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ABSTRACT

Neural channel decoder, as a data-driven channel decoding strategy, has shown
very promising improvement on error-correcting capability over the classical
methods. However, the success of those deep learning-based decoder comes at
the cost of drastically increased model storage and computational complexity,
hindering their practical adoptions in real-world time-sensitive resource-sensitive
communication and storage systems. To address this challenge, we propose an
efficient variational diffusion model-based channel decoder, which effectively in-
tegrates the domain-specific belief propagation process to the modern diffusion
model. By reaping the low-cost benefits of belief propagation and strong learn-
ing capability of diffusion model, our proposed neural decoder simultaneously
achieves very low cost and high error-correcting performance. Experimental re-
sults show that, compared with the state-of-the-art neural channel decoders, our
model provides a feasible solution for practical deployment via achieving the best
decoding performance with order-of-magnitude (1000× and up) savings in com-
putational cost and model size.

1 INTRODUCTION

Channel coding has served as the fundamental and critical mechanism in numerous modern com-
munication and storage systems and applications, such as 5G, Wi-Fi, Starlink, optical networking,
solid-state drive and hard disk drive. By providing error correction functionality, channel coding
aims at protecting information from various corruptions (e.g., noise) incurred by data transmission.
To that end, most channel codes are designed by adding extra redundant bits to help detect and
recover the original information after noisy transmission.

To date, most of the commercially adopted channel codes are linear block codes, which can be
optimally decoded using maximum likelihood (ML) decoding process. However, ML decoding,
which can be mathematically modeled as searching for the closest lattice point in high dimensional
space (Gowaikar & Hassibi, 2007), is very expensive and computationally prohibitive. In practice, a
more feasible and practical channel decoding solution is to use belief propagation (BP) algorithm (Su
et al., 2022), which can achieve exact optimum results in the tree-structured factor graph. However,
in the context of channel coding, factor graphs constructed from the parity check matrix of modern
channel codes are often cyclic, making the BP decoding results suboptimal (Yedidia et al., 2005).

Existing Neural Channel Decoders. Motivated by the unprecedented success of neural networks
in many fields, many recent efforts leverage the advance of deep learning to develop neural channel
decoder, successfully improving the decoding performance. Nachmani et al. (2016) propose a neural
belief propagation model by adding neural weights on all propagation messages. Considering belief
propagation is naturally a graph based algorithm, Nachmani & Wolf (2019) further improves by
using hyper-graph neural network as the decoding solution. As these models are constrained to the
original belief propagation form, they are not as flexible as modern neural networks in terms of layer
design, architecture search, etc. To overcome this limitation, Bennatan et al. (2018) reformulates
the decoding problem into a noise prediction task taking extra steps in pre-processing and post-
processing, enabling more relaxed model design. Following this philosophy, Choukroun & Wolf
(2022) introduces the powerful transformer (Vaswani et al., 2017) architecture-based neural channel
decoder, and later extend it into a diffusion-based model (Choukroun & Wolf, 2023).
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High-Complexity Challenges of SOTA Neural Decoders. While today’s deep learning-based de-
coding algorithms achieve outstanding error-correcting performance, they are meanwhile suffer-
ing from the high computation and storage costs of neural networks, a very challenging limitation
severely hinders their practical deployment. More specifically, the application scenarios of chan-
nel coding, e.g., wireless communication, optical communication and disk drives, demand real-time
and low-power processing, bringing very stringent requirement on processing speed and power con-
sumption of channel decoder. For instance, the decoding latency in 5G is limited to millisecond level
(Parvez et al., 2018; Rico & Merino, 2020). Meanwhile, a massive amount of channel decoding is
performed at mobile devices such as smartphones, which have constrained computing resource and
power budgets. Consequently, the cost of modern neural channel decoder, if cannot be properly
trimmed down, could severely impede the widespread adoption of this emerging solution.

