
Supplementary Material for Conformal Prediction363

Sets for Ordinal Classification364

APPENDIX365

Errata366

Below are a list of important corrections that we discovered while reviewing the submitted version of367

our paper. The proofs in Appendix B include the corrected statements of the theorems.368

• Section 4 - Line 125: q̂Dcal(↵) is the score threshold defined as the bias-adjusted (↵)th369

quantile of the model score of the true label and not (1� ↵)th.370

• Theorem 1: The claim |ŜD,↵(x)|  |Soracle

↵�2� (x)| should be replaced by |ŜD,↵(x)| 371

|Soracle

↵�4�� 1
n+1

(x)| where n is the size of the calibration set.372

• Theorem 2- Part (b): The assumption on �(·) being surjective on R
+ was missed out.373

Further, the claim should be on the existence of a well-defined ⌘(x) and not uniqueness.374

⌘(x) is unique only when �(·) is a bijective function such as �(x) = exp(x).375

A Broader Impact376

Our current work on contiguous conformal predictions for ordinal classification is foundational in377

nature and has multiple real-world applications.378

• Cancer Diagnosis. Given the huge costs of misprediction for high-stakes applications such379

as cancer diagnosis, instead of a single point prediction it is useful to predict a contiguous380

set. For instance, prediction set of [stage 2, stage 3] gives a better notion of severity381

than a non-contiguous set such as [no cancer, stage 3] which might be discordant or a382

point prediction with low accuracy.383

• Dynamic Product Search Filters. Customers new to any e-commerce platform often384

experience heavy cognitive load in specifying their requirements via search filters (e.g.,385

budget, product dimensions). Identifying a small highly likely set of options based on their386

typical profile or immediate session history would significantly enhance the usability of the387

search filters and improve the customer experience.388

• Personalised Fit Recommendations. Shopping apparel and shoes at any e-commerce389

platform is often tedious due to the limited support for fit-based recommendations. Often,390

customers find that the recommended products do not have options for their size and are391

forced to use search filters, which need to be repeatedly specified for each query. Addition-392

ally, customers also tend to order multiple products in the same size (bracketing) that results393

in a high return rate and excessive shipping costs for the platform. Automatic identification394

of the likely size ranges of a customer would improve the accuracy of recommendations and395

reduce shopping effort as well as return rates.396

• Personalised Budget Recommendations, Since budget ranges have a natural ordering,397

automatic personalisation of product and brand recommendations for customers based on398

their preferred budget ranges is another area that can leverage COPOC to improve customer399

satisfaction.400

• Abuse Incident Audits. E-commerce abuse incidents are often categorised along severity401

levels that have a natural ordering. Typically, human auditors are required to audit the abuse402

incidents, but current models do not often distinguish between a high chance of low severity403

incident vs. moderate chance of high severity incident. Conformal predictions can help404

streamline the audit workflows to better focus on the high severity incidents and optimise405

the overall outcomes both for e-commerce platform and the customers through expedited406

resolution.407
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B Theoretical Analysis408

Lemma 1. Given a fitted unimodal model P̂Y |X , for any test x and ↵ 2 (0, 1], prediction sets409

ŜD,↵(x) constructed using Eqn.6 or 7 has at least one solution which is contiguous (amongst410

multiple possibilities). When P̂Y |X is strictly unimodal, all the solutions are contiguous.411

Proof: Let ŜD,↵(x) be the prediction set with the shortest span (i.e., difference between highest and412

lowest included labels) as per Eqn.6 or 7.413

Let l + 1 and u denote the smallest and largest indices of the labels included in ŜD,↵(x) so that the414

span is given by u� l.415

Assuming ŜD,↵(x) is non-contiguous implies that there exists at least one k
skip such that (l + 1) <416

k
skip

< u and ckskip /2 ŜD,↵(x). Let p̂k(x) = P̂Y |X(Y = ck|X = x). Since p̂(x) is unimodal,417

there are two possible scenarios depending on where k
skip relies relative to the mode cm̂ of p̂:418

• k
skip

< m̂: In this case, we have p̂kskip � p̂l+1 since p̂ is non-decreasing before the mode419

