TRANSPORT CLUSTERING: SOLVING LOW-RANK OPTIMAL TRANSPORT VIA CLUSTERING

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025

026027028

029

031

033

034

037

038

040

041

042

043 044

046

047

048

051

052

ABSTRACT

Optimal transport (OT) finds a least cost transport plan between two probability distributions using a cost matrix over pairs of points. Constraining the rank of the transport plan yields low-rank OT, which improves computational complexity and statistical stability compared to full-rank OT. Further, low-rank OT naturally induces co-clusters between distributions and generalizes K-means clustering. Reversing this direction, we show that solving a clustering problem on a set of correspondences, termed transport clustering, solves low-rank OT. This connection between low-rank OT and transport clustering relies on a transport registration of the cost matrix which registers the cost matrix via the transport map. We show that the reduction of low-rank OT to transport clustering yields polynomial-time, constant-factor approximation algorithms for low-rank OT. Specifically, we show that for the low-rank OT problem this reduction yields a $(1 + \gamma)$ -approximation algorithm for metrics of negative-type and a $(1 + \gamma + \sqrt{2\gamma})$ -approximation algorithm for kernel costs where $\gamma \in [0,1]$ denotes the approximation ratio to the optimal full-rank solution. We demonstrate that transport clustering outperforms existing low-rank OT methods on several synthetic benchmarks and large-scale, high-dimensional real datasets.

1 Introduction

Optimal transport finds a transport plan between two distributions in a space M provided an appropriate cost function $c: M \times M \to \mathbb{R}$ between pairs of points in the space. When c is the squared Euclidean cost, the cost of this optimal map is known as the Wasserstein distance or Earth Mover's distance, $W_2^2(\mu, \nu)$, and is one of the most natural and popular metrics for assessing the distance between any two probability distributions μ, ν supported on M.

OT has gained popularity in machine learning and scientific applications for its ability to resolve correspondences between unregistered datasets. In machine learning, optimal transport has found applications in generative modeling (Tong et al., 2023; Korotin et al., 2023; 2021), self-attention (Tay et al., 2020; Sander et al., 2022; Geshkovski et al., 2023), unpaired data translation (Korotin et al., 2021; Bortoli et al., 2024; Tong et al., 2024; Klein et al., 2024), and alignment problems in transformers and LLMs (Melnyk et al., 2024; Li et al., 2024). Moreover, OT has become an essential tool in science, with wide-ranging applications from biology (Schiebinger et al., 2019; Yang et al., 2020; Zeira et al., 2022; Bunne et al., 2023; Halmos et al., 2025c; Klein et al., 2025) to particle physics (Komiske et al., 2019; Ba et al., 2023; Manole et al., 2024).

Low-rank optimal transport (Forrow et al., 2019; Scetbon and Cuturi, 2020; Lin et al., 2021; Scetbon and Cuturi, 2022; Scetbon et al., 2023; Halmos et al., 2024) has emerged as an alternative to full-rank OT that additionally constrains the rank of the transport plan. The constraints of low-rank OT have a number of computational advantages which make it appealing, including $\mathcal{O}(nrd)$ time and space scaling in the number of points n (Forrow et al., 2019; Scetbon et al., 2021; Lin et al., 2021; Halmos et al., 2024) for an input rank r and a cost matrix of rank d. This has contributed to its application to scaling optimal transport to larger datasets than with full-rank OT alone (Scetbon et al., 2021; Klein et al., 2025; Halmos et al., 2025b).

Low-rank optimal transport also brings structural benefits for statistical robustness and co-clustering. Specifically, the low-rank structure serves as a strong regularizer on the transport plan, producing estimators of Wasserstein distances that are more robust to outliers and sparse sampling and achieving

sharper statistical rates (Forrow et al., 2019; Lin et al., 2021). Further, by implicitly forcing transport to factor through a low rank or a set of latent "anchor" points, it jointly partitions the source and target samples and aligns the resulting groups (Forrow et al., 2019; Lin et al., 2021). Interestingly, K-means appears as a special case when only one dataset is considered (Scetbon and Cuturi, 2022) so that low-rank optimal transport offers a strict generalization of K-means to multiple datasets.

However, several practical and theoretical factors limit low-rank OT. First, as low-rank OT is non-convex and NP-hard, similar to NMF (Lee and Seung, 2000), it is sensitive to the choice of initialization (Scetbon and Cuturi, 2022) and produces highly variable low-rank factors. Second, current algorithms, which rely on local optimization through mirror-descent (Scetbon et al., 2021; Halmos et al., 2024) or Lloyd-type (Forrow et al., 2019; Lin et al., 2021) approaches, consist of a complex optimization over three or more variables. Finally, although preliminary work has characterized theoretical properties of the low-rank OT problem (Forrow et al., 2019; Scetbon and Cuturi, 2022), existing algorithms lack provable guarantees beyond convergence to stationary points. This contrasts with standard tools for K-means clustering that offer robust $\mathcal{O}(\log K)$ (Arthur and Vassilvitskii, 2007) and $(1+\epsilon)$ -approximation factors (Kumar et al., 2004) in addition to statistical guarantees (Zhuang et al., 2023).

Contributions. We show that low-rank OT reduces to a simple clustering problem on correspondences called *transport clustering*. In detail, we reduce low-rank OT from a co-clustering problem to a generalized K-means problem (Scetbon and Cuturi, 2022) via a *transport registration* of the cost matrix. This registers the cost with the solution to a convex optimization problem: the optimal full-rank transport plan. Transport clustering eliminates the auxiliary variables used in existing low-rank solvers and converts the low-rank OT problem into a single clustering subroutine: one low-rank factor is given by solving the generalized K-means problem on the registered cost, and the second factor is automatically obtained from the first. We prove constant-factor guarantees for this reduction: for kernel costs the approximation factor is $(1+\gamma+\sqrt{2\gamma})$ and for negative-type metrics it is $(1+\gamma)$ where $\gamma \in [0,1]$ is the ratio of the optimal rank K and full-rank OT costs. Because the reduced problem is a (generalized) K-means instance, transport clustering inherits the algorithmic stability and approximation guarantees of modern K-means and K-medians solvers. In addition to its theoretical guarantees, transport clustering (TC) is a simple and practically effective algorithm for low-rank OT that obtains lower transport cost on a range of real and synthetic datasets.

2 BACKGROUND

Suppose $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_m\}$ are datasets with n and m data points in a space M. Letting $\Delta_n = \{ \boldsymbol{p} \in \mathbb{R}^n_+ : \sum_j \boldsymbol{p}_j = 1 \}$ denote the probability simplex over n elements, one may represent dataset each explicitly over the support with probability measures $\mu = \sum_{i=1}^n \boldsymbol{a}_i \delta_{x_i}$ and $\nu = \sum_{j=1}^m \boldsymbol{b}_j \delta_{y_j}$ for probability vectors $\boldsymbol{a} \in \Delta_n$ and $\boldsymbol{b} \in \Delta_m$. The optimal transport framework (Peyré et al., 2019) aims to find the least-cost mapping between these datasets $\mu \mapsto \nu$ as quantified via a cost function $c : X \times Y \to \mathbb{R}$.

Optimal Transport. The *Monge formulation* (Monge, 1781) of optimal transport finds a map $T^*: M \to M$ of least-cost between the measures μ and ν , $T^* = \arg\min_{T: T_{\sharp}\mu=\nu} \mathbb{E}_{\mu}c(x, T(x))$. Here, $T_{\sharp}\mu$ denotes the pushforward measure of μ under T, defined by $T_{\sharp}\mu(B) := \mu(T^{-1}(B))$ for any measurable set $B \subset M$. Define the set of couplings $\Gamma(\mu, \nu)$ to be all joint distributions γ with marginals given by μ and ν . The *Kantorovich problem* (Kantorovich, 1942) relaxes the Monge-problem by instead finding a coupling of least-cost γ^* between μ and ν : $\gamma^* \in \arg\min_{\gamma \in \Gamma(\mu, \nu)} \mathbb{E}_{\gamma} c(x, y)$. This relaxation permits mass-splitting and guarantees the existence of a solution between any pair of measures μ and ν (Peyré et al., 2019).

In the discrete setting, the Kantorovich problem is equivalent to the linear optimization

$$\min_{\mathbf{P}\in\Pi(\boldsymbol{a},\boldsymbol{b})} \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbf{P}_{ij} c(x_i, y_j) = \min_{\mathbf{P}\in\Pi_{\boldsymbol{a},\boldsymbol{b}}} \langle \mathbf{C}, \mathbf{P} \rangle_F, \tag{1}$$

over the transportation polytope $\Pi(a, b) \triangleq \{ \mathbf{P} \in \mathbb{R}_+^{n \times m} : \mathbf{P} \mathbf{1}_m = a, \mathbf{P}^T \mathbf{1}_n = b \}$ defined by marginals $a \in \Delta_n$ and $b \in \Delta_m$. $\langle \mathbf{A}, \mathbf{B} \rangle_F = \operatorname{tr} \mathbf{A}^T \mathbf{B}$ denotes the Frobenius inner product and $[c(x_i, y_j)] = (\mathbf{C})_{ij} \in \mathbb{R}^{n \times m}$ is the cost matrix evaluated at all point pairs in X, Y.

Low-rank Optimal Transport. Low-rank optimal transport (OT) constrains the non-negative rank of the transport plan $\mathbf P$ to be upper bounded by a specified constant K. This has computational (Scetbon et al., 2021; Scetbon and Cuturi, 2022; Halmos et al., 2024), statistical (Forrow et al., 2019), and interpretability benefits (Forrow et al., 2019; Lin et al., 2021; Halmos et al., 2025a), with the drawback that it results in a non-convex and NP-hard optimization problem. For a matrix $\mathbf M \in \mathbb R_+^{n \times m}$, the *nonnegative rank* (Cohen and Rothblum, 1993) is $\mathrm{rank}_+(\mathbf M) \triangleq \min\{K: \mathbf M = \sum_{i=1}^K q_i r_i^\top, q_i, r_i \geq 0\}$, or the minimum number of nonnegative rank-one matrices which sum to $\mathbf M$. The *low-rank Kantorovich problem* (Scetbon et al., 2022; 2023; Halmos et al., 2024) is then

$$\min_{\mathbf{P} \in \Pi_{\mathbf{D}, \mathbf{b}}} \left\{ \langle \mathbf{C}, \mathbf{P} \rangle_F : \operatorname{rank}_+(\mathbf{P}) \le K \right\} \tag{2}$$

which constrains the (nonnegative) rank of the *transport plan* \mathbf{P} to be at most K. Following (Cohen and Rothblum, 1993; Scetbon et al., 2021), the low-rank Kantorovich problem (2) is equivalent to

$$\min_{\substack{\mathbf{Q} \in \Pi_{\boldsymbol{a},\boldsymbol{g}}, \mathbf{R} \in \Pi_{\boldsymbol{b},\boldsymbol{g}} \\ \boldsymbol{g} \in \Delta_K}} \left\langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \mathbf{R}^{\top} \right\rangle_F, \tag{3}$$

which explicitly parameterizes the low-rank plan \mathbf{P} as the product of two rank K transport plans \mathbf{Q} and \mathbf{R} with outer marginals $\mathbf{Q}\mathbf{1}_K = a$, $\mathbf{R}\mathbf{1}_K = b$ and a shared inner marginal $g = \mathbf{Q}^{\top}\mathbf{1}_n = \mathbf{R}^{\top}\mathbf{1}_m$.