Technical Contributions. In this work, we propose an efficient diffusion model-based decoding al-
gorithm. Unlike existing diffusion decoder (Choukroun & Wolf, 2023), our method takes a different
formulation of diffusion process via effectively integrating the philosophy of belief propagation into
the model architecture, simultaneously achieving high error-correcting performance and low model
complexity. More specifically, considering belief propagation is not noise oriented and its input
format (log-likelihood ratio) needs a flexible noise design in the forward diffusion process, our pro-
posed neural channel decoder is built upon the framework of variational diffusion model (Kingma
et al., 2021), successfully reaping the benefits of belief propagation and diffusion process.

We summarize the contributions of this work as follow: 1) It, for the first time, studies the efficient
integration of belief propagation-based channel decoding to diffusion model, formulating a new
variational diffusion model based neural channel decoder. 2) The proposed variational diffusion
decoder achieves ultra-low model complexity with high error-correcting performance. Compared to
the state-of-the-art neural decoder, our approach brings 1000× reduction in computational costs and
memory costs, with the same or lower bit-error-rate (BER).

2 RELATED WORKS

To date a series of research efforts have been reported in applying neural networks to channel coding.
In general, from the perspective of machine learning, by defining training loss as the binary cross
entropy loss, the objective of channel decoding can be described as a multi-label binary classification
problem, which has been well studied in deep learning community. Here different from many deep
learning applications, the input messages of channel coding can be randomly generated, making the
neural channel decoders free from data hungry concern (Marcus, 2018). It is also worth noticing
that belief propagation-based deep learning models are found able to learn from all zero messages
(Lugosch & Gross, 2017); while there has not been found any significant difference between training
on all zero messages or random messages.

More specifically, neural channel decoders can be roughly categorized into belief propagation based
and general neural network based. Belief propagation-based neural models maintain the message
passing structure of BP algorithm, while adding neural weight parameters on messages (Nachmani
et al., 2016; Lugosch & Gross, 2017; Liang et al., 2018; Nachmani & Wolf, 2019; Liao et al., 2021).
Although these models provide performance improvement over classical BP approach, they are also
constrained to the BP structure and are lack of the flexibility of neural architecture exploration. On
the other hand, the structure of general neural network-based decoding models are designed without
prior constraint. Gruber et al. (2017) propose the dense layer-based neural decoder, which works
well for short channel codes with code length up to 64.

Instead of decoding the input message, Bennatan et al. (2018) take another path as directly predict-
ing the transmission noise. To that end, it builds a binary-input symmetric-output channels-based
framework to decouple message and noise. This strategy asks for additional information (syndrome)
as input and needs extra computation for output, since the learning model is trained for predicting
noise. In addition to these changes in processing input and output, the transition from message pre-
diction to noise prediction is also relaxed to general neural network structure, enabling the flexible
model design.

Based on the framework, Choukroun & Wolf (2022) successfully applies the transformer architec-
ture in channel decoding, and this powerful architecture is later extended to the diffusion-based
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model (Choukroun & Wolf, 2023). Considering denoising diffusion probabilistic models (DDPMs)
Ho et al. (2020) naturally learn to predict noise, the neural decoder in Choukroun & Wolf (2023) is
built in the format of DDPM. To accommodate the channel coding setting, the additive white Gaus-
sian noise (AWGN) channel is formulated as an unscaled forward diffusion process. The reverse
diffusion process is also modified into a decoding process, and the corresponding decoding steps
(sampling timesteps in reverse process) are bounded by the parity check count in the given channel
codes.

One key challenge for diffusion model-based channel decoder is the high complexity. Though pow-
erful, diffusion models are known for their large computation cost and slow generation process, in
addition to the underlying heavy deep learning model. For instance, the reverse timesteps in im-
age generation can be as large as 1000 (Ho et al., 2020). To address this challenging issue, many
research works have been proposed to improve the generation speed, such as reducing sampling
steps (Song et al., 2021), transforming into using faster solvers for ordinary different equation (Lu
et al., 2022) and knowledge distillation into a deterministic model (Salimans & Ho, 2022). These
existing diffusion model optimization methods are orthogonal to our proposed solution of efficient
variational diffusion channel decoder, and can be potentially applied to our approach towards further
improvement.