• k
skip � m̂: In this case, we have p̂kskip � p̂u since p̂ is non-increasing after the mode420

Thus, p̂kskip � min(p̂l+1, p̂u).421

Case 1: LAC- PS Construction follows Eqn. 6: For this case, we have,422

ŜD,↵(x) = {ck 2 C|p̂k � q̂Dcal(↵)}, (6)

where q̂Dcal(↵) is the bias-adjusted (↵)th quantile of the model score of the true label. Since cl+1423

and cu are included in ŜD,↵(x), it follows that both p̂l+1 � q̂Dcal(↵) and p̂u � q̂Dcal(↵).424

Since p̂kskip � min(p̂l+1, p̂u), it follows that p̂kskip � q̂Dcal(↵) as well implying that ckskip 2425

ŜD,↵(x) which leads to a contradiction. Hence, the shortest span ŜD,↵(x) has to be contiguous.426

Case 2: APS- PS Construction follows Eqn. 7: For this case, we have,427

ŜD,↵(x) = {c⇡1 , c⇡2 . . . c⇡j} where j = sup

(
j0 :

j0X

k=1

p̂⇡k < q̂Dcal(↵)

)
+ 1, (7)

where ⇡ is a permutation of {1, . . . ,K} that sorts p̂k in the descending order from most likely to428

least likely and q̂Dcal(↵) is the bias-adjusted (1 � ↵)th quantile of the APS conformity scores as429

defined for Eqn. 7.430

Let P̂sum(S) =
P

ck2S
p̂k denote the (fitted) probability mass within the prediction set S. Due to the431

unimodality of p̂, it follows that one of the boundary labels cu and cl+1 have the minimum probability432

among those included in the set ŜD,↵(x). Without loss of generality, let us assume p̂u is one of the433

minima (since the same argument can be applied for the case where (l + 1) is among the minima).434

From the construction, we have, P̂sum(ŜD,↵(x)) � q̂Dcal(↵) and P̂sum(ŜD,↵(x)\{cu}) < q̂Dcal(↵).435

Consider the sets S1 = ŜD,↵(x)
S
{ckskip} \ {cu} and S2 = S1 \ {ckmin} where kmin is the largest436

index satisfying k
min = argmin

k|ck2S1

[p̂k]. Since p̂kskip � min(p̂l+1, p̂u), it follows that P̂sum(S1) �437

q̂Dcal(↵). Further, from the definition of j as the size of largest top k set with probability mass as438

defined in Eqn. 7, it follows that P̂sum(S2) < q̂Dcal(↵).439

Therefore, the set S1 is a valid APS prediction set as well with span (kmin� l) < (u� l), which leads440

to a contradiction. Thus, the shortest span ŜD,↵(x) has to be contiguous for this case as well. Thus,441

in both cases, there exists at least one solution, i.e., shortest span prediction set, which is contiguous442

for both the constructions.443

For the case, where p̂ is strictly unimodal, from the constructio Eqn.6 or 7, the prediction sets have444

to contain the top k most likely classes for some k which results in contiguity in case of strict445

unimodality.446

447
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Theorem 1. For any x 2 X , let pk(x) = PY |X(Y = ck|X = x) and p̂k(x) = P̂Y |X(Y =448

ck|X = x) denote the true and fitted model class probabilities that are always unimodal. Let449

�k(x) =
P

k

k0=1 pk0(x) and �̂k(x) =
P

k

k0=1 p̂k0(x) denote the corresponding cumulative distribu-450

tion functions. If |�k(x)� �̂k(x)|  �, [k]K1 for a constant �, then for any ↵ 2 (0, 1], 8x 2 Dtest,451

the APS and oracle prediction sets from Eqn.7 and Eqn. 4 satisfy |ŜD,↵(x)|  |Soracle

↵�4�� 1
n+1

(x)|452

where n is the size of the calibration set.453

Proof. To establish the result, we prove that the following two statements hold true under the454

assumption on the CDFs of PY |X and P̂Y |X :455

(a) |ŜD,↵(x)|  |SOracle

1�q̂Dcal
(↵)�2�(x)|456

(b) |Soracle

1�q̂Dcal
(↵)�2�(x)|  |Soracle

↵�4�� 1
n+1

|457

Part (a): From Eqn. 4 and Lemma 1, we observe that the unimodality of p̂(x) and p(x) leads to458

the oracle prediction set being contiguous and also the existence of a contiguous APS prediction set.459