K-Means and Generalized K-Means. Given a dataset X, the K-means problem finds a partition $\pi = \{\mathcal{C}_k\}_{k=1}^K$ of X with K clusters and means μ_1, \ldots, μ_K such that the total distance of each point to its nearest mean is minimized. Letting the k-th cluster mean be $\mu_k = \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} x_i$, the K-means problem minimizes the distortion

$$\min_{\pi} \sum_{\mathcal{C}_k \in \pi} \sum_{i \in \mathcal{C}_k} \|x_i - \boldsymbol{\mu}_k\|_2^2. \tag{4}$$

Using the identity $|\mathcal{C}_k| \sum_{i \in \mathcal{C}_k} ||x_i - \mu_k||_2^2 = \frac{1}{2} \sum_{i,j \in \mathcal{C}_k} ||x_i - x_j||_2^2$ yields an equivalent *mean-free* formulation of (4) in terms of pairwise distances:

$$\min_{\pi} \sum_{\mathcal{C}_k \in \pi} \frac{1}{|\mathcal{C}_k|} \sum_{i,j \in \mathcal{C}_k} \frac{1}{2} ||x_i - x_j||_2^2.$$
 (5)

Define the assignment matrix $n\mathbf{Q} \in \{0,1\}^{n \times K}$ by $\mathbf{Q}_{ik} = \frac{1}{n}$ if $i \in \mathcal{C}_k$ and 0 otherwise. Then, (5) is equivalently expressed (up to the constant factor n) as a sum over all assignment variables with cluster proportions given by $|\mathcal{C}_k| / n = \sum_i \mathbf{Q}_{ik}$:

$$\langle \mathbf{C}_{\ell_2^2}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_n) \mathbf{Q}^{\top} \rangle_F = \sum_{i=1}^n \sum_{j=1}^n \sum_{\mathcal{C}_k \in \pi} \frac{1}{2} \|x_i - x_j\|_2^2 \mathbf{Q}_{ik} \frac{n}{|\mathcal{C}_k|} \mathbf{Q}_{jk}$$
(6)

where $(\mathbf{C}_{\ell_2^2})_{ij} = (1/2)\|x_i - x_j\|_2^2$. In the preceding assignment form, (6) is the cost of the rank K transport plan $\mathbf{P} = \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1})\mathbf{R}^{\top}$ where $\mathbf{R} = \mathbf{Q}$ and $\mathbf{g} = \mathbf{Q}^{\top}\mathbf{1}_n$. Following this observation, Scetbon and Cuturi (2022) introduced *generalized* K-means as the extension of (4) to arbitrary cost functions $c(x_i, x_j)$ by replacing $\mathbf{C}^{\ell_2^2}$ in the mean-free formulation (6) with a general cost \mathbf{C} . Let \mathbf{U} denote the disjoint set union operator. In partition form this yields the following problem.

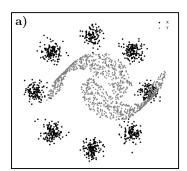
Definition 1. Given a cost matrix $\mathbf{C}_{ij} = c(x_i, x_j) \in \mathbb{R}^{n \times n}$, the generalized K-means problem is to minimize over partitions $\pi = \{\mathcal{C}_k\}_{k=1}^K$ the distortion:

$$\min_{\pi} \left\{ \sum_{k=1}^{K} \frac{1}{|\mathcal{C}_k|} \sum_{i,j \in \mathcal{C}_k} c(x_i, x_j) : \bigsqcup_{k=1}^{K} \mathcal{C}_k = [n] \right\}$$
 (7)

Define the set of hard transport plans to be $\Pi_{\bullet}(\boldsymbol{a}, \boldsymbol{b}) \triangleq \{\mathbf{P} \in \mathbb{R}_{+}^{n \times K} : \mathbf{P} \mathbf{1}_{K} = \boldsymbol{a}, \mathbf{P}^{\top} \mathbf{1}_{n} = \boldsymbol{b}, \|\mathbf{P}\|_{0} = n\}$, where $\|\mathbf{P}\|_{0} = |\{(i, j) : \mathbf{P}_{ij} > 0\}|$. Then, (7) is equivalent to the optimization problem

$$\min_{\mathbf{Q} \in \Pi_{\bullet}(\mathbf{u}_n, \cdot)} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_n) \mathbf{Q}^{\top} \rangle_F, \tag{8}$$

where $u_n = \frac{1}{n} \mathbf{1}_n$ is the uniform marginal. Interestingly, when X = Y, $a = b = u_n$, and $C = C_{\ell_2^2}$, the optimal solution $(\mathbf{Q}, \mathbf{R}, g)$ of (3) always has $\mathbf{Q} = \mathbf{R} \in \Pi_{\bullet}(u_n, g)$ following Proposition 9 in Scetbon and Cuturi (2022). Consequently, K-means strictly reduces to low-rank OT (see also Corollary 3 in Scetbon and Cuturi (2022)), proving that the low-rank OT problem (3) is NP-hard.



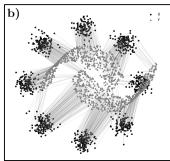




Figure 1: TC on (a) a synthetic 2-Moons (X) and 8-Gaussians (Y) dataset (n=m=1024) from Tong et al. (2023) with the (b) Monge map alignment of X and $Y=\sigma(X)$ using Halmos et al. (2025b). TC reduces low-rank OT (co-clustering) to (c) clustering a single set of Monge registered correspondences using generalized K-means.

3 Transport Clustering

We introduce a hard assignment variant of the low-rank OT problem and argue that it naturally generalizes K-means to co-clustering two datasets. We introduce $Monge\ registration$ of the cost matrix as a tool for reducing low-rank OT to generalized K-means and discuss approximation guarantees for the reduction. Finally, we introduce $Kantorovich\ registration$ as the analogue of Monge registration for the soft assignment low-rank OT problem (3). As this reduction converts low-rank OT from a co-clustering problem to a clustering problem, we refer to the procedure as $transport\ clustering$.

Clustering methods such as K-Means output hard assignments of points to clusters to represent a partition. The extension of (3) to co-clustering with a bipartition then requires the low rank factors to represent hard co-cluster assignments. Specifically, we require that the transport plans \mathbf{Q} and \mathbf{R} in (3) lie in the set of hard transport plans $\Pi_{\bullet}(\boldsymbol{a}, \boldsymbol{b})^1$ instead of $\Pi(\boldsymbol{a}, \boldsymbol{b})$, mirroring the assignment version of K-means in Section 2.

Definition 2. Given a cost matrix $\mathbf{C}_{ij} = c(x_i, y_j) \in \mathbb{R}^{n \times n}$, the assignment form of the (hard) low-rank optimal transport problem is to solve:

$$\min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\boldsymbol{u}_n, \boldsymbol{g}) \\ \boldsymbol{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(1/\boldsymbol{g}) \, \mathbf{R}^{\top} \rangle_F.$$
 (9)

There is an equivalent partition-form of (9) which parallels the partition form of K-means in Zhuang et al. (2023). In particular, one finds a pair of partitions $\pi_X = \{C_{X,k}\}, \ \pi_Y = \{C_{Y,k}\}$ minimizing the distortion:

$$\min_{\pi_X \times \pi_Y} \left\{ \sum_{k=1}^K \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_{X,k}} \sum_{j \in \mathcal{C}_{Y,k}} c(x_i, y_j) : |\mathcal{C}_{X,k}| = |\mathcal{C}_{Y,k}|, \bigsqcup_{k=1}^K \mathcal{C}_{X,k} = \bigsqcup_{k=1}^K \mathcal{C}_{Y,k} = [n] \right\}. (10)$$

This form (10) solves for a bipartition, implying (9) is a form of co-clustering (Appendix A.1). When the sets X and Y are distinct, (10) provides a natural generalization of K-means for co-clustering: (i) there are K co-clusters, (ii) each dataset receives a distinct partition π_X , π_Y , (iii) co-cluster sizes are matched $|\mathcal{C}_{X,k}| = |\mathcal{C}_{Y,k}|$, and (iv) one minimizes a distortion $c(x_i, y_j)$. When X = Y and $\mathcal{C}_{X,k} = \mathcal{C}_{Y,k}$, observe that this exactly recovers the generalized K-means problem.

As an example, the decomposition of (10) for the squared Euclidean cost can be written as

$$\min_{\pi_X \times \pi_Y} \sum_{k=1}^K \sum_{i \in \mathcal{C}_{X,k}} \|x_i - \boldsymbol{\mu}_k^X\|_2^2 + \sum_{k=1}^K \sum_{j \in \mathcal{C}_{Y,k}} \|y_j - \boldsymbol{\mu}_k^Y\|_2^2 + \sum_{k=1}^K |\mathcal{C}_k| \|\boldsymbol{\mu}_k^X - \boldsymbol{\mu}_k^Y\|_2^2$$

¹A well-known result on network flows (see Peyré et al. (2019)) states that vertices of the (soft) transportation polytope $\Pi(a, b)$ have $\leq n + K - 1$ non-zero entries, implying that the solutions of the (soft) low-rank OT problem (3) are nearly hard transport plans.

where $\mu_k^Z = \frac{1}{|\mathcal{C}_{Z,k}|} \sum_{i \in \mathcal{C}_{Z,k}} x_i$ for Z = X, Y (see Remark 1). While (4) finds a single centroid per cluster, this is a natural generalization for optimizing two: one minimizes two K-means distortions of μ_k^X, μ_k^Y on X and Y, and an additional distortion between the cluster centers μ_k^X, μ_k^Y . When X = Y and $\mu_k^X = \mu_k^Y$, this collapses to K-means.

To solve the low-rank OT problem (9)-(10), we propose a reparameterization trick motivated by the assignment form (9). Specifically, as the matrices $\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(u_n, g)$ are hard assignment matrices with matching column and row sums there exists a permutation of the rows of \mathbf{R} (resp. \mathbf{Q}) that takes \mathbf{R} to \mathbf{Q} . Formally, for any feasible \mathbf{Q}, \mathbf{R} , there exists a permutation matrix $\mathbf{P}_{\sigma} \in \mathcal{P}_n$ with $\mathbf{R} = \mathbf{P}_{\sigma}^{\top} \mathbf{Q}$. With this reparameterization, we reformulate (9) as follows,

$$\min_{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\boldsymbol{u}_{n}, \boldsymbol{g}), \ \boldsymbol{g} \in \Delta_{K}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \mathbf{R}^{\top} \rangle_{F} = \min_{\substack{\mathbf{Q} \in \Pi_{\bullet}(\boldsymbol{u}_{n}, \boldsymbol{g}), \ \boldsymbol{g} \in \Delta_{K}}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) (\mathbf{P}_{\sigma}^{\top} \mathbf{Q})^{\top} \rangle_{F}, \\
= \min_{\substack{\mathbf{Q} \in \Pi_{\bullet}(\boldsymbol{u}_{n}, \boldsymbol{g}), \ \boldsymbol{g} \in \Delta_{K}}} \langle \mathbf{C} \mathbf{P}_{\sigma}^{\top}, \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \mathbf{Q}^{\top} \rangle_{F}, \quad (11)$$

where \mathcal{P}_n is the set of permutation matrices. This reformulation of (9) might appear to offer little: the optimization remains over a difficult and non-convex pair of variables $(\mathbf{Q}, \mathbf{P}_{\sigma})$. However, the reformulation (11) offers a new perspective: for \mathbf{P}_{σ} fixed, (11) is a symmetric optimization problem over a single assignment matrix \mathbf{Q} with respect to the *registered* cost matrix $\mathbf{C}\mathbf{P}_{\sigma}^{\top}$.

In fact, when \mathbf{P}_{σ} is fixed in (11) the result is exactly the generalized K-means problem (7) discussed in Section 2. Unfortunately, however, the reduction from (9) to (7) requires a priori knowledge of the optimal choice for this unknown permutation \mathbf{P}_{σ} . This leads us to ask:

Is there an efficiently computable choice of permutation matrix \mathbf{P}_{σ} that accurately reduces low-rank optimal transport to the generalized K-means problem?