3 BACKGROUND

3.1 CHANNEL CODING

For an (N,K) channel code with code length as N and information length as K, it specific
code format is determined by a generator matrix G ∈ {0, 1}K×N and a parity check matrix
H ∈ {0, 1}(N−K)×N . Given K-bit input message mb ∈ {0, 1}K , the encoded N -bit codeword
xb ∈ {0, 1}N can be calculated via xb = mbG with all computations in binary domain. In general,
xb is transmitted over a noisy channel. The goal of channel coding is to recover the input message
from the corrupted transmitted codeword at the receiver end. In practice, a systematic encoding
approach is often adopted such that receiver can easily recover the message by taking the first K bits
from decoded results (Lin & Costello, 2004).

In the memoryless AWGN channel, the transmitted output ys ∈ RN is simulated by ys = x+ wsξ
with ξ ∼ N (0, I). Here, x ∈ {−1, 1}N is the bipolar representation computed from x = 1 − 2xb.
The ws is determined by code rate r = K/N and the channel signal-to-noise ratio (CSNR) in s-dB,

i.e., ws = 1/
√
2K
N 10s/10. While there are many different decoding algorithms, belief propagation

(BP) has achieved tremendous success in channel codes. It treats the parity check matrix as a factor
graph, and belief messages are iteratively propagated and updated over the graph.

More specifically, for a given parity check matrix, there are N variable nodes and N − K check
nodes in the associated factor graph. First, define a compact representation of transmitted messages
using log-likelihood ratio (LLR):

lv = LLR(yv
s) = log

p(yv
s |xv = 1)

p(yv
s |xv = −1)

=
2

w2
s

xv +
2

ws
ξv, (1)

where yv
s is the v-th value of ys. LLR-based belief propagation estimates the v-th bit of x by

computing:

uc→v = 2[
∏

v′∈M(c)\v

tanh (
uv′→c

2
)],

uv→c = lv +
∑

c′∈N(v)\c

uc′→v,

sv = lv +
∑

c′∈N(v)

uc′→v,

(2)

where M(·) and N(·) denote the neighboring variables and check nodes, respectively. xv can be
determined by the sign of sv . The expensive computation cost of hyperbolic tangent function in
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uc→v can be simplified into more implementation-friendly operations (Hu et al., 2001):

uc→v = min
v′∈M(c)\v

|uv′→c|
∏

v′∈M(c)\v

sign(uv′→c), (3)

where the sign(·) function returns the sign of input.

3.2 DIFFUSION MODELS

Sohl-Dickstein et al. (2015) proposes a diffusion based framework to model complex data distribu-
tions from a thermodynamics perspective. The essential idea is to gradually destroy input distribu-
tion in the forward diffusion process and learn a reverse process to model the distribution. Ho et al.
(2020) shows DDPMs can effectively generate high quality images by a special parameterization
method. Let x0 be the input data in distribution q(x0). The forward diffusion process is a Markov
chain with Gaussian noise added at each timestep:

q(xT , . . . ,x1) =

T∏
t=1

q(xt|xt−1), xt =
√

1− βtxt−1 +
√
βtξt, ξt ∼ N (0, I), (4)

where βt for all t are predefined hyper-parameters. With αt = 1 − βt and ᾱt =
∏t

s=1 αt,
we can have xt =

√
ᾱtx0 +

√
(1− αt)ξ. The reverse process learns the Gaussian distribution

pθ(xt−1|xt) = N (µθ(xt, t), σ
2
t I) to form the Markov chain:

p(xT , . . . ,x0) = p(xT )

