
Image similarity metrics1

An interface for a metric will take two images, x and x̂, to compute a similarity metric, sim(x, x̂) that2

is symmetric. We take the view that unsuccessful rendering should be counted as absolute failures.3

As such, our image similarity metrics computed are conditioned on the successful rendering of the4

code into rendered images (i.e., if the rendering fails, the score will be 0 by default). In Image2Struct,5

we consider normalize metrics within the unit range so that they can be interpreted easily; a score6

of zero implies complete dissimilarity whereas a score of 1 implies that the images are identical.7

Without loss of generality, we assume both x and x̂ are of dimensions W ×H .8

Earth Mover Similarity (EMS) We introduce an image metric named Earth Mover’s Similarity9

(EMS). It is inspired by the Earth Mover’s distance (EMD)[1], which is a measure of dissimilarity10

between two frequency distributions.11

To compute the EMD between two images x and x̂, we first transforms the images into signatures12

S(x) and S(x̂), which are discrete distributions of features of Q elements.13

S(x) = {(gk, wg
k) : 0 ≤ k < Q} & S(x̂) = {(hl, w

h
l ) : 0 ≤ l < Q} (1)

We define a cost matrix C ∈ RQ×Q wherein each element C[k, l] represents the cost of moving14

probability mass between gk and hl. We further denote the movement of probability mass between gk15

and hl by fk,l. The optimal flow is the set of {f∗
k,l} that satisfies the following optimization problem:16
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The EMD can then be computed with Equation (3).18
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∑
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The signature is typically defined as the distribution of the grayscale values of an image when one19

wants to compare images. In other words, S(x) is the probability mass function where the random20

variable (i.e., gk or hl) is one of the possible pixel values (0 to 255) and the mass (i.e., wg
k or wh

l ) is the21

normalized count of the number of pixels in x with that value. In this formulation, spatial information22

is lost and the metric is invariant to translation, reflection, and other pixel rearrangements. We solve23

this problem by defining multidimensional signatures that consider the pixels’ x- and y-coordinates24

in addition to their values.25

The support of our multidimensional signature, Sp, is all the possible combinations of the x-26

coordinates (x-pos), y-coordinates (y-pos), and the N possible pixel values (pix):27

Sp(x) = {((x-pos, y-pos, pix)k, wk) : k ∈ {0, 1, · · · ,WHN}} (4)

The probability mass, wk, takes the value of either 1
HW or 0. The complexity of computing the cost28

matrix over Sp is O(W 2H2), making it difficult to compute for high resolution images. We therefore29

compute an approximated patch version of it, which we denoted as EMDblock.30

In EMDblock, we first split two images, x and x̂, each into K patches of dimensions r × s:31

P 0
x , · · · , PK−1

x . Our implementation sets r and s individually for every image such that there32
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are 8×8 patches in every image. To compare two patches P t
x and Pu

x̂ , we treat each patch as separate33

images and compute the EMD using the multidimensional signature defined in Equation (4), which34

we will denote as EMDp(P
t
x, P

u
x̂ ). Next, we define a separate cost matrix, Cp, such that the cost of35

moving one patch to another is the sum of the EMD between the patches and the Euclidean distance36

between them:37

Cp[i, j] = EMD(P i
x, P

j
x̂) + ||(x-posi, y-posi), (x-posj , y-posj)||2 (5)

EMDblock attempts to minimize the cost of moving patches by solving the optimization problem38

defined in Equation (2), but with the new cost function, Cp. By considering both the positions39

and weights of the pixels within patches (through the multidimensional signature) and the distance40

between patches, EMDblock heavily penalizes random shuffling of pixels and assigns a lower score41

(implying greater similarity) to a rendered image that contain blocks of similar but translated elements42

as the input (see illustration in Figure 1). This property is useful for discerning between pairs43

of images that contain similar elements —even if the elements are translated— and pairs where44

distribution of colors in the rendered image is similar to the input image.45

Finally, we define the Earth Mover Similarity (EMS), a normalized similarity version of EMDblock. It46

compares EMDblock(x, x̂) against EMDblock(x, c(x)), the EMD between the reference image and a47

constant black or white image (c(x)), whichever is the most dissimilar to the reference image x. An48

EMS of 0 indicates the least similarity and an EMS of 1 indicates the identity.49

EMS(x, x̂) = 1− EMDblock(x, x̂)

EMDblock(x, c(x))
(6)

Figure 1: An illustration of the two scales at which EMDblock operates. The left image is an altered
copy of the right one in that 4 patches are manipulated. EMDblock computes an optimal flow where 3
of these patches (in red) are moved completely without modification. For the blue patch, it decides
that it incurs a lower cost to move some pixels within the patch (the zoomed version on the right). On
top of moving blocks or pixels, EMDblock can change the pixel colors at a cost (we do not illustrate
color modification in this example for simplicity).
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