We answer this question in the *affirmative*. Specifically, we show that taking the optimal Monge map \mathbf{P}_{σ^*} as the choice of \mathbf{P}_{σ} yields a constant-factor approximation algorithm (Algorithm 1) for (hard) low-rank OT given an algorithm for solving the generalized K-means problem (Section 4). The resulting *transport clustering* (TC) algorithm first finds a correspondence between X and Y and then clusters the transport registered cost, effectively clustering on the correspondences (Figure 1).

Algorithm 1 (Transport Clustering).

- (i) Compute the optimal Monge map by solving $\mathbf{P}_{\sigma^*} \triangleq n \cdot \arg\min_{\mathbf{P} \in \Pi(\mathbf{u}_n, \mathbf{u}_n)} \langle \mathbf{C}, \mathbf{P} \rangle_F$.
- (ii) Register the cost matrix $\tilde{\mathbf{C}} = \mathbf{C} \mathbf{P}_{\sigma^*}^{\top}$ and solve the generalized K-means problem with $\tilde{\mathbf{C}}$ for $\mathbf{Q} = \arg\min_{\mathbf{Q} \in \Pi_{\bullet}(\boldsymbol{u}_n, \cdot)} \langle \tilde{\mathbf{C}}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_n) \mathbf{Q}^{\top} \rangle_F$.
- (iii) Output the pair $(\mathbf{Q}, \mathbf{P}_{\sigma^*}^\top \mathbf{Q})$.

Using standard algorithms for the Monge problem such as the Hungarian algorithm (Kuhn, 1955) or the Sinkhorn algorithm (Cuturi, 2013), ones easily implements step (i) in polynomial time. For step (ii), we propose two algorithms for generalized K-means problem based upon (1) mirror descent and (2) semidefinite programming based algorithms for K-means (Peng and Wei, 2007; Fei and Chen, 2018; Zhuang et al., 2023).

Given a $(1+\epsilon)$ -approximation algorithm $\mathcal A$ for K-means, an appropriate initialization for step (ii) of Algorithm 1 maintains the constant factor approximation guarantee with an additional $(1+\epsilon)$ factor. An analogous statement holds for metric costs where the K-means solver $\mathcal A$ is replaced with a K-medians solver, yielding polynomial-time constant-factor approximations for low-rank OT with metric and kernel costs independent of an algorithm for generalized K-means (Section 4).

Finally, we note that an analogous notion of *Kantorovich registration* exists for the soft assignment variant of the low-rank OT problem (3) with arbitrary marginals a, b supported on X and Y with $n \neq m$. In this setting, rather than register via the Monge permutation, one registers by the optimal Kantorovich plan \mathbf{P}^* using either $\mathbf{Q} = \mathbf{P}^* \operatorname{diag}(1/b)\mathbf{R}$ or $\mathbf{R} = (\mathbf{P}^*)^{\top} \operatorname{diag}(1/a)\mathbf{Q}$. When solving

with respect to \mathbf{Q} , this results in a (soft) generalized K-means problem:

$$\min_{\mathbf{Q} \in \Pi(\boldsymbol{a}, \cdot)} \left\langle \mathbf{C} \mathbf{P}^{*, \top} \operatorname{diag}(1/\boldsymbol{a}), \mathbf{Q} \operatorname{diag}(1/\boldsymbol{Q}^{\top} \mathbf{1}_n) \mathbf{Q}^{\top} \right\rangle_F.$$

To obtain \mathbf{R} , one applies the conjugation $\mathbf{R} = (\mathbf{P}^*)^{\top} \operatorname{diag}(1/a)\mathbf{Q}$, which ensures that $\mathbf{R}\mathbf{1}_K = (\mathbf{P}^*)^{\top} \operatorname{diag}(1/a)\mathbf{Q}\mathbf{1}_K = \mathbf{b}$ and $\mathbf{R}^{\top}\mathbf{1}_n = \mathbf{Q}^{\top} \operatorname{diag}(1/a)\mathbf{P}^*\mathbf{1}_n = \mathbf{g}$.

4 Theoretical Results

Approximation of low-rank optimal transport by generalized K-means. In this section, we justify the reduction from the low-rank optimal transport problem (3) to the generalized K-means problem (7) by proving that solving the proxy problem (7) incurs at most a constant factor in cost. All proofs are found in Appendix A.1.

In detail, we derive a $(2+\gamma)$ approximation ratio for any cost $c(\cdot,\cdot)$ satisfying the triangle inequality and a $(1+\gamma+\sqrt{2\gamma})$ approximation ratio for any cost induced by a kernel, which includes the squared Euclidean cost. For metrics of negative type, we provide an improved approximation ratio of $(1+\gamma)$. Examples of negative type metrics include all ℓ_p metrics for $p\in[1,2]$ and weighted linear transformations thereof (see Theorem 3.6 Meckes (2013)). Any metric embeddable in ℓ_p , $p\in[1,2]$, is also of negative type. For example, tree metrics are exactly embeddable in ℓ_p while shortest path metrics are approximately embeddable in ℓ_p with small distortion (Abraham et al., 2005).

To state our results, we write that a cost matrix \mathbf{C} is induced by a cost $c(\cdot,\cdot)$ if there exists points $X=\{x_1\dots,x_n\}$ and $Y=\{y_1,\dots,y_n\}$ such that $\mathbf{C}_{ij}=c(x_i,y_j)$. A cost $c(\cdot,\cdot)$ is a kernel cost if $c(x,y)=\|\phi(x)-\phi(y)\|_2^2$ for some feature-map $\phi:X\to\mathbb{R}^d$. A cost function $c(\cdot,\cdot)$ is conditionally negative semidefinite if $\sum_{i=1}^n\sum_{j=1}^n\alpha_i\alpha_j\,c(x_i,x_j)\leq 0$ for all x_1,\dots,x_n and α_1,\dots,α_n such that $\sum_{i=1}^n\alpha_i=0$. Equivalently, this requires all cost matrices \mathbf{C} induced by $c(\cdot,\cdot)$ to be negative semidefinite $\mathbf{C}\preceq 0$ over $\mathbf{1}^\perp_n=\{\xi\in\mathbb{R}^n:\langle\xi,\mathbf{1}_n\rangle=0\}$. A cost function $c(\cdot,\cdot)$ is said to be of negative type if it is a metric and conditionally negative semidefinite.

Theorem 1. Let $\mathbf{C} \in \mathbb{R}^{n \times n}$ be a cost matrix either induced by i) a metric of negative type, ii) a kernel cost, or iii) a cost satisfying the triangle inequality. If \mathbf{P}_{σ^*} denotes the full-rank optimal transport plan for \mathbf{C} and $\tilde{\mathbf{C}} = \mathbf{C}\mathbf{P}_{\sigma^*}^{\top}$ is the Monge registered cost, then

$$\begin{split} & \min_{\mathbf{Q} \in \Pi_{\bullet}(\boldsymbol{u}_{n}, \boldsymbol{g}), \\ & \boldsymbol{g} \in \Delta_{K}} \langle \tilde{\mathbf{C}}, \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \, \mathbf{Q}^{\top} \rangle_{F} \\ & \leq (1 + \gamma) \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\boldsymbol{u}_{n}, \boldsymbol{g}), \\ \boldsymbol{g} \in \Delta_{K}}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \, \mathbf{R}^{\top} \rangle_{F}, \qquad \text{(Metrics of Negative Type)} \\ & \leq (1 + \gamma + \sqrt{2\gamma}) \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\boldsymbol{u}_{n}, \boldsymbol{g}), \\ \boldsymbol{g} \in \Delta_{K}}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \, \mathbf{R}^{\top} \rangle_{F}, \qquad \text{(Kernel Costs)} \\ & \leq (1 + \gamma + \rho) \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\boldsymbol{u}_{n}, \boldsymbol{g}), \\ \boldsymbol{g} \in \Delta_{K}}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \, \mathbf{R}^{\top} \rangle_{F}, \qquad \text{(General Metrics)} \end{split}$$

where $\gamma \in [0,1]$ is the ratio of the cost of the optimal rank n and rank K solutions and $\rho \in [0,1]$ is the min-ratio of the cluster-variances defined in Lemma 4.

Note that the approximation ratio $\gamma \leq 1$ as the optimal cost decreases monotonically with the rank. Consequently, the upper bound in Theorem 1 is at worst a 2-approximation for negative type metric costs and at worst a $(2+\sqrt{2})$ -approximation for kernel costs. Further, following the argument in (Scetbon and Cuturi, 2022), γ is typically much smaller than one, especially for small $r \ll n$. Finally, we note that the statements of Theorem 1 holds even when ${\boldsymbol g}$ is held fixed in both the upper and lower bounds. This follows from analyzing the proof of the theorem.

Next, we show that the derived approximation ratios are essentially tight and cannot be further improved without additional assumptions. Specifically, we show that when g is fixed, the upper bound in Theorem 1 is realized by explicit examples in \mathbb{R}^2 . We provide separate examples for the Euclidean and squared Euclidean distances (Appendix A.2). Formally, we have the following result.

Proposition 1. For all $\epsilon > 0$, there exists an integer n and datasets X, Y of size n such that for the cost matrix $\mathbf{C} \in \mathbb{R}^{n \times n}_+$ induced on these points by either the Euclidean or squared Euclidean cost,

$$\begin{split} & \min_{\mathbf{Q} \in \Pi_{\bullet}(\boldsymbol{u}_{n}, \boldsymbol{g})} \langle \tilde{\mathbf{C}}, \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \, \mathbf{Q}^{\top} \rangle_{F} \\ & \geq (2 - \epsilon) \cdot \min_{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\boldsymbol{u}_{n}, \boldsymbol{g})} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \, \mathbf{R}^{\top} \rangle_{F}, \\ & \geq (3 - \epsilon) \cdot \min_{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\boldsymbol{u}_{n}, \boldsymbol{g})} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \, \mathbf{R}^{\top} \rangle_{F}, \end{split} \tag{Euclidean Metric}$$

for some $g \in \Delta_K$ and $\tilde{\mathbf{C}} = \mathbf{C}\mathbf{P}_{\sigma^*}^{\top}$ the Monge registered cost.

The preceding lower bounds rely on (1) *unstable* arrangements of points, where the Monge map changes dramatically upon an ϵ -perturbation, and (2) a limit where the size of a the sets of the points X,Y is taken to ∞ as $|X|\uparrow\infty$, $|Y|\uparrow\infty$. In finite settings with stable Monge maps, the approximation ratios in Theorem 1 may be greatly improved.

Guarantees from Transport registered initialization with K-means and K-medians. In the preceding section, we derived constant factor approximation guarantees by reducing low-rank OT to generalized K-means via Algorithm 1. However, $\tilde{\mathbf{C}}$ does not necessarily express a matrix of intra-dataset distances, so that even for kernel costs and metrics one cannot directly solve generalized K-means using K-means or K-medians. In Theorem 2, we show that by solving K-means or K-medians clustering optimally on X, Y separately to yield \mathbf{Q}_X , \mathbf{R}_Y and taking the *minimum* of the Monge-registered solutions $(\mathbf{Q}_X, \mathbf{P}_{\sigma^*}^{\top} \mathbf{Q}_X)$ and $(\mathbf{P}_{\sigma^*} \mathbf{R}_Y, \mathbf{R}_Y)$ in cost $(\mathbf{Q}, \mathbf{R}) \to \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_n) \mathbf{R}^{\top} \rangle$, the constant factor approximation guarantees are preserved. In other words, using the best initialization in generalized K-means between $\mathbf{Q}^{(0)} = \mathbf{Q}_X$ and $\mathbf{Q}^{(0)} = \mathbf{P}_{\sigma^*} \mathbf{R}_Y$ by solving K-means or K-medians already ensures a constant-factor approximation to low-rank OT on initialization, which only requires an algorithm for generalized K-means with a local descent guarantee to maintain the approximation.