T∏
t=1

p(xt−1|xt), xt−1 = µθ(xt, t) + σtξ, (5)

where θ describe model parameters and σt is a function of βt for all t. The learning objective is
simplified from the evidence lower bound (ELBO) to the KL divergence between q(xt−1|x0,xt)
and pθ(xt−1|xt), which has an analytical form due to their Gaussian nature:

θ∗ = argmin
θ

∑
t>1

E[
1

2σ2
t

||
√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt − µθ(xt, t)||2], (6)

where efficient training is proposed to optimize at random timestep with stochastic gradient descent.

Given xt can be expressed in x0 as in the forward process, the learning objective becomes a function
of x0 and ξt. Thus, µθ(xt, t) can be a model predicting either x0 or noise ξt, leaving the other term
to be derived together with xt. As an example, DDPMs are designed to learn to predict noise, and x0

can be computed given the predicted noise and xt. In this way, learning objective can be minimized
through the training process.

4 VARIATIONAL DIFFUSION CHANNEL DECODER

It can be noticed that the parameterization in DDPMs is specially designed, such as the relationship
between α and β and between xt and x0. Although this specific design results in clear formu-
lations for training and generation, such constraints are not realistic in channel coding, especially
when describing the AWGN channel from the perspective of forward diffusion process. In this sec-
tion, we propose an efficient decoding method using a flexible variational diffusion models (VDMs)
framework (Kingma et al., 2021), i.e., variational diffusion channel decoder (VCDC).

4.1 AWGN AND FORWARD PROCESS

Different from DDPMs, VDMs generalize the mean and variance setting in the forward diffusion
process. It enables the flexible Gaussian transition q(xt|x0) = N (αtx0, σ

2
t I), without constraints

on the relation between αt and σt. We find such flexibility better help describe the AWGN channel
as the forward diffusion process than DDPMs, especially with inputs in LLR format. For different
AWGN channels in T different CSNRs, we define the forward diffusion process by transmitting
bipolar codeword x across these channels and the reverse process by denoising the transmitted mes-
sages at t-th CSNR to recover x.
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More specifically, let zs = LLR(ys), and we have the distribution q(zs|x) = N ( 2
w2

s
x, 4

w2
s
I), where

αs = 2
w2

s
and σs = 2

ws
. Let zt be another channel in t-dB CSNR. According to VDM, the forward

transition probability from s-dB channel to t-dB channel is:

q(zt|zs) = N (αt|szs, σ
2
t|sI) = N (

αt

αs
zs, (σ

2
t − α2

t|sσ
2
s)I), (7)

where σ2
t|s should be positive since s and t are different:

σ2
t|s = σ2

t − α2
t|sσ

2
s = (

2

wt
)2 − (

w2
s

w2
t

)2(
2

ws
)2 > 0 =⇒ wt > ws =⇒ t < s. (8)

It is worth noticing that s describes channel SNR rather than timestep. In this scenario, s-dB channel
is at earlier timestep than t-dB channel, but it is found t < s. Given T different channels in CSNRs
{s1, . . . , sT }, this observation requires s1 > · · · > sT . In summary, the decreasing CSNR order is
required in forward diffusion process.

Correspondingly, VDM defines SNR at i-th timestep by VSNR(i) = α2
i /σ

2
i which we name as

VSNR in this paper. VDM requires forward diffusion process with VSNR in a decreasing order. As
q(zsi |x) = N ( 2

w2
si

x, 4
w2

si

I), VSNR(i) = 1/w2
si and wsi is inversely proportional to si, the decreas-

ing VSNR order is equivalent to the decreasing CSNR order, which aligns with our observation.

4.2 BELIEF PROPAGATION IN REVERSE PROCESS

While the noise based framework (Bennatan et al., 2018) is more flexible to deep learning models,
it asks for more information (i.e., syndrome) as input and has a more complicated decoding process.
Instead, traditional channel decoding methods like belief propagation are more straightforward, and
they can predict x from zt using only LLR. We propose to empower the belief propagation method
with neural network to improve decoding performance; while keeping its low complexity.

