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A Complete Proof

A.1 Maximum Independent Set

In maximum independent set, we use the energy function:

f(z) =~ Zwixi + Z Bijriz; (25)
i1

(.9)eE
We are going to prove the following proposition.

Proposition A.1. If 3;; > min{w;,w;} for all (i,j) € E, then for any x € {0,1}", there exists a
x' € {0,1}™ that satisfies the constraints in and has lower energy: f(a') < f(z).

Proof. For arbitrary = € {0, 1}, if z satisfies all constraints, we only need to let 2’ = x. Else, there
must exist an edge (¢, j) € E, such that z;z; = 1. Denote k = arg min{w;, w, }, we define =} = z;
if i # k and 2}, = 0. In this case, we have:

f@') = f(x) = wp — Z Brjt; < wg(l— Z z;) <0 (26)
JEN (k) JEN(K)
Thus we show f(z') < f(z).

On the other side, consider a graph G = (V = {1,2}, E = {(1,2)}) and 12 < w1 < ws. Then the
maximum independent set is {2}, which can be represented by = = (0, 1). However, in this case, let
a2’ = (1,1) is feasible while f(z’) < f(x). This means the condition we just derived is sharp. [

A.2 Maximum Clique

In maximum independent set, we use the energy function:

f($> = — Zwixi + Z ﬁij.’L‘iSL’j 27
i=1 (i.j)e B
We are going to prove the following proposition.

Proposition A.2. If 3;; > min{w;,w;} for all (i,j) € E°, then for any x € {0,1}", there exists a
a’ € {0, 1}™ that satisfies the constraints in and has lower energy: f(a') < f(x).

Proof. For arbitrary x € {0,1}", if x satisfies all constraints, we only need to let ' = z. Else,
there must exist an edge (4, j) € E°, such that z;z; = 1. Denote k = arg min{w;, w; }, we define
@), = x; if i # k and ), = 0. In this case, we have:

f@)=f@)=wp— > Bz <wp(l— Y a;) <0 28)
Ji(k,j)€E® j:(k,j)EE
Thus we show f(z') < f(z).

On the other side, consider a graph G = (V = {1,2}, E = {}) and f12 < w; < ws. Then the
maximum clique is {2}, which can be represented by x = (0, 1). However, in this case, let 2’ = (1,1)
is feasible while f(z’) < f(x). This means the condition we just derived is sharp. O

A.3 Minimum Dominate Set

In maximum independent set, we use the energy function:

=1 i=1

JEN(3)
We are going to prove the following proposition.

Proposition A.3. If 3; > ming{wy, : k € N(i) or k = i}, then for any x € {0,1}", there exists a
a’ € {0, 1}™ that satisfies the constraints in and has lower energy: f(x') < f(z).
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Proof. For arbitrary « € {0, 1}, if x satisfies all constraints, we only need to let 2’ = x. Else, there
must exist anode ¢t € V, such that z; = 0 and x; = 0 for all j € N(t). Let k = argmin{w, : j €
N(t), or j = t}, we define ;, = x; if i # k and 2}, = 1. In this case, we have:

@) = f@) =we =B+ > B -ah) T 0—ap) - =z) J] 1-2] <0 G0
it JEN(3) JEN(3)
Thus, we prove f(z') < f(z).

On the other side, consider a graph G = (V = {1}, F = {}) and 1 < w;. Then the maximum
clique is {1}, which can be represented by = (1). However, in this case, let 2’ = (0) is feasible
while f(z') < f(x). This means the condition we just derived is sharp.

A.4 Minimum Cut

In maximum independent set, we use the energy function:

f((E) = Z "El(l — xj)wij + B(Z dZLCZ — D1)+ + B(DO — Zdle)+ (31)
(i,§)€E i=1 i=1
We are going to prove the following proposition.
Proposition Ad. If § > maxi{}_;c ;) [wi;l}, then any v € {0,1}", there exists a «’ € {0,1}"
that satisfies the constraints in and has lower energy: f(z') < f(z).

B Experiment Details

B.1 Hardware

All methods were run on Intel(R) Xeon(R) Gold 5215 CPU @ 2.50GHz, with 377GB of available
RAM. The neural networks were executed on a single RTX6000 25GB graphics card. The code was
executed on version 1.9.0 of PyTorch and version 1.7.2 of PyTorch Geometric.
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