Let \mathcal{A}_1 , \mathcal{A}_2 denote blackbox $(1+\epsilon)$ -approximation algorithms for K-means and K-medians. For example, such polynomial time approximation algorithms exist when the dimension is fixed for K-means (Kumar et al., 2004), and $(1+\epsilon)$ approximation algorithms exist for K-medians (Kolliopoulos and Rao, 2007). Then, we have the following guarantee for Algorithm 1 when using Algorithm 2 to implement step (ii) of the procedure.

Theorem 2. Let C be a n-by-n cost matrix either induced by i) a metric of negative type, ii) a kernel cost, or iii) a cost satisfying the triangle inequality. Let (Q^*, R^*) be the solution output by using Algorithm 2 for step (ii) of Algorithm 1 with oracles A_1 and A_2 . Then,

$$(1+\epsilon)^{-1} \cdot \langle \mathbf{C}, \mathbf{Q}^* \operatorname{diag}(1/(\mathbf{Q}^*)^{\top} \mathbf{1}_n) (\mathbf{R}^*)^{\top} \rangle_F$$

$$\leq (2+2\gamma) \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{R}^{\top} \rangle_F \qquad \text{(Metrics of Negative Type)}$$

$$\leq (1+\gamma+\sqrt{2\gamma}) \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{R}^{\top} \rangle_F \qquad \text{(Kernel Costs)}$$

$$\leq (2+2\gamma+2\rho) \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\mathbf{g}^{-1}) \mathbf{R}^{\top} \rangle_F \qquad \text{(General Metrics)}$$

where $\gamma, \rho \in [0, 1]$ are defined as in Theorem 1.

Generalized K-means Solver. To solve the generalized K-means problem we propose (1) a mirror-descent algorithm called GKMS that solves generalized K-means locally, like Lloyd's algorithm, and (2) a semidefinite programming based approach. GKMS solves a sequence of diagonal, one-sided Sinkhorn projections (Cuturi, 2013) of a classical exponentiated gradient update. Suppose $(\gamma_k)_{k=1}^{\infty}$ is a positive sequence of step sizes for a mirror-descent with respect to the KL divergence. Then, the update for $\mathbf{Q}^{(k)}$ is given by:

$$\mathbf{Q}^{(k+1)} \leftarrow P_{\boldsymbol{u}_n, \cdot} \left(\mathbf{Q}^{(k)} \odot \exp \left(-\gamma_k \nabla_{\mathbf{Q}} \mathcal{F} \mid_{\mathbf{Q}^{(k)}} \right) \right), \tag{12}$$

where $\mathcal{F}(\mathbf{Q}) \triangleq \langle \tilde{\mathbf{C}}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_n) \mathbf{Q}^{\top} \rangle_F$ and $P_{\boldsymbol{u}_n,\cdot}(\mathbf{X}) = \operatorname{diag}(\boldsymbol{u}_n/\mathbf{X} \mathbf{1}_K) \mathbf{X}$ is a Sinkhorn projection onto the set of positive matrices with marginal $\boldsymbol{u}_n, \Pi(\boldsymbol{u}_n,\cdot) = \{\mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf{X} \mathbf{1}_K = \mathbf{X} \in \mathbb{R}_+^{n \times K} : \mathbf$

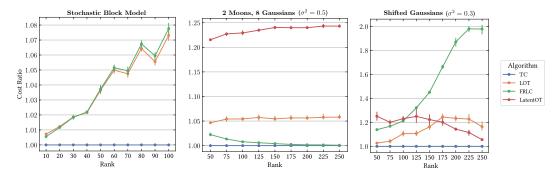


Figure 2: The relative cost of the rank $K \in \{50, 75, \dots, 250\}$ transport plan inferred LOT, FRLC, and LatentOT compared to the cost of the transport plan inferred by TC across 315 synthetic instances (lower is better). Each dataset contains n=m=5000 data points. LatentOT is excluded from the stochastic block model evaluation as it takes as input a squared Euclidean cost matrix.

 u_n }. Observe that solving low-rank OT (9) with the constant-factor guarantees of Theorem 2 only requires (12) to decrease the cost from the initialization of Algorithm 2. We show in Proposition 3 that assuming a δ lower bound on $\mathbf{Q}^{\top}\mathbf{1}_n$ (similar to Scetbon et al. (2021); Halmos et al. (2024)), relative-smoothness to the entropy mirror-map ψ holds $\|\nabla \mathcal{F}^{(k+1)} - \nabla \mathcal{F}^{(k)}\|_F \leq \beta \|\nabla \psi^{(k+1)} - \nabla \psi^{(k)}\|_F$ for $\beta = \text{poly}(n, \|\mathbf{C}\|_F, \delta)$. By the descent lemma (Lu et al., 2018), this implies that Theorem 2 provides upper bounds on the quality of the final solution of GKMS. See Appendix A.4.1 for more details on the GKMS algorithm and Appendix A.4.2 for a semidefinite programming approach

Complexity Analysis. The time and space complexity of Algorithm 1 depends on the complexity of optimal transport and generalized K-means. Procedures such as Agarwal et al. (2024) and Halmos et al. (2025b) permit OT to scale with $\tilde{\mathcal{O}}(n)$ time and $\mathcal{O}(n)$ space complexity for constant dimension d. GKMS requires $\mathcal{O}(ndr)$ iteration complexity if the cost is factorized $\mathbf{C} = \mathbf{U}_d \mathbf{V}_d^{\top}$ and $\mathcal{O}(nr)$ space to store \mathbf{Q} . In addition, recent SDP approaches for K-means using the Burer-Monteiro factorization Zhuang et al. (2023) likewise provide linear time and space complexity for generalized K-means.

5 NUMERICAL EXPERIMENTS

We present numerical experiments for three synthetic and two real datasets to demonstrate the effectiveness of transport clustering (TC) for low-rank OT and co-clustering. Implementation details are provided in Appendix B.1.

Synthetic Validation. We constructed three synthetic datasets to evaluate low-rank OT methods and evaluated transport clustering against three existing low-rank OT methods: LOT (Scetbon et al., 2021), FRLC (Halmos et al., 2024), and LatentOT (Lin et al., 2021). The three synthetic datasets are referred to as 2-Moons and 8-Gaussians (2M-8G) (Tong et al., 2023; Scetbon et al., 2021), shifted Gaussians (SG), and the stochastic block model (SBM). The 2M-8G dataset contained three instances at noise levels $\sigma^2 \in \{0.1, 0.25, 0.5\}$, the SG dataset contained three instances at noise levels $\sigma^2 \in \{0.1, 0.2, 0.3\}$, and the SBM dataset contained a single instance. Each instance contained n=m=5000 points and methods were evaluated across a spectrum of ranks $K \in \{50,75,\ldots,250\}$ and $K \in \{10,\ldots,100\}$ with five random seeds $s \in \{1,2,3,4,5\}$. In total, each algorithm was ran on 64 instances for 5 random seeds. Synthetic dataset simulation details are provided in Appendix B.2.

To evaluate the low-rank OT methods, we computed the relative cost of the low-rank OT plans output by existing methods compared to the cost of the low-rank OT plan output by ${\tt TC}$. Across all synthetic datasets, ${\tt TC}$ was consistently the best performing method in terms of minimizing the low-rank OT cost (Figure 2). On the 2M-8G dataset, ${\tt TC}$ outperformed all methods in the highest noise setting (Figure 2, 7) and was slightly ($\leq 1\%$ difference) outperformed by ${\tt FRLC}$ in the low noise, high rank setting. On the SG dataset, ${\tt TC}$ was the top performing method and obtained an average relative improvement of 23% compared to the next best performing method ${\tt LOT}$ (Figure 2, 5). On the SBM dataset, ${\tt TC}$ outperformed all methods and obtained an average relative improvement of 4% compared to the next best performing method ${\tt LOT}$ (Figure 2, 4).

433

448

449

450

452 453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468 469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Table 1: Comparison of low-rank OT methods across three datasets: CIFAR-10 (n=60,000), smallest mouse embryo split (n=18,819), and largest mouse embryo split (n=131,040).

Dataset	Method	Rank	OT Cost ↓	AMI (A/B)↑	ARI (A/B) ↑	CTA ↑
CIFAR-10 (60,000)	LOT	10	234.733	0.430 / 0.427	0.306 / 0.303	0.358
	FRLC	10	235.950	0.411 / 0.407	0.281 / 0.277	0.351
	TC	10	231.200	0.478 / 0.476	0.358 / 0.356	0.412
Mouse embryo	TC	43	0.506	0.639 / 0.617	0.329 / 0.307	0.722
$E8.5 \rightarrow E8.75$	FRLC	43	0.553	0.556 / 0.531	0.217 / 0.199	0.525
(18,819)	LOT	43	0.520	0.605 / 0.592	0.283 / 0.272	0.611
Mouse embryo	TC	80	0.389	0.554 / 0.551	0.172 / 0.169	0.564
$E9.5 \rightarrow E9.75$	FRLC	80	0.399	0.491 / 0.487	0.116 / 0.115	0.447
(131,040)	LOT	80	-	-/-	-/-	_

To evaluate co-cluster recovery, we computed the ARI/AMI with reference to the ground truth clusters when the rank K matched the true number of clusters (K=250 for SG, K=100 for SBM). On the SG dataset, TC was the second best performing method (Figure 5) with a slightly worse average ARI/AMI than Latentot (TC 0.97/0.99; Lot 0.94/0.98; FRLC 0.60/0.88; Latentot: 1.00/1.00). On the SBM dataset, TC was the best performing method (Figure 4) and obtained the highest average ARI/AMI (TC 0.09/0.20; Lot 0.02/0.02; FRLC 0.02/0.01).

Co-Clustering on CIFAR10. Following Zhuang et al. (2023) we applied low-rank OT methods to the CIFAR-10 dataset, which contains 60,000 images of size $32 \times 32 \times 3$ across 10 classes. We use a ResNet to embed the images to d = 512 (He et al., 2016) and apply a PCA to d = 50, following the procedure of Zhuang et al. (2023). We perform a stratified 50:50 split of the images into two datasets of 30,000 images with class-label distributions matched. We co-cluster these two datasets using the methods which scale to it: TC, FRLC (Halmos et al., 2024), and LOT Scetbon et al. (2021). We set the rank K=10 to match the number of labels. For TC we solve for \mathbf{P}_{σ^*} with Halmos et al. (2025b) and solve generalized K-means with GKMS. On this 60k point alignment, TC attains the lowest OT cost of 231.20 vs. LOT (234.73) and FRLC (235.95). To evaluate the co-clustering performance of TC we evaluate the AMI and ARI of the labels derived from the asymmetric factors against the ground-truth class label assignments (Table 1). TC shows stronger agreement on both marginals (AMI/ARI: split A 0.478/0.358, split B 0.476/0.356) than LOT (0.430/0.306, 0.427/0.303) or FRLC (0.411/0.281,0.407/0.277). To assess the accuracy of co-clustering across distinct domains, we computing the class-transfer accuracy (CTA): the fraction of mass aligned between ground-truth classes across datasets over the total (for ρ the class-class transport matrix, this is $\operatorname{tr} \rho / \sum \rho_{k,k'}$). TC attains a CTA of 0.412, compared to LOT (0.358) and FRLC (0.351), indicating more accurate cross-domain label transfer. See Section B.3 for more details.