Since all the APS solution sets as per Eqn 7 have the same cardinality, we use ŜD,↵(x) to denote the460

contiguous solution.461

Let ŜD,↵(x) = {c
l̂+1, · · · , cû}, 0  l̂ < û  K and S

oracle

1�q̂Dcal
(↵)�2�(x) = {cl⇤+1, · · · , cu⇤}, 0 462

l
⇤
< u

⇤  K. From the definition of the sets and the contiguity, we observe that the probability463

mass of ŜD,↵(x) w.r.t. p̂ equals (�̂û(x)� �̂
l̂
(x)) � q̂Dcal(↵) while that of Soracle

1�q̂Dcal
(↵)�2�(x) w.r.t464

p equals (�u⇤(x)� �l⇤(x)) � 1� (1� q̂Dcal(↵)� 2�) = q̂Dcal(↵) + 2�.465

Using the divergence bound on the two CDFs, i.e., |�k(x)� �̂k(x)|  �, [k]K1 , we have466

(�̂u⇤(x)� �̂l⇤(x)) � (�u⇤(x)� �)� ((�l⇤(x) + �)

= �u⇤(x)� �l⇤(x)� 2�

� q̂Dcal(↵) + 2� � 2�

= q̂Dcal(↵).

Since ŜD,↵(x) is the minimal contiguous set with probability mass greater than or or equal to
q̂Dcal(↵) as per p̂ in Eqn 7, we have

|ŜD,↵(x)| = (û� l̂)  (u⇤ � l
⇤) = |Soracle

1�q̂Dcal
(↵)�2�(x)|.

Part (b): Denoting the minimal contiguous APS prediction set by ŜD,↵(x) as before, we have467

(�̂û(x) � �̂
l̂
(x)) � q̂Dcal(↵). Considering the divergence bound on the two CDFs, i.e., |�k(x) �468

�̂k(x)|  �, [k]K1 , we have (�̂û(x)� �̂
l̂
(x))  (�û(x) + �)� ((�

l̂
(x)� �) = �û(x)� �

l̂
(x) + 2�.469

Hence, for all x, we have470

(�̂û(x)� �̂
l̂
(x)) � q̂Dcal(↵)

, �û(x)� �
l̂
(x) + 2� � q̂Dcal(↵)

, �û(x)� �
l̂
(x) � q̂Dcal(↵)� 2�

Since this holds for all x, the marginal coverage P [Y 2 ŜD,↵(X)] � q̂Dcal(↵)� 2�.471

From Theorem 3, we also have an upper bound on the marginal coverage for test samples, i.e.,472

P [Y 2 ŜD,↵(X)]  1� ↵+ 1
n+1 where n is the size of the calibration set.473
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Hence, we have474

1� ↵+
1

n+ 1
� P [Y 2 ŜD,↵(X)]

, 1� ↵+
1

n+ 1
� q̂Dcal(↵)� 2�

, 1� q̂Dcal(↵)� 2� � ↵� 4� � 1

n+ 1

From the above inequality and the definition of the oracle prediction set, we observe that

|Soracle

1�q̂Dcal
(↵)�2�(x)|  |Soracle

↵�4�� 1
n+1

|.

Combining the results in part (a) and (b), we have475

|ŜD,↵(x)|  |Soracle

↵�4�� 1
n+1

|.