Existing neural belief propagation (NBP) decoding algorithms (Nachmani et al., 2016) learn weight
parameters on all message inputs in Eq. 2. As found in (Liao et al., 2021), such design can be over-
parameterization given the similarity between sv and uv→c. It can be noticed that the difference
between sv and uv→c is simply uc→v . Therefore, learning neural parameters on message uc→v can
be sufficient for decoding:

sv = uv→c + uc→v(θ, uv→c) =⇒ x← x+ f(w,x), (9)

where on the right side, the design is reformulated in the style of neural network layer formulation
such that it becomes easy to understand and implement in current deep learning framework. w is the
neural layer weight parameter, and x is the layer input. The first layer input is lv for all v. It should
be noted that f(·) maintains the original uc→v message formulation. To achieve high efficiency,
each layer learns a shared weight parameter on all of its inputs.

We construct our deep learning model with N − K layers as a neural block following Eq. 9, and
the model complexity can be increased by stacking multiple blocks. In terms of computation cost,
the reverse process can be treated as stacking shared weights models. Thus, adding new blocks
increases complexity at intra-scale level while adding more reverse timesteps increases at inter-scale
level. Given adding more timesteps maintains the same storage cost, it is more desirable to develop
models by adding more timesteps for practical deployment purpose.

For the reverse diffusion process, we use x̂θ(zt) to represent the model prediction given input zt at
timestep t. The related transition probability can be expressed as:

p(zs|zt) = q(zs|zt,x = x̂θ(zt)) = N (µQ, σQ)

= N (
αt|sσ

2
s

σ2
t

zt +
αsσ

2
t|s

σ2
t

x̂θ(zt; t),
σ2
t|sσ

2
s

σ2
t

I)

= N (zt + (
2

w2
s

− 2

w2
t

)x̂θ(zt; t), [(
2

ws
)2 − (

2

wt
)2]I).

(10)

In addition, the purpose of channel coding is more focused on denoising than generation. Choukroun
& Wolf (2023) choose to skip the noise addition step in the reverse process which is often found in
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Table 1: Negative natural logarithm BER results of reverse process at different timesteps. Higher
values mean better decoding performance. Results are reported for CSNR 4-dB, 5-dB and 6-dB.
The timestep of reverse process is mentioned in model name. For example, ”Ours-20” means ours
decoding results at reverse timestep 20.

Ours-1 Ours-5 Ours-10 Ours-20
Code (N, K) 4 5 6 4 5 6 4 5 6 4 5 6

LDPC (121, 60) 3.98 5.82 8.75 4.71 7.48 11.89 5.1 8.14 12.98 5.24 8.55 13.21
LDPC (121, 70) 4.72 6.95 9.94 6.01 9.48 14.41 6.33 10.04 15.42 6.59 10.36 15.42
LDPC (121, 80) 5.24 7.64 10.65 6.8 10.49 15.46 7.27 11.15 16.79 7.48 11.65 17.2
LDPC (49, 24) 4.54 6.06 8.24 5.48 7.43 10.31 5.86 7.83 11.07 5.8 7.96 11.2
Polar (128, 64) 2.88 3.28 3.74 3.74 4.84 6.12 4.84 6.62 9.09 6.46 9.31 13.11
Polar (128, 86) 3.41 3.92 4.55 4.48 5.75 7.4 5.45 7.1 9.25 6.56 8.87 11.85
Polar (128, 96) 3.66 4.22 4.93 4.5 5.84 7.61 5.46 7.7 10.4 6.35 8.86 12.33
Polar (64, 32) 2.86 3.28 3.76 4.4 5.44 6.68 5.36 6.58 8.54 6.31 8.61 10.96
Polar (64, 48) 3.76 4.48 5.32 4.8 6.25 8.1 5.63 7.56 9.84 6.14 7.95 10.61
CCSDS (128, 64) 4.43 6.11 8.37 6.23 9.82 14.39 6.98 10.95 16.54 7.61 11.68 17.01
MACKAY (96, 48) 4.67 6.07 7.96 6.39 9.12 12.06 7.26 10.38 13.76 7.59 11.04 14.45