Large-Scale Single-Cell Transcriptomics. Recent single-cell datasets have sequenced millions of nuclei from model organisms such as the mouse (Qiu et al., 2024; 2022) and zebrafish (Liu et al., 2022) across time to characterize cell-differentiation and stem-cell reprogramming. Optimal transport has emerged as the canonical tool for aligning single-cell datasets (Schiebinger et al., 2019; Zeira et al., 2022; Liu et al., 2023; Halmos et al., 2025c; Klein et al., 2025), and low-rank optimal transport has recently emerged as a tool to co-cluster or link cell-types across time, allowing one to infer a map of cell-type differentiation (Halmos et al., 2025a; Klein et al., 2025). We benchmark the co-clustering and alignment performance of TC, LOT, and FRLC on a recent, massive-scale dataset of single-cell mouse embryogenesis Qiu et al. (2024) measured across 45 timepoint bins with combinatorial indexing (sci-RNA-seq3). We align 7 time-points with n = 18819-131040 cells (stages E8.5-E10.0) for a total of 6 pairwise alignments (Table 1, Supplementary Table 2). We set the rank $K \in \{43, 53, 57, 67, 80, 77\}$ to be the number of ground-truth cell-types. While LOT runs up to E8.75-9.0 (30240 cells) and fails to compute an alignment past E9.0-E9.25 (45360 cells), we find TC and FRLC scale to all pairs. Transport clustering yields lower OT cost, higher AMI, and higher ARI than both LOT and FRLC on all dataset pairs (Supplementary Table 2). Notably, the co-clustering performance is also improved for all timepoints: as an example, on E8.5-8.75 TC achieves a CTA of 0.722 and correctly maps the majority of mass between recurring cell-types across the different datasets, compared to LOT (0.611) and FRLC (0.525). See Section B.4 for more details on this experiment.

REFERENCES

- Ittai Abraham, Yair Bartal, Jon Kleinberg, T-HH Chan, Ofer Neiman, Kedar Dhamdhere, Aleksandrs Slivkins, and Anupam Gupta. Metric embeddings with relaxed guarantees. In *46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05)*, pages 83–100. IEEE, 2005.
- Pankaj K. Agarwal, Sharath Raghvendra, Pouyan Shirzadian, and Keegan Yao. Fast and Accurate Approximations of the Optimal Transport in Semi-Discrete and Discrete Settings, page 45144529. Society for Industrial and Applied Mathematics, January 2024. ISBN 9781611977912. doi: 10. 1137/1.9781611977912.159. URL http://dx.doi.org/10.1137/1.9781611977912.159.
- David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In *Proceedings* of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '07, page 10271035, USA, 2007. Society for Industrial and Applied Mathematics. ISBN 9780898716245.
- Demba Ba, Akshunna S. Dogra, Rikab Gambhir, Abiy Tasissa, and Jesse Thaler. Shaper: can you hear the shape of a jet? *Journal of High Energy Physics*, 2023(6), June 2023. ISSN 1029-8479. doi: 10.1007/jhep06(2023)195. URL http://dx.doi.org/10.1007/JHEP06(2023)195.
- Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, and Arnaud Doucet. Schrodinger bridge flow for unpaired data translation. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=1F32iCJFfa.
- Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. *Communications on pure and applied mathematics*, 44(4):375–417, 1991.
- Charlotte Bunne, Stefan G. Stark, Gabriele Gut, Jacobo Sarabia del Castillo, Mitch Levesque, Kjong-Van Lehmann, Lucas Pelkmans, Andreas Krause, and Gunnar Rätsch. Learning single-cell perturbation responses using neural optimal transport. *Nature Methods*, 20(11):1759–1768, September 2023. ISSN 1548-7105. doi: 10.1038/s41592-023-01969-x. URL http://dx.doi.org/10.1038/s41592-023-01969-x.
- Sinho Chewi, Jonathan Niles-Weed, and Philippe Rigollet. Statistical optimal transport. *arXiv* preprint arXiv:2407.18163, 3, 2024.
- Joel E Cohen and Uriel G Rothblum. Nonnegative Ranks, Decompositions, and Factorizations of Nonnegative Matrices. *Linear Algebra and its Applications*, 190:149–168, 1993.
- Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in Neural Information Processing Systems*, pages 2292–2300, 2013.
- Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering and normalized cuts. In *Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 551–556, 2004a.
- Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering and normalized cuts. In *Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '04, page 551556, New York, NY, USA, 2004b. Association for Computing Machinery. ISBN 1581138881. doi: 10.1145/1014052.1014118. URL https://doi.org/10.1145/1014052.1014118.
- Yingjie Fei and Yudong Chen. Hidden integrality of sdp relaxations for sub-gaussian mixture models. In *Conference On Learning Theory*, pages 1931–1965. PMLR, 2018.
- Aden Forrow, Jan-Christian Hütter, Mor Nitzan, Philippe Rigollet, Geoffrey Schiebinger, and Jonathan Weed. Statistical Optimal Transport via Factored Couplings. In Kamalika Chaudhuri and Masashi Sugiyama, editors, *Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics*, volume 89 of *Proceedings of Machine Learning Research*, pages 2454–2465. PMLR, 16–18 Apr 2019. URL https://proceedings.mlr.press/v89/forrow19a.html.
- Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. A mathematical perspective on Transformers. *arXiv preprint arXiv:2312.10794*, 2023.

- Peter Halmos, Xinhao Liu, Julian Gold, and Benjamin Raphael. Low-Rank Optimal Transport through Factor Relaxation with Latent Coupling. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=hGgkdFf2hR.
 - Peter Halmos, Julian Gold, Xinhao Liu, and Benjamin J. Raphael. Learning latent trajectories in developmental time series with Hidden-Markov optimal transport. In *International Conference on Research in Computational Molecular Biology*, pages 367–370. Springer, 2025a.
 - Peter Halmos, Julian Gold, Xinhao Liu, and Benjamin J Raphael. Hierarchical refinement: Optimal transport to infinity and beyond. *arXiv preprint arXiv:2503.03025*, 2025b.
 - Peter Halmos, Xinhao Liu, Julian Gold, Feng Chen, Li Ding, and Benjamin J. Raphael. DeST-OT: Alignment of spatiotemporal transcriptomics data. *Cell Systems*, January 2025c. ISSN 2405-4712. doi: 10.1016/j.cels.2024.12.001. URL http://dx.doi.org/10.1016/j.cels.2024.12.001.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
 - L Kantorovich. On the Translocation of Masses: Doklady akademii nauk ussr. 1942.
 - Dominik Klein, Théo Uscidda, Fabian J Theis, and marco cuturi. Generative entropic neural optimal transport to map within and across space, 2024. URL https://openreview.net/forum?id=gBLEHzKOfF.
 - Dominik Klein, Giovanni Palla, Marius Lange, Michal Klein, Zoe Piran, Manuel Gander, Laetitia Meng-Papaxanthos, Michael Sterr, Lama Saber, Changying Jing, Aimée Bastidas-Ponce, Perla Cota, Marta Tarquis-Medina, Shrey Parikh, Ilan Gold, Heiko Lickert, Mostafa Bakhti, Mor Nitzan, Marco Cuturi, and Fabian J. Theis. Mapping cells through time and space with moscot. *Nature*, January 2025. ISSN 1476-4687. doi: 10.1038/s41586-024-08453-2. URL http://dx.doi.org/10.1038/s41586-024-08453-2.
 - Stavros G. Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for the euclidean k-median problem. *SIAM Journal on Computing*, 37(3):757782, January 2007. ISSN 1095-7111. doi: 10.1137/s0097539702404055. URL http://dx.doi.org/10.1137/s0097539702404055.
 - Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. Metric space of collider events. *Phys. Rev. Lett.*, 123:041801, Jul 2019. doi: 10.1103/PhysRevLett.123.041801. URL https://link.aps.org/doi/10.1103/PhysRevLett.123.041801.
 - Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M. Solomon, Alexander Filippov, and Evgeny Burnaev. Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark. In *NeurIPS*, pages 14593-14605, 2021. URL http://dblp.uni-trier.de/db/conf/nips/neurips2021.html#KorotinLGSFB21.
 - Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Neural optimal transport. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=d8CBRlWNkqH.
 - Harold W. Kuhn. The Hungarian Method for the Assignment Problem. *Naval Research Logistics Quarterly*, 2(1–2):83–97, March 1955. doi: 10.1002/nav.3800020109.
 - A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1 + /spl epsiv/)-approximation algorithm for k-means clustering in any dimensions. In *45th Annual IEEE Symposium on Foundations of Computer Science*, pages 454–462, 2004. doi: 10.1109/FOCS.2004.7.
 - Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, *Advances in Neural Information Processing Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA*, pages 556–562. MIT Press, 2000. URL https://proceedings.neurips.cc/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html.

- Xuhong Li, Jiamin Chen, Yekun Chai, and Haoyi Xiong. GiLOT: Interpreting generative language models via optimal transport. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview.net/forum?id=qKL25sGjxL.
 - Chi-Heng Lin, Mehdi Azabou, and Eva L Dyer. Making transport more robust and interpretable by moving data through a small number of anchor points. *Proceedings of machine learning research*, 139:6631, 2021.
 - Chang Liu, Rui Li, Young Li, Xiumei Lin, Kaichen Zhao, Qun Liu, Shuowen Wang, Xueqian Yang, Xuyang Shi, Yuting Ma, Chenyu Pei, Hui Wang, Wendai Bao, Junhou Hui, Tao Yang, Zhicheng Xu, Tingting Lai, Michael Arman Berberoglu, Sunil Kumar Sahu, Miguel A Esteban, Kailong Ma, Guangyi Fan, Yuxiang Li, Shiping Liu, Ao Chen, Xun Xu, Zhiqiang Dong, and Longqi Liu. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis. *Dev. Cell*, 57(10):1284–1298.e5, May 2022.
 - Xinhao Liu, Ron Zeira, and Benjamin J Raphael. Partial alignment of multislice spatially resolved transcriptomics data. *Genome Research*, 33(7):1124–1132, 2023.
 - Haihao Lu, Robert M. Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-order methods, and applications. *SIAM Journal on Optimization*, 28(1):333354, January 2018. ISSN 1095-7189. doi: 10.1137/16m1099546. URL http://dx.doi.org/10.1137/16m1099546.
 - Tudor Manole, Patrick Bryant, John Alison, Mikael Kuusela, and Larry Wasserman. Background modeling for double higgs boson production: Density ratios and optimal transport, 2024. URL https://arxiv.org/abs/2208.02807.
 - Mark W Meckes. Positive definite metric spaces. *Positivity*, 17(3):733–757, 2013.
 - Igor Melnyk, Youssef Mroueh, Brian Belgodere, Mattia Rigotti, Apoorva Nitsure, Mikhail Yurochkin, Kristjan Greenewald, Jiri Navratil, and Jarret Ross. Distributional preference alignment of LLMs via optimal transport. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=2LctgfN6Ty.
 - Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. *Mem. Math. Phys. Acad. Royale Sci.*, pages 666–704, 1781.
 - Jiming Peng and Yu Wei. Approximating k-means-type clustering via semidefinite programming. *SIAM journal on optimization*, 18(1):186–205, 2007.
 - Jiming Peng and Yu Xia. A new theoretical framework for k-means-type clustering. In *Foundations and advances in data mining*, pages 79–96. Springer, 2005.
 - Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science. *Foundations and Trends*® *in Machine Learning*, 11(5-6):355–607, 2019.
 - Chengxiang Qiu, Junyue Cao, Beth K Martin, Tony Li, Ian C Welsh, Sanjay Srivatsan, Xingfan Huang, Diego Calderon, William Stafford Noble, Christine M Disteche, Stephen A. Murray, Malte Spielmann, Cecilia B. Moens, Cole Trapnell, and Jay Shendure. Systematic reconstruction of cellular trajectories across mouse embryogenesis. *Nature genetics*, 54(3):328–341, 2022.
 - Chengxiang Qiu, Beth K Martin, Ian C Welsh, and et al. Daza. A single-cell time-lapse of mouse prenatal development from gastrula to birth. *Nature*, 626(8001):1084–1093, 2024.
 - C. Radhakrishna Rao. Convexity properties of entropy functions and analysis of diversity. *Lecture Notes-Monograph Series*, 5:68–77, 1984. ISSN 07492170. URL http://www.jstor.org/stable/4355484.
 - Michael E. Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. Sinkformers: Transformers with Doubly Stochastic Attention. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, *Proceedings of The 25th International Conference on Artificial Intelligence and Statistics*, volume 151 of *Proceedings of Machine Learning Research*, pages 3515–3530. PMLR, 28–30 Mar 2022. URL https://proceedings.mlr.press/v151/sander22a.html.

