
A Complete Proof486

A.1 Maximum Independent Set487

In maximum independent set, we use the energy function:488

f(x) := �
nX

i=1

wixi +
X

(i,j)2E

�ijxixj (25)

We are going to prove the following proposition.489

Proposition A.1. If �ij � min{wi, wj} for all (i, j) 2 E, then for any x 2 {0, 1}n, there exists a490

x
0 2 {0, 1}n that satisfies the constraints in (16) and has lower energy: f(x0)  f(x).491

Proof. For arbitrary x 2 {0, 1}n, if x satisfies all constraints, we only need to let x0 = x. Else, there492

must exist an edge (i, j) 2 E, such that xixj = 1. Denote k = argmin{wi, wj}, we define x
0
i = xi493

if i 6= k and x
0
k = 0. In this case, we have:494

f(x0)� f(x) = wk �
X

j2N(k)

�k,jxj  wk(1�
X

j2N(k)

xj)  0 (26)

Thus we show f(x0)  f(x).495

On the other side, consider a graph G = (V = {1, 2}, E = {(1, 2)}) and �12 < w1 < w2. Then the496

maximum independent set is {2}, which can be represented by x = (0, 1). However, in this case, let497

x
0 = (1, 1) is feasible while f(x0)  f(x). This means the condition we just derived is sharp.498

A.2 Maximum Clique499

In maximum independent set, we use the energy function:500

f(x) := �
nX

i=1

wixi +
X

(i,j)2Ec

�ijxixj (27)

We are going to prove the following proposition.501

Proposition A.2. If �ij � min{wi, wj} for all (i, j) 2 E
c
, then for any x 2 {0, 1}n, there exists a502

x
0 2 {0, 1}n that satisfies the constraints in (18) and has lower energy: f(x0)  f(x).503

Proof. For arbitrary x 2 {0, 1}n, if x satisfies all constraints, we only need to let x0 = x. Else,504

there must exist an edge (i, j) 2 E
c, such that xixj = 1. Denote k = argmin{wi, wj}, we define505

x
0
i = xi if i 6= k and x

0
k = 0. In this case, we have:506

f(x0)� f(x) = wk �
X

j:(k,j)2Ec

�k,jxj  wk(1�
X

j:(k,j)2Ec

xj)  0 (28)

Thus we show f(x0)  f(x).507

On the other side, consider a graph G = (V = {1, 2}, E = {}) and �12 < w1 < w2. Then the508

maximum clique is {2}, which can be represented by x = (0, 1). However, in this case, let x0 = (1, 1)509

is feasible while f(x0)  f(x). This means the condition we just derived is sharp.510

A.3 Minimum Dominate Set511

In maximum independent set, we use the energy function:512

f(x) :=
nX

i=1

wixi +
nX

i=1

�i(1� xi)
Y

j2N(i)

(1� xj) (29)

We are going to prove the following proposition.513

Proposition A.3. If �i � mink{wk : k 2 N(i) or k = i}, then for any x 2 {0, 1}n, there exists a514

x
0 2 {0, 1}n that satisfies the constraints in (18) and has lower energy: f(x0)  f(x).515
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Proof. For arbitrary x 2 {0, 1}n, if x satisfies all constraints, we only need to let x0 = x. Else, there516

must exist a node t 2 V , such that xt = 0 and xj = 0 for all j 2 N(t). Let k = argmin{wj : j 2517

N(t), or j = t}, we define x
0
i = xi if i 6= k and x

0
k = 1. In this case, we have:518

f(x0)� f(x) = wk � �t +
X

i 6=t

�i

h
(1� x

0
i)

Y

j2N(i)

(1� x
0
j)� (1� xi)

Y

j2N(i)

(1� xj)
i
 0 (30)

Thus, we prove f(x0)  f(x).519

On the other side, consider a graph G = (V = {1}, E = {}) and �1 < w1. Then the maximum520

clique is {1}, which can be represented by x = (1). However, in this case, let x0 = (0) is feasible521

while f(x0)  f(x). This means the condition we just derived is sharp.522

A.4 Minimum Cut523

In maximum independent set, we use the energy function:524

f(x) :=
X

(i,j)2E

xi(1� xj)wij + �(
nX

i=1

dixi �D1)+ + �(D0 �
nX

i=1

dixi)+ (31)

We are going to prove the following proposition.525

Proposition A.4. If � � maxi{
P

j2N(i) |wi,j |}, then any x 2 {0, 1}n, there exists a x
0 2 {0, 1}n526

that satisfies the constraints in (18) and has lower energy: f(x0)  f(x).527

B Experiment Details528

B.1 Hardware529

All methods were run on Intel(R) Xeon(R) Gold 5215 CPU @ 2.50GHz, with 377GB of available530

RAM. The neural networks were executed on a single RTX6000 25GB graphics card. The code was531

executed on version 1.9.0 of PyTorch and version 1.7.2 of PyTorch Geometric.532
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