DDPMs. Besides, they also use number of parity checks in H as the maximum reverse timestep. We
take a similar approach for reverse process except that we find their reverse timestep bound is loose
because N −K can often be unnecessarily large causing high complexity. In practice, we limit our
reverse process up to 20 timesteps which already achieves competitive results. The number of parity
check errors is also applied to perform early stopping during the reverse process.

5 EXPERIMENTS

We set CSNR from 4-dB to 6-dB as previous work (Choukroun & Wolf, 2023) adopts and evaluate
our method on different linear block codes, i.e., Polar Codes (Arikan, 2009), Low-Density Parity
Check (LDPC) codes (Gallager, 1962), Mackay codes and CCSDS codes, which are available on
(Helmling et al., 2019). Modern channel coding has stringent latency and model size requirement.
From the perspective of deployment, we evaluate and compare different models in experiments.
Although deep learning-based decoders often benefit from the power of increasing model size, the
resulting deployment cost is not feasible in the case of channel coding, e.g., millisecond-level la-
tency tolerance (Rico & Merino, 2020). For the purpose of achieving low error rate, fast inference
and small model size, we compare different models in their lightest setting over the bit error rate,
computation cost in terms of floating-point operations (FLOPs), and storage cost in terms of bytes.

To achieve maximum efficiency, we build our VDCD models using a single block neural network
and set T = 20 for reverse process. For model training, Adam optimizer (Kingma & Ba, 2015) is
applied using learning rate 0.001 with 256 samples per batch and 20000 training iterations. Different
from many diffusion models, the high efficiency of our model enables training and experiments on
a CPU only platform, i.e., AMD EPYC 7402P 24-Core Processor. The training time varies between
1 to 3 hours for different codes.

Comparison is made with the hyper graph neural network-based model (Nachmani & Wolf, 2019)
that also maintains the belief propagation structure, which is referred as HGN. Their fastest models
are configured with hidden dimension 32 and 5 hidden layers. We also compare with the state-of-
the-art DDECC (Choukroun & Wolf, 2023), where their fastest models are configured with 2 self
attention layers in hidden dimension 32. The traditional belief propagation algorithm running 5
iterations is also listed as the baseline.

5.1 BIT ERROR RATE

We evaluate bit error rate (BER) for different channel codes and different models. For a given
channel code, this metric shows the percentage of error bits in decoding results of different models.
As bit error rates can be as low as 10−7, the evaluation only stops with at least 100 error samples
detected. The test messages are randomly generated on the fly. Negative natural logarithm is taken
to compare model performance because BER can differ in the order of magnitude. The higher result
value means the lower BER, and it indicates better decoding performance.
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Table 2: Negative natural logarithm BER results comparison between different models. Higher
values mean better decoding performance.