- Meyer Scetbon and Marco Cuturi. Linear time sinkhorn divergences using positive features. *Advances in Neural Information Processing Systems*, 33:13468–13480, 2020.
 - Meyer Scetbon and Marco Cuturi. Low-rank Optimal Transport: Approximation, Statistics and Debiasing. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=4btNeXKFAQ.
 - Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-Rank Sinkhorn Factorization. In *International Conference on Machine Learning*, 2021. URL https://api.semanticscholar.org/CorpusID:232147563.
 - Meyer Scetbon, Gabriel Peyré, and Marco Cuturi. Linear-time Gromov Wasserstein Distances using Low Rank Couplings and Costs. In *International Conference on Machine Learning*, pages 19347–19365. PMLR, 2022.
 - Meyer Scetbon, Michal Klein, Giovanni Palla, and Marco Cuturi. Unbalanced Low-rank Optimal Transport Solvers, 2023.
 - Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon, Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, et al. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming. *Cell*, 176(4):928–943, 2019.
 - I. J. Schoenberg. Metric spaces and positive definite functions. *Transactions of the American Mathematical Society*, 44(3):522–536, 1938. ISSN 00029947, 10886850. URL http://www.jstor.org/stable/1989894.
 - Richard Sinkhorn. A relationship between arbitrary positive matrices and stochastic matrices. *Canadian Journal of Mathematics*, 18:303–306, 1966.
 - Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse Sinkhorn Attention. In Hal Daumé III and Aarti Singh, editors, *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 9438–9447. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/tay20a.html.
 - Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian Fatras, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch optimal transport. In *ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems*, 2023.
 - Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=CD9Snc73AW. Expert Certification.
 - Karren Dai Yang, Karthik Damodaran, Saradha Venkatachalapathy, Ali C Soylemezoglu, GV Shivashankar, and Caroline Uhler. Predicting cell lineages using autoencoders and optimal transport. *PLoS computational biology*, 16(4):e1007828, 2020.
 - Ron Zeira, Max Land, Alexander Strzalkowski, and Benjamin J Raphael. Alignment and integration of spatial transcriptomics data. *Nature Methods*, 19(5):567–575, 2022.
 - Yubo Zhuang, Xiaohui Chen, and Yun Yang. Sketch-and-lift: scalable subsampled semidefinite program for k-means clustering. In *International Conference on Artificial Intelligence and Statistics*, pages 9214–9246. PMLR, 2022.
 - Yubo Zhuang, Xiaohui Chen, Yun Yang, and Richard Y Zhang. Statistically optimal k-means clustering via nonnegative low-rank semidefinite programming. *arXiv preprint arXiv:2305.18436*, 2023.

A APPENDIX

A.1 APPROXIMATION GUARANTEES FOR LOW-RANK OPTIMAL TRANSPORT

To prove the approximation guarantees stated in Theorem 1, we start by proving the equivalence between the partition formulation (10) and the assignment formulation (9) of the (hard) low-rank OT problem.

Throughout, we assume that \mathbf{C} is induced by a cost matrix $c(\cdot,\cdot)$ on $X=\{x_1,\ldots,x_n\}$ and $Y=\{y_1,\ldots,y_n\}$, matching the assumptions in Theorem 1. Denote the set of partitions of $\{1,\ldots,n\}$ as \mathcal{P}_n and the set of partitions of size K as \mathcal{P}_n^K . Define the cost $\mathcal{J}(\mathcal{X},\mathcal{Y})$ of two partitions $\mathcal{X},\mathcal{Y}\in\mathcal{P}_n^K$ as

$$\mathcal{J}(\mathcal{X}, \mathcal{Y}) \triangleq \sum_{k=1}^{K} \frac{1}{|X_k|} \sum_{i \in X_k} \sum_{j \in Y_k} c(x_i, y_j).$$

Then, the assignment formulation (9) is equivalent to the following partition formulation over the datasets X and Y:

$$\min_{\substack{\mathcal{X}=\{X_k\}_{k=1}^K\\\mathcal{Y}=\{Y_k\}_{k=1}^K}} \{\mathcal{J}(\mathcal{X},\mathcal{Y}): |X_k| = |Y_k|, \mathcal{X}, \mathcal{Y} \in \mathcal{P}_n^K\}. \tag{13}$$

The form (13) is a concise form of (10) that is used in the proofs. To see the equivalence, note that the cost of a solution $(\mathbf{Q}, \mathbf{R}, \mathbf{g})$ equals

$$\langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \mathbf{R}^{\top} \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{C}_{ij} [\mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \mathbf{R}^{\top}]_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{C}_{ij} \sum_{k=1}^{K} \frac{\mathbf{Q}_{ik} \mathbf{R}_{jk}}{g_k}$$

$$= \sum_{k=1}^{K} \frac{1}{g_k} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{C}_{ij} \mathbf{Q}_{ik} \mathbf{R}_{jk} = \sum_{k=1}^{K} \frac{1}{g_k} \sum_{i \in X_k} \sum_{j \in Y_k} c(x_i, y_j)$$

where $X_k = \{i : \mathbf{Q}_{ik} > 0\}, Y_k = \{i : \mathbf{R}_{ik} > 0\}$ are partitions in \mathcal{P}_n due to the constraints on \mathbf{Q} and \mathbf{R} . Rescaling the objective by n, we have that $ng_k^{-1} = |X_k| = |Y_k|$. Thus, every feasible solution $(\mathbf{Q}, \mathbf{R}, \mathbf{g})$ of (9) induces a solution of (13) with equivalent cost, up to a constant factor n. For the other direction, observe that any solution of (13) induces a solution of (9) with equal cost, again up to the factor of n, by following the equalities in the opposite order.

When $\mathbf{R} = \mathbf{P}_{\sigma}^{\top} \mathbf{Q}$ for a permutation matrix σ , it follows that $Y_k = \sigma(X_k)$. Thus, fixing \mathbf{P}_{σ} in the low-rank OT problem (11) is equivalent to requiring that $Y_k = \sigma(X_k)$. Consequently, any approximation guarantee for the partition formulation (13) carries directly over to (9). Formally, we have the following statement.

Lemma 1. For any $\alpha > 0$ and permutation σ , the inequality

$$\min_{\substack{\mathbf{Q} \in \Pi_{\bullet}(\boldsymbol{u}_n, \boldsymbol{g}), \\ \mathbf{P}_{\sigma} \in \mathcal{P}_n, \\ \boldsymbol{g} \in \Delta_K}} \langle \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \, \mathbf{Q}^{\top}, \tilde{\mathbf{C}} \rangle_F \leq \alpha \cdot \min_{\substack{\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(\boldsymbol{u}_n, \boldsymbol{g}), \\ \boldsymbol{g} \in \Delta_K}} \langle \mathbf{Q} \operatorname{diag}(\boldsymbol{g}^{-1}) \, \mathbf{R}^{\top}, \mathbf{C} \rangle_F,$$

where $\tilde{\mathbf{C}} = \mathbf{C}\mathbf{P}_{\sigma}^{\top}$ holds if and only if

$$\min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \leq \alpha \cdot \min_{\substack{\mathcal{X} = \{X_k\}_{k=1}^K \\ \mathcal{Y} = \{Y_k\}_{k=1}^K}} \{\mathcal{J}(\mathcal{X}, \mathcal{Y}) : |X_k| = |Y_k|, \mathcal{X}, \mathcal{Y} \in \mathcal{P}_n^K\}.$$

This states that in order to prove Theorem 1 it suffices to prove the analogous inequality for the partition formulation (13).

We now start the proof of Theorem 1. In the case where $c(\cdot,\cdot)$ is a metric we prove both of the results together, as many of the components are shared. The case where $c(\cdot,\cdot)$ is induced by a kernel is handled separately, as the triangle inequality is lost, and naïve application of the doubled triangle inequality results in a worse guarantee.

We start by proving the following upper bound on twice $\min_{\mathcal{X} \in \mathcal{P}_n^r} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X}))$, which holds for arbitrary metrics.

 Lemma 2. Let $\mathcal{X} = \{X_1, \dots, X_K\}$, $\mathcal{Y} = \{Y_1, \dots, Y_K\}$ be a feasible solution to the optimization problem (13) and suppose that $c(\cdot, \cdot)$ is a metric. Then, for any permutation σ ,

$$\mathcal{J}_1 + \mathcal{J}_2 \le 2M_\sigma + \sum_{k=1}^K \frac{1}{|X_k|} \sum_{i,j \in X_k} c(x_i, x_j) + \sum_{k=1}^K \frac{1}{|Y_k|} \sum_{i,j \in Y_k} c(y_i, y_j), \tag{14}$$

where
$$M_{\sigma} = \sum_{i=1}^{n} c(x_i, y_{\sigma(i)}), \mathcal{J}_1 = \mathcal{J}(\sigma^{-1}(\mathcal{Y}), \mathcal{Y}), \text{ and } \mathcal{J}_2 = \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})).$$

Proof. Consider the solution $\sigma^{-1}(\mathcal{Y}) = \{\sigma^{-1}(Y_k)\}_{k=1}^K$, $\mathcal{Y} = \{Y_k\}_{k=1}^K$ to the optimization problem (13): this is a feasible solution as σ^{-1} preserves the size of sets. Using the triangle inequality, we have that $c(x_i, y_j) \leq c(x_i, z_i) + c(z_i, y_j)$, so that taking $z_i := y_{\sigma(i)}$ we can bound the cost of \mathcal{J}_1 as:

$$\mathcal{J}_{1} = \sum_{k=1}^{K} \frac{1}{|Y_{k}|} \sum_{i \in \sigma^{-1}(Y_{k})} \sum_{j \in Y_{k}} c(x_{i}, y_{j})
\leq \sum_{k=1}^{K} \frac{1}{|Y_{k}|} \sum_{i \in \sigma^{-1}(Y_{k})} \sum_{j \in Y_{k}} [c(x_{i}, y_{\sigma(i)}) + c(y_{\sigma(i)}, y_{j})]
= \sum_{k=1}^{K} \frac{|Y_{k}|}{|Y_{k}|} \sum_{i \in \sigma^{-1}(Y_{k})} c(x_{i}, y_{\sigma(i)}) + \sum_{k=1}^{K} \frac{1}{|Y_{k}|} \sum_{i \in \sigma^{-1}(Y_{k})} \sum_{j \in Y_{k}} c(y_{\sigma(i)}, y_{j}).$$
(15)

Using the fact that $\sigma^{-1}(\mathcal{Y})$ partitions $\{1,\ldots,n\}$ and performing a change of variables with σ , the upper bound (15) becomes

$$\mathcal{J}_1 \le \sum_{i=1}^n c(x_i, y_{\sigma(i)}) + \sum_{k=1}^K \frac{1}{|Y_k|} \sum_{i, j \in Y_k} c(y_i, y_j).$$
 (16)

We then apply a symmetric argument to the feasible solution $(\mathcal{X}, \sigma(\mathcal{X}))$ of (13) by using the bound $c(x_i, y_i) \leq c(x_i, x_{\sigma^{-1}(i)}) + c(x_{\sigma^{-1}(i)}, y_i)$. This yields

$$\mathcal{J}_2 \le \sum_{i=1}^n c(x_i, y_{\sigma(i)}) + \sum_{k=1}^K \frac{1}{|X_k|} \sum_{i, j \in X_k} c(x_i, x_j), \tag{17}$$

and adding the bounds together completes the proof.