As the size of the calibration set increases, the term 1
n+1 vanishes and as the divergence � decreases,476

then the cardinality of the APS set converges to that of the oracle set.477

478

Theorem 2. Let ⌘ : X ! R
K , � : R ! R

+ and  E : R ! R
� such that  E(r) =  

E(�r), 8r 2479

R and its restriction to R
+ is a strictly monotonically decreasing bijective function. (a) Then, the480

model output constructed as per Eqn. 5 is always unimodal, i.e., p̂(x) 2 U , 8x 2 X . (b) Further,481

given any p̂(x) 2 U for x 2 X , there exists a function ⌘(x) 2 R
K that satisfies Eqn. 5 if �(·) is482

surjective on R
+.483

Proof. We begin by restating the construction:484

⌘(x) = f(x, ✓); v1 = ⌘1(x); vk = �(⌘k(x)), [k]K2 ,

r1 = v1; rk = rk�1 + vk, [k]K2 ; zk =  
E(rk); p̂k =

exp(zk)P
K

k=1 exp(zk)
, [k]K1 .

Figure 7: Construction of our DNN

Part a: Following the above construction, for any x 2 X , since � : R ! R
+, the DNN output485

vk � 0, [k]K2 . Hence, the cumulative sum sequence r is non-decreasing, i.e., r1  r2  · · ·  rK .486

There can be 3 possible scenarios:487

Scenario 1. r1  r2 · · ·  rK  0 : In this case, [zk =  
E(rk)]Kk=1 is also a non-decreasing488

sequence and so is [p̂k]Kk=1. Here [p̂k]Kk=1 is unimodal sequence with mode at cK .489
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Scenario 2. 0  r1  r2 · · · <= rK : In this case, [zk =  
E(rk)]Kk=1 is also a non-increasing490

sequence and so is [p̂k]Kk=1. Here [p̂k]Kk=1 is unimodal sequence with mode at c1.491

Scenario 3. r1  r2 · · ·  rm  0  rm+1  · · ·  rK for some m. In this case, [zk =492

 
E(rk)]Kk=1 is non-decreasing till m and non-increasing from m+1 onwards, which makes493

it unimodal. The mode is either m or m+ 1 or both depending on the magnitudes |rm| and494

|rm+1|. The probability distribution [p̂k]Kk=1 follows the same pattern and is unimodal as495

well.496

Part b: Let us assume p̂(x) 2 U is any arbitrary unimodal distribution conditioned on x with class497

probabilities p̂k  p̂k+1, [k]
m�1
1 and p̂k � p̂k+1, [k]Km, where m is the highest indexed (in case of498

multiple) mode of the unimodal distribution. We can then obtain zk = log(p̂k), [k]K1 and construct499

the sequence rk = ( E)�1(zk) where rk 2 R
� for 1  k  (m� 1) and rk 2 R

+ for m  k  K.500

Since  : R+ ! R
� is a strictly monotonically decreasing bijective function and  E is it’s even501

extension, the sequence [rk]Kk=1 is well-defined. Further, since [zk]Kk=1 is a unimodal sequence,502

[rk]Kk=1 is monotonically increasing with rm�1  0  rm. Then, we can obtain the vector v such503

that vk = rk � rk�1 � 0, [k]K2 and v1 = r1. When �(·) is a surjective function on R
+, we can504

define ⌘k(x) = (�)�1(vk), [k]K2 and ⌘1(x) = v1. There will always be a valid ⌘(x), which ensures505

that construction can generate the original p̂(x).506

B.1 APS Coverage guarantees507

Theorem 3. [APS [34]] If samples (xi, yi) xi 2 X ,yi 2 Y are exchangeable 81  i  n and all508

samples from Dtrain, Dcal are invariant to permutations, and conformity scores are almost surely509

distinct, then APS algorithm gives tight marginal coverage given by:510

1� ↵  P [Ytest 2 ŜD,↵(Xtest)]  1� ↵+
1

|Dcal|+ 1

C Experiment Details511

C.1 Benchmark Image Datasets and Implementation Details512

We now provide a brief description of the four public datasets and the modeling details. For each of513

these datasets, we split the data into train, calibration, and test sets. We use calibration set to calibrate514

APS and report mean and standard deviation (std. error) on the test set across 5 independent splits.515

Note that for all experiments to avoid over-fitting, data augmentation, i.e., random horizontal flipping516

and random cropping for each training image, was applied in our experiments. The predictions was517

obtained with a central crop during testing. COPOC was implemented with � = |x| and  = �|x|.518

