by a factor k. It is worth noting that doing this requires a much smaller total number of
parameters. Table 6 presents the results on CIFAR-10 RandBit. We observe that increasing k also effectively improves the
accuracy. Although the improvement is not as substantial as in the previous case where we increase w, it confirms the same
trend predicted by the theory, supporting the conclusion that increasing the embedding size alleviates feature suppression.
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