The preceding result yields the aforementioned upper bound as $\min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \leq \min\{\mathcal{J}_1, \mathcal{J}_2\}$. We now state two well-known folklore results relating the sum of intra- and interdataset distances. For completeness, we provide proofs of the both statements.

Metrics of negative type form an interesting class of metrics as they satisfy the following relationship between the intra-cluster and inter-cluster variances.

Lemma 3. Suppose $c(\cdot, \cdot)$ is conditionally negative semidefinite. Then, for all sets of points $X = \{x_1 \dots, x_n\}$ and $Y = \{y_1, \dots, y_n\}$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, x_j) + \sum_{i=1}^{n} \sum_{j=1}^{n} c(y_i, y_j) \le 2 \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, y_j).$$
(18)

Proof. Let $Z=X\cup Y$. Define the matrix $D\in\mathbb{R}^{2n\times 2n}$ by $D_{z,z'}=c(z,z')$. Then, since $c(\cdot,\cdot)$ is conditionally negative semidefinite, $\alpha^\top D\alpha\leq 0$ for all α s.t. $\alpha^\top \mathbf{1}_{2n}=0$. Set $\bar{\alpha}_z=\mathbb{1}(z\in X)-\mathbb{1}(z\in Y)$. Then, since |X|=|Y| we have $\bar{\alpha}^\top \mathbf{1}_{2n}=0$ and therefore

$$\bar{\alpha}^{\top} D \bar{\alpha} = \sum_{i=1}^{n} \sum_{i=1}^{n} c(x_i, x_j) + \sum_{i=1}^{n} \sum_{j=1}^{n} c(y_i, y_j) - 2 \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, y_j) \le 0.$$

This completes the proof.

For arbitrary metrics, the preceding bound holds with an extra factor of 2.

Lemma 4. Suppose $c(\cdot, \cdot)$ is a metric. Then, for all sets of points $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_n\}$,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, x_j) + \sum_{i=1}^{n} \sum_{j=1}^{n} c(y_i, y_j) \le 2(1+\rho) \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, y_j),$$
(19)

for $\rho \in [0,1]$ defined to be the minimum ratio of intra-dataset distances:

$$\rho \triangleq \min \left\{ \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, x_j)}{\sum_{i=1}^{n} \sum_{j=1}^{n} c(y_i, y_j)}, \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} c(y_i, y_j)}{\sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, x_j)} \right\}.$$
 (20)

Proof. Applying the triangle inequality gives the two inequalities

$$c(x_i, x_j) \le c(x_i, y_k) + c(y_k, x_j)$$
 and $c(y_i, y_j) \le c(y_i, x_k) + c(x_k, y_j)$ (21)

for all $i, j, k \in \{1, ..., n\}$. Taking the sum over i, j, k from 1 to n and applying symmetry of the cost $c(\cdot, \cdot)$ to the first inequality in (21) yields

$$n \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, x_j) \le n \cdot \sum_{i=1}^{n} \sum_{k=1}^{n} c(x_i, y_k) + n \cdot \sum_{k=1}^{n} \sum_{j=1}^{n} c(y_k, x_j)$$

which holds if and only if

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, x_j) \le 2 \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, y_j).$$
(22)

Applying a symmetric argument to the second inequality in (21) and adding the two inequalities shows

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, x_j) + \sum_{i=1}^{n} \sum_{j=1}^{n} c(y_i, y_j) \le 4 \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, y_j).$$

When asymmetry $\rho \neq 1$ is present, the preceding bound is tightened by refining the bound on the smaller term in the left hand side of the preceding equation to $2\rho \cdot \sum_{i=1}^n \sum_{j=1}^n c(x_i, y_j)$. This completes the proof.

The proof of Theorem 1 in the metric case is then a corollary of Lemma 1, 2, 3, and 4. The details are described in the subsequent proof.

Proof of Theorem 1 (Metric Costs). Applying the fact that $(\sigma^{-1}(\mathcal{Y}^*), \mathcal{Y}^*)$ and $(\mathcal{X}^*, \sigma(\mathcal{X}^*))$ are feasible solutions together with the inequality $2 \cdot \min\{a, b\} \leq a + b$, we have

$$\min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \leq \min\{\mathcal{J}_1, \mathcal{J}_2\} \leq (1/2)(\mathcal{J}_1 + \mathcal{J}_2).$$

Applying Lemma 2 with the optimal solution of $\mathcal{X}^* = \{X_1^*, \dots, X_K^*\}$ and $\mathcal{Y}^* = \{Y_1^*, \dots, Y_K^*\}$ to the right hand side of the preceding inequality then yields the bound

$$\min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \le M_{\sigma} + \sum_{k=1}^K \frac{1}{2|X_k^*|} \sum_{i,j \in X_k^*} c(x_i, x_j) + \sum_{k=1}^K \frac{1}{2|Y_k^*|} \sum_{i,j \in Y_k^*} c(y_i, y_j), \tag{23}$$

which upper bounds the cost in terms of the intra-dataset costs of \mathcal{X}^* and \mathcal{Y}^* .

When $c(\cdot, \cdot)$ is negative semidefinite, applying Lemma 3 to (23) shows that

$$\min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \le M_{\sigma} + \sum_{k=1}^K \frac{1}{|X_k^*|} \sum_{i \in X_k^*} \sum_{j \in Y_k^*} c(x_i, y_j) = M_{\sigma} + \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*), \tag{24}$$

proving the claim. When $c(\cdot, \cdot)$ is a metric, applying Lemma 4 to (23) yields the weaker bound

$$\min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \le M_{\sigma} + (1 + \rho) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*). \tag{25}$$

Combining these two bounds with the equivalence in Lemma 1 completes the proof.

For kernel costs of the form $c(x_i, y_j) = \|\phi(x_i) - \phi(y_j)\|_2^2$, the squared norm $\|\cdot\|_2^2$ is not a metric and the preceding argument no longer applies. While the proof of Theorem 1 does go through upon replacing applications of the triangle inequality with applications of the doubled triangle inequality $\|x - y\|_2^2 \le 2(\|x - z\|_2^2 + \|z - y\|_2^2)$, it reduces the quality of the bound to $2 + 2\gamma$. To slightly improve this bound, we derive an analog of Lemma 2 for kernel costs by applying Young's inequality at a different point in the argument and optimizing the bound over the introduced parameter t.

As a preliminary, we will make use of the following relationship between the cross cluster cost between X and Y to the intra-cluster cost of Y.

Lemma 5. Let $X = \{x_1, ..., x_n\}$ and $Y = \{y_1, ..., y_n\}$. Then,

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \|x_i - y_j\|_2^2 = \sum_{i=1}^{n} \|x_i - \boldsymbol{\mu}(Y)\|_2^2 + \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{n} \|y_i - y_j\|_2^2, \tag{26}$$

where $\mu(Y) = \frac{1}{n} \sum_{i=1}^{n} y_i$.

Proof. Inserting $\mu(Y) - \mu(Y)$ into the left hand side summation and expanding the result yields:

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \|x_i - y_j\|_2^2 = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \|x_i - \boldsymbol{\mu}(Y) + \boldsymbol{\mu}(Y) - y_j\|_2^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \|x_i - \boldsymbol{\mu}(Y)\|_2^2 + \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \|\boldsymbol{\mu}(Y) - y_j\|_2^2$$

$$+ \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \langle x_i - \boldsymbol{\mu}(Y), \boldsymbol{\mu}(Y) - y_j \rangle$$

$$= \sum_{i=1}^{n} \|x_i - \boldsymbol{\mu}(Y)\|_2^2 + \frac{1}{2n} \sum_{i=1}^{n} \sum_{j=1}^{n} \|y_i - y_j\|_2^2.$$

The second equality follows from the identity $\sum_{i=1}^n \|y_i - \boldsymbol{\mu}(Y)\|_2^2 = \frac{1}{2n} \sum_{i=1}^n \sum_{j=1}^n \|y_i - y_j\|_2^2$ and the identity:

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \langle x_i - \mu(Y), \mu(Y) - y_j \rangle = \sum_{i=1}^{n} \left\langle x_i - \mu(Y), \frac{1}{n} \sum_{j=1}^{n} (\mu(Y) - y_j) \right\rangle = 0.$$

This completes the proof.

Next, we have the following analog of Lemma 2 specialized to the squared Euclidean cost. The key trick is to expand one of the inner-products, and to apply both Cauchy-Schwarz and Young's inequality term-wise only after performing the decomposition from Lemma 5 to obtain an improved constant.

Lemma 6. Let $\mathcal{X} = \{X_1, \dots, X_K\}, \mathcal{Y} = \{Y_1, \dots, Y_K\}$ be a feasible solution to the optimization problem (13) and suppose that $c(x_i, y_j) = \|x_i - y_j\|_2^2$. Then, for all t > 0

$$\mathcal{J}_{1} + \mathcal{J}_{2} \leq 2 \cdot (1 + 1/t) M_{\sigma} + (2 + t) \left[\sum_{k=1}^{K} \frac{1}{2|X_{k}|} \sum_{i,j \in X_{k}} \|x_{i} - x_{j}\|_{2}^{2} + \sum_{k=1}^{K} \frac{1}{2|Y_{k}|} \sum_{i,j \in Y_{k}} \|y_{i} - y_{j}\|_{2}^{2} \right]$$

$$(27)$$

In the preceding, $M_{\sigma} = \sum_{i=1}^{n} c(x_i, y_{\sigma(i)})$, $\mathcal{J}_1 = \mathcal{J}(\sigma^{-1}(\mathcal{Y}), \mathcal{Y})$, and $\mathcal{J}_2 = \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X}))$.