Age Estimation - Adience [13]: The task associated with this dataset is to predict the age for a given519

facial image. This dataset contains 26580 Flickr photos of 2284 subjects. The age is annotated with520

eight groups: 0�2, 4�6, 8�13, 15�20, 25�32, 38�43, 48�53, and over 60 years old. From the521

nature of the class labels, it is evident that classes are not equally spaced categories. Hence, previous522

works which assumed it to be equi-spaced (SORD [12] for instance) are suboptimal. For feature523

extractor backbone, we use ImageNet pre-trained VGG-16 network since most competing methods524

[23, 12] used this model. For our usage we append single layer MLP with last layer configured to525

output unimodal distribution as described in sec. 4.2. We trained models for 50 epochs with a batch526

size of 64. For optimization, Adam optimizer was utilized with a learning rate of 0.0001, with decay527

rate of 0.2.528

Historical Colour Image Dating - HCI [29]: The historical color image dataset is collected for the529

task of estimating the age of historical color photos. Each image is annotated with its associated530

decade, where five decades from the 1930s to 1970s are considered. There are 265 images for531

each category. Following [23] we utilized VGG-16 as the backbone, which was initialized with the532

ImageNet pre-trained weights for a fair comparison. We trained models for 50 epochs with Adam533

optimizer with a learning rate of 0.0001, with decay rate of 0.2. For COPOC, we append single layer534

MLP with last layer configured to output unimodal distribution as described in sec. 4.2.535

Retina-MNIST [42]: RetinaMNIST is based on the DeepDRiD24 challenge, which provides a536

dataset of 1600 retina fundus images. The task is ordinal classification for 5-level grading of diabetic537
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retinopathy severity. We use a similar feature extractor network as used in [42] along with a final538

unimodality constrained layer at end. The network was trained with same settings as [42].539

Image Aesthetic Estimation [36]: The Aesthetics dataset consists of 15687 Flickr image belonging540

to four different nominal categories: animals, urban, people, and nature. All The pictures are anno-541

tated by 5 different graders in 5 aesthetic categories in an orderly manner: 1) “unacceptable” pictures542

with extremely low quality, 2) “flawed” low quality images (slightly blurred,over/underexposed),543

and with no artistic value; 3) “ordinary” images without technical flaws (well framed, in focus), but544

no artistic value; 4) “professional” images (flawless framing,lightning),and 5) “exceptional”, very545

appealing images, showing outstanding quality. The ground truth label for each image is set to be546

the median among all of its gradings. Following [23, 12] we use ImageNet pre-trained VGG-16547

as the backbone for feature extraction. For our usage, we append single layer MLP with last layer548

configured to output unimodal distribution as described in sec. 4.2. We only report aggregate metric549

across all the categories for this data.550

551

552

Table 4: Results on Image Benchmark Datasets: Mean and std. error is reported for 5 trials. Best
mean results bolded.

MAE Acc@1 Acc@2 Acc@3 |PS| CV%

HCI

V-CE 0.68± 0.03 54.3± 2.6 75.3± 3.1 88.9± 1.6 3.28± 0.14 24.4± 1.2
POE 0.66± 0.05 56.5± 1.8 76.5± 2.5 89.0± 2.1 3.1± 0.18 9.8± 1.2

SORD 0.65± 0.06 56.2± 2.8 77.1± 2.9 89.8± 2.6 2.96± 0.19 2.7± 1.1
AVDL 0.64± 0.08 56.8± 1.5 77.9± 2.4 89.8± 1.05 2.98± 0.11 2.1± 1.4

Binomial 0.68± 0.05 54.5± 1.2 75.8± 2.6 88.8± 1.8 3.01± 0.16 0
Binomial-temp 0.66± 0.04 55.5± 1.8 78± 2.2 90.1± 2.1 2.90± 0.11 0

Uni-loss 0.67± 0.09 54.5± 3.1 74.8± 2.5 88.1± 2.5 3.05± 0.38 5.1± 1.9
COPOC 0.65± 0.04 56.1± 2.0 79.8± 1.6 91.7± 2.8 2.66± 0.13 0