BP HGN DDECC Ours-20
Code (N, K) 4 5 6 4 5 6 4 5 6 4 5 6

LDPC (121, 60) 4.82 7.21 10.87 5.22 8.29 13.0 4.48 6.95 10.65 5.24 8.55 13.21
LDPC (121, 70) 5.88 8.76 13.04 6.39 9.81 14.04 5.41 8.22 12.22 6.59 10.36 15.42
LDPC (121, 80) 6.66 9.82 13.98 6.95 10.68 15.8 6.12 9.38 13.25 7.48 11.65 17.2
LDPC (49, 24) 5.3 7.28 9.88 5.76 7.9 11.17 5.27 7.38 10.23 5.8 7.96 11.2
Polar (128, 64) 3.38 3.8 4.15 3.89 5.18 6.94 5.37 7.75 10.51 6.46 9.31 13.11
Polar (128, 86) 3.8 4.19 4.62 4.57 6.18 8.27 5.61 7.76 10.42 6.56 8.87 11.85
Polar (128, 96) 3.99 4.41 4.78 4.73 6.39 8.57 5.6 7.83 10.56 6.35 8.86 12.33
Polar (64, 32) 3.52 4.04 4.48 4.25 5.49 7.02 5.99 8.16 10.9 6.31 8.61 10.96
Polar (64, 48) 4.15 4.68 5.31 4.91 6.48 8.41 5.55 7.67 10.08 6.14 7.95 10.61
CCSDS (128, 64) 6.55 9.65 13.78 6.99 10.57 15.27 5.79 8.48 12.24 7.61 11.68 17.01
MACKAY (96, 48) 6.84 9.4 12.57 7.19 10.02 13.16 6.18 8.63 11.53 7.59 11.04 14.45

Table 3: FLOPs comparison between different models. DDECC models are diffusion models
with reverse process. Column DDECC-1 lists FLOPs for DDECC models decoding for 1 reverse
timestep. Column DDECC-Max lists FLOPs for DDECC models decoding with its maximum
timesteps set as N − K depending on given channel codes. Letters ”K”, ”M” and ”G” ending
at each FLOPs number are data volume units standing for kilo, mega and giga, respectively.

Code (N,K) BP HGN DDECC-1 DDECC-Max Ours-1 Ours-20

LDPC (49, 24) 54.1K 34.1M 269.67M 6.7G 3.5K 70.4K
LDPC (121, 60) 316.4K 1.6G 2.3G 140.3G 18.9K 377.6K
LDPC (121, 70) 263.8K 920.4M 2.1G 107.1G 15.7K 314.8K
LDPC (121, 80) 211.1K 476.1M 1.91G 78.3G 12.6K 251.6K
Polar (64, 32) 43.6K 80.8M 471.08M 15.1G 3.3K 65.6K
Polar (64, 48) 45.0K 30.4M 370.28M 5.9G 3.0K 60.4K
Polar (128, 64) 93.1K 1.1G 2.53G 161.9G 7.3K 146.4K
Polar (128, 86) 141.9K 935.0M 2.11G 88.6G 9.6K 192.4K
Polar (128, 96) 90.2K 431.7M 1.93G 61.8G 6.4K 128.8K
CCSDS (128, 64) 161.9K 562.0M 2.53G 161.9G 10.2K 204.8K
MACKAY (96, 48) 68.2K 103.9M 1.24G 59.5G 4.6K 92.0K

First, the BER change during the reverse process is studied. Table 1 lists BER values of our VCDC
model for different codes at different timesteps. The first timestep is with the smallest BER, and
BER can increase by adding more reverse steps. However, it can be seen that the BER increase
becomes slower and tends to converge at last timestep. There are always positive BER increases
with increasing timestep, which can come from either the continued diffusion process or the early
stopping mechanism. Whenever the parity check error count goes to zero, the reverse process stops
for the input sample. As a result, corresponding BER value of these samples remains the same for
all timesteps. If the continued diffusion process improves BER, then overall BER results keep in-
creasing. Therefore, positive increases between timesteps show the effectiveness of reverse process.

Table 2 shows the BER comparison between our model and other models. Our results come from the
BER evaluation at reverse timestep 20 as shown in Table 1. It is found traditional belief propagation
results can be strong baselines. In particular, our model results at timestep 1 from Table 1 are worse
than belief propagation. DDECC model can also be worse than belief propagation, e.g., LDPC-
(121, 60). However, HGN model results are consistently better than belief propagation. Overall, our
model achieves the best decoding performance with the highest BER results compared with others.
It can be also noticed that the BER change between SNRs are different among models. All deep
learning model BER results consistently increase more for SNR 5 → 6 than SNR 4 → 5. But this
does not hold for belief propagation with Polar-(128, 96) and Polar-(128, 64).