Adience

V-CE 0.57± 0.07 58.1± 1.6 80.8± 1.6 91.4± 2.3 4.82± 0.24 21.4± 2.2
POE 0.48± 0.05 60.5± 1.5 84.1± 2.0 93.9± 2.3 4.16± 0.18 12.8± 1.2

SORD 0.48± 0.06 59.9± 3.8 85.2± 2.9 94.3± 1.6 2.86± 0.09 3.7± 1.1
AVDL 0.49± 0.03 60.1± 2.5 85.3± 3.1 94.0± 1.1 2.95± 0.15 4.1± 0.9

Binomial 0.5± 0.04 60.0± 1.2 86± 1.8 95.4± 1.9 2.5± 0.06 0
Binomial-temp 0.48± 0.04 60.5± 2.1 86.4± 1.2 95.6± 1.3 2.45± 0.05 0

Uni-loss 0.64± 0.14 51.5± 7.9 80.8± 5.8 89.4± 3.5 3.14± 0.26 8.3± 2.3
COPOC 0.49± 0.04 61.0± 1.9 86± 1.5 96.1± 2.2 2.26± .06 0

Aesthetic

V-CE 0.29± 0.01 71.4± 1.6 94.6± 2.0 97.8± 0.8 1.96± 0.2 7.9± 0.2
POE 0.28± 0.05 72.1± 1.5 94.1± 1.1 98.0± 0.1 1.85± 0.11 7.85± 0.9

SORD 0.29± 0.02 72.0± 1.7 95.2± 1.9 98.3± 0.2 1.78± 0.09 0
AVDL 0.28± 0.03 72.2± 1.5 95.2± 1.8 98.5± 0.1 1.75± 0.05 0.3± 0.1

Binomial 0.31± 0.01 69.5± 0.7 93.1± 2.8 96.0± 0.9 1.83± 0.06 0
Binomial-temp 0.32± 0.04 69± 1.7 93.0± 1.6 96.2± 0.1 1.89± 0.09 0

Uni-loss 0.37± 0.14 66.8± 5.0 92.0± 3.8 97.4± 1.5 1.94± 0.24 2.1± 0.8
COPOC 0.28± 0.04 72.0± 1.3 95.9± 1.0 99.0± 0.2 1.70± .06 0

Retina-MNIST

V-CE 0.73± 0.02 52.2± 0.6 72.2± 0.1 86.0± 0.5 3.6± 0.08 9.8± 2.4
POE 0.73± 0.02 52.4± 0.4 72.5± 0.6 86.4± 0.8 3.4± 0.05 6.4± 2.8

SORD 0.71± 0.01 53.5± 0.3 70.5± 0.6 84.5± 0.9 3.2± 0.03 3.9± 1.1
AVDL 0.72± 0.02 53.0± 0.2 71.0± 0.4 84.6± 0.9 3.24± 0.04 3.8± 1.2

Binomial 0.71± 0.01 52.7± 0.2 69.7± 0.6 83.7± 0.8 3.33± 0.02 0
Binomial-temp 0.70± 0.02 53.0± 0.2 70.5± 0.5 84.0± 0.4 3.3± 0.02 0

Uni-loss 0.74± 0.05 52.0± 1.1 72.5± 0.6 84.5± 1.5 3.25± 0.1 4.2± 1.1
COPOC 0.71± 0.01 53.5± 0.2 72.5± 0.6 87.0± 0.3 3.03± 0.01 0

Result Discussion : We highlight the key takeaways from Table 4.553

554

1. COPOC performs at par with SOTA baselines in terms of MAE and Acc@1.555

2. Benefit of COPOC comes with improved gains in Acc@2 and Acc@3. Apart from COPOC,556

there is no single method that performs consistently across the 4 datasets in terms of these metrics.557

For instance in HCI and Adience, Binomial-temp comes closest to COPOC, but on Aesthetic, both558
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variants of Binomial severely under-perform whereas AVDL and SORD perform quite well and comes559

the closest to COPOC. In contrast, on Retina-MNIST, non-parametric models such as V-CE,POE,560

Uni-loss have Acc@k close to COPOC and beat other parametric models significantly. This shows561

that parametric distribution assumption in any underlying model fits the data well when the data is562

actually drawn from a similar distribution. Since most methods depend largely on the validity of the563

assumptions, the relatively unconstrained parameter-free nature of COPOC is more robust and allows564

it to consistently outperform across datasets.565

3. There is a strong correlation between CV% and PS size. This is expected because higher CV%566

indicates more number of cases for which we had to predict a minimal contiguous super set, thus567

inflating the size of PS. Better unimodal fit by underlying model is bound to have lesser CV% and568

and thus, shorter sets. Hence, COPOC again outperforms all other baselines across datasets in term569

of |PS| consistently. Although Binomial model variants has 0 CV% due to it’s construction, it still570

produces larger sets than COPOC as seen in HCI and Adience. This can be because COPOC results571

in better unimodal fit which is also idicated by higher Acc@K.572

4. Enforcing unimodality in training scheme in terms of soft-labels (SORD,AVDL) or in loss573

function (Uni-loss) or in embedding space (POE) does not necessarily translate to a unimodal574

distribution in test samples which is indicated by high CV%.575

5. Although V � CE in principle should have been able to model any underlying distribution, on576

high dimensional real-world datasets it fails miserably. This shows the need for injecting prior "bias"577

into training network like COPOC which aids the model in reaching the optima.578

6. Uni-loss has issues with model convergence as it shows high variance across metrics for all579

datasets. This could be because its sensitive to � hyperparamter that control the weightage between580

unimodality and mean-variance component of its loss function which is difficult to tune.581

7. Datasets with higher accuracy results in shorter PS size in general, which is expected. For instance582

Aesthetic has lower PS size across methods compared to HCI or Retina-MNIST both having same583

number of class labels.584

C.2 Implementation details of experiments on synthetic Data585

For all the results on synthetic datasets presented in Sec.5.3, we employ same DNN network586

across all the methods for fair comparison. To be precise, we use 6 layer DNN architecture587

having 128 hidden dimensions with a dropout of 0.2. We use the same training paradigm as588

before – Adam optimizer with learning rate of 0.001 and batch size of 512 trained for 500 epochs589

ensuring convergence. We divide the data into 70% train and 30% test splits. We train our model590

10 times for each independent split of the data. For each test set, we again randomly split into591

calibration for APS and evaluate |PS| on final-test and repeat this 100 times to ensure conver-592

gence of PS. We use � = |x| and  = �|x| for COPOC. We report mean and standard error in Table 2.593

594

C.3 Ablation study on the choice of �(·) and  E(·) for COPOC595

Although there can be many possible choices for �(·) and  E(·) in the COPOC construction Eqn. 5,596

in practice not all choices leads to good model convergence. In this section, we perform a comparison597

of few common choices and present results in Table 5. We train the model for synthetic data D4598

as described in Sec. 5.3. We train the model using CE loss with same model capacity and training599

paradigm as described in Appendix C.2. We report train CE loss and since we have access to true600

underlying distribution for D4 we report KL. Div. to measure goodness of model fit. Below we601

summarise few observations:602

1. � = ReLU maps most of [vk]K2 to zeroes which results in flat probability distribution for603

most of the data points while � = Softplus instead maps most [vk]K2 to very small values604

which again results in almost flat distribution for most points. With � = x
2 we observed605

unusually large values for [vk]K2 resulting in unstable training. � = |x| gives a good balance606

as each [⌘k]K2 gets linearly mapped to [vk]K2 .607

2.  = �|x|2 tends to over-emphasize higher probability classes in the model fitting while608

 = �|x|0.5 under-emphasizes them. Again since  = �|x| does a linear transformation of609

rk on either side of the origin it gives a good balanced estimate of zk.610
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Table 5: Ablation study on implementation choice of �(·) and  (·) for COPOC. We report mean
results across 10 trials.

Train loss KL Div.
� = ReLU ,  = �|x| 3.89 0.24
� = Softplus,  = �|x| 3.11 0.19
� = x

2,  = �|x| 3.48 0.2
� = |x|,  = �|x| 1.64 0.04
� = |x|,  = �x

2 2.20 0.13
� = |x|,  = �|x|0.5 1.89 0.1
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