5.2 DECODER COMPLEXITY

We measure FLOPs and model size to represent the model computation cost and storage cost, re-
spectively. Smaller numbers means more feasible for deployment. The model FLOPs is calculated

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Model size comparison between different models.
Code (N,K) HGN DDECC Ours

LDPC (49, 24) 447.6KB 131.6KB 112.0B
LDPC (121, 60) 1.6MB 226.3KB 264.0B
LDPC (121, 70) 1.4MB 218.2KB 220.0B
LDPC (121, 80) 1.1MB 210.0KB 176.0B
Polar (64, 32) 596.3KB 144.1KB 316.0B
Polar (64, 48) 428.0KB 135.9KB 172.0B
Polar (128, 64) 1.4MB 234.5KB 752.0B
Polar (128, 86) 1.4MB 217.6KB 652.0B
Polar (128, 96) 1.0MB 209.9KB 444.0B
CCSDS (128, 64) 1.1MB 234.5KB 256.0B
MACKAY (96, 48) 647.7KB 183.2KB 192.0B

with single input sample, i.e., batch size set as 1. The FLOPs of belief propagation is the FLOPs of
total 5 message passing iterations. For diffusion models, FLOPs of single reverse timestep is mea-
sured, and the maximum FLOPs is computed by multiplying with the maximum timestep set for the
model. DDECC sets the maximum reverse timesteps N −K, which can result in huge complexity.
For our VCDC model, the maximum reverse timesteps is set as 20. Note that model size measure-
ment is for models with weight parameters to store. Therefore, belief propagation model size results
are not provided since they are all zeros.

Table 3 shows the number of FLOPs of different models. As expected, transformer based DDECC
models have the largest FLOPs among all models because of the complicated model architecture.
For a single timestep, DDECC models already take more computations than other models. Their
computation cost increase linearly with the increase of reverse timesteps. HGN models make the
second largest FLOPs with its graph neural networks. Our models are the fastest even compared
with belief propagation because we apply the design of Eq. 3 and are smaller network models
especially compared with others. This sacrifices the decoding performance at single timestep, since
the BER results of our VCDC model at timestep 1 is worse than belief propagation. We are able
to outperform other models by adding more timesteps, i.e., increasing our computation cost. When
taking our model FLOPs of the whole reverse process (timesteps 20), our models cost 3 orders of
magnitude less FLOPs than HGN models and 5 orders of magnitude than DDECC models. As a
result, our models take slightly more FLOPs than belief propagation while achieving the best BER
results.

Table 4 presents model sizes of different models. DDECC models are smaller than HGN models, but
their FLOPS are more than HGN models. This shows DDECC models sacrifice more computation
for less storage. Comparing the storage savings against computation savings, we argue it is harder
to achieve storage savings. Unlike FLOPs amount, our models cost 3 orders of magnitude smaller
storage than both HGN models and DDECC models. Our storage savings is the outcome of adding
more reverse timesteps rather than adding more neural weight parameters. Even though adding more
timesteps means longer reverse process, it hypothetically translates the reverse process into running
one time inference over a deeper shared weight model.

6 CONCLUSIONS

This paper proposes a diffusion based decoder for channel coding. Driven by the strict requirements
of low latency and high reliability, our model is designed to leverage traditional belief propagation
and modern diffusion frameworks. The method reformulates the AWGN channel as forward dif-
fusion process in the VDM framework and builds a neural network architecture on top of belief
propagation. Experiments show our design achieves the best decoding performance with orders of
magnitude savings in computation and storage cost than the state-of-the-art diffusion based decoder.
These significant results exhibit the great potential of deploying diffusion based decoder in reality.
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