Proof. By Lemma 5, the cost \mathcal{J}_1 is equal to

$$\mathcal{J}_{1} = \sum_{k=1}^{K} \frac{1}{|Y_{k}|} \sum_{i \in \sigma^{-1}(Y_{k})} \sum_{j \in Y_{k}} ||x_{i} - y_{j}||^{2}
= \sum_{k=1}^{K} \left[\sum_{i \in \sigma^{-1}(Y_{k})} ||x_{i} - \mu(Y_{k})||^{2} + \sum_{i \in Y_{k}} ||y_{i} - \mu(Y_{k})||_{2}^{2} \right],$$
(28)

 where $\mu(Y_k) \triangleq \frac{1}{|Y_k|} \sum_{i \in Y_k} y_i$. Next, we expand the inner-product of the left hand side term in (28). This yields

$$\sum_{k=1}^{K} \sum_{i \in \sigma^{-1}(Y_k)} \|x_i - \boldsymbol{\mu}(Y_k)\|^2 = \sum_{k=1}^{K} \sum_{i \in \sigma^{-1}(Y_k)} \|x_i - y_{\sigma(i)} + y_{\sigma(i)} - \boldsymbol{\mu}(Y_k)\|^2$$

$$= \sum_{k=1}^{K} \sum_{i \in \sigma^{-1}(Y_k)} (\|x_i - y_{\sigma(i)}\|_2^2 + \|y_{\sigma(i)} - \boldsymbol{\mu}(Y_k)\|^2 + 2 \langle x_i - y_{\sigma(i)}, y_{\sigma(i)} - \boldsymbol{\mu}(Y_k) \rangle)$$

$$= M_{\sigma} + \sum_{k=1}^{K} \sum_{i \in \sigma^{-1}(Y_k)} \|y_{\sigma(i)} - \boldsymbol{\mu}(Y_k)\|^2 + \sum_{k=1}^{K} \sum_{i \in \sigma^{-1}(Y_k)} 2 \langle x_i - y_{\sigma(i)}, y_{\sigma(i)} - \boldsymbol{\mu}(Y_k) \rangle$$

By an application of the Cauchy-Schwarz inequality to each inner product term followed by an application of Young's inequality, we obtain

$$\sum_{k=1}^{K} \sum_{i \in \sigma^{-1}(Y_{k})} 2 \left\langle x_{i} - y_{\sigma(i)}, y_{\sigma(i)} - \boldsymbol{\mu}(Y_{k}) \right\rangle \leq \sum_{k=1}^{K} \sum_{i \in \sigma^{-1}(Y_{k})} 2 \left\| x_{i} - y_{\sigma(i)} \right\|_{2} \left\| y_{\sigma(i)} - \boldsymbol{\mu}(Y_{k}) \right\|_{2} \\
\leq \sum_{k=1}^{K} \sum_{i \in \sigma^{-1}(Y_{k})} \left(\frac{1}{t} \left\| x_{i} - y_{\sigma(i)} \right\|^{2} + t \left\| y_{\sigma(i)} - \boldsymbol{\mu}(Y_{k}) \right\|^{2} \right) \\
= \frac{M_{\sigma}}{t} + t \cdot \sum_{k=1}^{K} \sum_{i \in \sigma^{-1}(Y_{k})} \left\| y_{\sigma(i)} - \boldsymbol{\mu}(Y_{k}) \right\|^{2},$$

for any parameter t > 0. Combining with (28), \mathcal{J}_1 is upper bounded as

$$\mathcal{J}_1 \le (2+t) \cdot \sum_{k=1}^K \sum_{i \in Y_k} \|y_i - \boldsymbol{\mu}(Y_k)\|_2^2 + (1+1/t)M_{\sigma}$$
$$= (2+t) \cdot \sum_{k=1}^K \frac{1}{2|Y_k|} \sum_{i \in Y_k} \|y_i - y_j\|_2^2 + (1+1/t)M_{\sigma}$$

The latter part of the equality follows from the identity:

$$\sum_{i \in Y_k} \|y_i - \boldsymbol{\mu}(Y_k)\|_2^2 = \frac{1}{2|Y_k|} \sum_{i,j \in Y_k} \|y_i - y_j\|_2^2.$$

Applying a symmetric argument to derive an upper bound on \mathcal{J}_2 yields

$$\mathcal{J}_2 \le (2+t) \cdot \sum_{k=1}^{K} \frac{1}{2|X_k|} \sum_{i,j \in X_k} ||x_i - x_j||_2^2 + (1+1/t)M_{\sigma}$$

Summing the two bounds then completes the proof.

Proof of Theorem 1 (Squared Euclidean and Kernel Costs). Replicating the argument of the metric case of Theorem 1, we evaluate \mathcal{J}_1 and \mathcal{J}_2 on the sets $(\sigma^{-1}(\mathcal{Y}^*),\mathcal{Y}^*)$ and $(\mathcal{X}^*,\sigma(\mathcal{X}^*))$ where the optimal solution to (13) is $\mathcal{X}^*=\{X_1^*,\ldots,X_K^*\}$ and $\mathcal{Y}^*=\{Y_1^*,\ldots,Y_K^*\}$. This yields

$$\min_{\mathcal{X} \in \mathcal{P}_n^K} \mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) \leq \frac{1}{2} \cdot (\mathcal{J}_1(\sigma^{-1}(\mathcal{Y}^*), \mathcal{Y}^*) + \mathcal{J}_2(\mathcal{X}^*, \sigma(\mathcal{X}^*))).$$

By Lemma 6 and Lemma 3, the right-hand side is upper-bounded by

$$(1+1/t) \cdot M_{\sigma} + (1+t/2) \cdot \left[\sum_{k=1}^{K} \frac{1}{2|X_{k}^{*}|} \sum_{i,j \in X_{k}^{*}} \|x_{i} - x_{j}\|_{2}^{2} + \sum_{k=1}^{K} \frac{1}{2|Y_{k}^{*}|} \sum_{i,j \in Y_{k}^{*}} \|y_{i} - y_{j}\|_{2}^{2} \right]$$

$$\leq (1+1/t) \cdot M_{\sigma} + (1+t/2) \cdot \sum_{k=1}^{K} \frac{1}{|X_{k}^{*}|} \sum_{i \in X_{k}^{*}, j \in Y_{k}^{*}} \|x_{i} - y_{j}\|_{2}^{2}$$

$$= (1+1/t) \cdot M_{\sigma} + (1+t/2) \cdot \mathcal{J}(\mathcal{X}^{*}, \mathcal{Y}^{*}).$$

Since this holds for arbitrary t > 0, we optimize the bound with respect to t and find the optimal value $t = \sqrt{2\gamma}$. Thus, the tightest bound has coefficient

$$\left(1 + 1/\sqrt{2\gamma}\right)\gamma + \left(1 + \sqrt{2\gamma}/2\right) = 1 + \gamma + \sqrt{2\gamma}$$

concluding the proof.

Next, we show that the approximation guarantees of Theorem 1 hold with an additional $(1+\epsilon)$ factor for kernel costs (resp. metric costs) when using Algorithm 2 to solve step (ii) in Algorithm 1. For both metric and kernel costs, the proof of the approximation guarantees follows from analyzing the proof of Theorem 1.

Algorithm 2.

- (i) Compute assignment matrices $\mathbf{Q}, \mathbf{R} \in \Pi_{\bullet}(u_n, \cdot)$ by applying \mathcal{A}_1 (resp. \mathcal{A}_2) to X and Y independently.
- (ii) If $\langle \mathbf{C}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_n) (\mathbf{P}_{\sigma^*} \mathbf{Q}) \rangle_F \leq \langle \mathbf{C}, (\mathbf{P}_{\sigma^*} \mathbf{R}) \operatorname{diag}(1/\mathbf{R}^{\top} \mathbf{1}_n) \mathbf{R}^{\top} \rangle_F$, set $\mathbf{Q}^{(0)} \leftarrow \mathbf{Q}$. Otherwise, set $\mathbf{Q}^{(0)} \leftarrow \mathbf{P}_{\sigma^*} \mathbf{R}$.
- (iii) Perform local optimization for the generalized K-means problem on the cost $\tilde{\mathbf{C}}$ with the initialization $\mathbf{Q}^{(0)}$.

We start with the proof for squared Euclidean and kernel cost functions.

Proof of Theorem 2 (Squared Euclidean and Kernel Costs). Let $\mathcal{X}=\{X_1,\ldots,X_K\}$ and $\mathcal{Y}=\{Y_1,\ldots,Y_K\}$ be $(1+\epsilon)$ optimal solutions to the K-means problem emitted by \mathcal{A}_1 for X and Y respectively. Let $\mathcal{X}^*=\{X_1^*,\ldots,X_K^*\}$ and $\mathcal{Y}^*=\{Y_1^*,\ldots,Y_K^*\}$ be the optimal solution to (13). Then, by the $(1+\epsilon)$ optimality of \mathcal{X} and \mathcal{Y} and Lemma 3, we have

$$\sum_{k=1}^{K} \frac{1}{2|Y_k|} \sum_{i,j \in X_k} \|x_i - x_j\|_2^2 + \sum_{k=1}^{K} \frac{1}{2|Y_k|} \sum_{i,j \in Y_k} \|y_i - y_j\|_2^2$$

$$\leq (1+\epsilon) \cdot (\sum_{k=1}^{K} \frac{1}{2|X_k^*|} \sum_{i,j \in X_k^*} \|x_i - x_j\|_2^2 + \sum_{k=1}^{K} \frac{1}{2|Y_k^*|} \sum_{i,j \in Y_k^*} \|y_i - y_j\|_2^2)$$

$$\leq (1+\epsilon) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*).$$

By Lemma 6, and the preceding inequality it then follows that for all t > 0

$$\frac{1}{2}(\mathcal{J}(\mathcal{X}, \sigma(\mathcal{X})) + \mathcal{J}(\sigma^{-1}(\mathcal{Y}), \mathcal{Y})) \leq (1 + 1/t) \cdot M_{\sigma} + (1 + \epsilon)(1 + t/2) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*).$$

Optimizing the parameter t as in the proof of Theorem 1 and taking the minimum over the two solutions completes the proof.

An analogous proof technique to Theorem 2 applies to the metric case with the additional application of the basic inequality:

$$\min_{j} \sum_{i=1}^{n} c(x_i, x_j) \le \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} c(x_i, x_j) \le 2 \cdot \min_{j} \sum_{i=1}^{n} c(x_i, x_j).$$

This inequality relates the K-medians objective to the intra-cluster cost $\sum_{i=1}^{n}\sum_{j=1}^{n}c(x_i,x_j)$ used in Lemma 2 and picks up an additional factor of 2.

A.2 LOWER BOUNDS FOR THEOREM 1

In this section, we construct an explicit family of examples that realize the upper bounds in Theorem 1 for the Euclidean and squared Euclidean cost functions. Both constructions rely on unstable arrangements of points, where upon slight perturbation, the Monge map changes dramatically. Making use of this instability, the constructions are set up to have the optimal Monge map be a poor choice for co-clustering while there is a near-optimal non-Monge map that is substantially better for co-clustering.

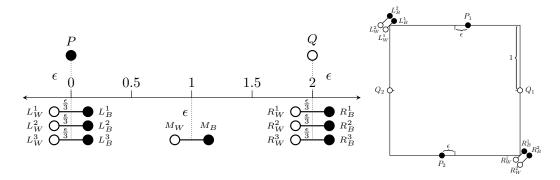


Figure 3: Geometric constructions providing lower bounds for Theorem 1 in the case of (**left**) Euclidean cost (k = 3) and (**right**) squared Euclidean cost (k = 2). Points in X are colored black and points in Y are colored white. Points connected by a line segment have identical coordinates and are separated for ease of visualization.

Euclidean Metric Cost. Fix $\epsilon>0$. The construction consists of two datasets X and Y each with 2k+2 points placed near the line segment $[0,2]\times\{0\}$. The first two points $P=(0,\epsilon)$ and $Q=(2,\epsilon)$ are near the ends of the line segment. The next pair of points $M_W=M_B=(1,-\epsilon)$ are slightly below the middle of the segment. Finally, 2k points $L_W^i=L_B^i=(0,-\frac{i\epsilon}{k})$ are at the left end of the segment and 2k points $R_W^i=R_W^i=(2,-\frac{i\epsilon}{k})$ are at the right end of the segment. Datasets X and Y are then defined as $X=\{P,M_B\}\cup\{L_B^i\}_{i=1}^k\cup\{R_B^i\}_{i=1}^k$ and $Y=\{Q,M_W\}\cup\{L_W^i\}_{i=1}^k\cup\{R_W^i\}_{i=1}^k$. A diagram of the construction is provided in Figure 3 for the case of k=3.

First, observe that under the Euclidean cost metric, the points have a unique Monge map $\sigma: X \to Y$ defined as $\sigma(P) = Q, \sigma(M_B) = M_W, \sigma(L_B^i) = L_W^i$, and $\sigma(R_B^i) = R_W^i$. The preceding Monge map σ has cost 2 since the distance between P and Q is 2 while the distance between the remaining mapped points is 0. Next, consider an optimal Monge map σ' with $\sigma'(P) \neq Q$. Since there are k+1 black points $\{L_B^i\}_{i=1}^k$ and P and k points $\{L_W^i\}_{i=1}^k$, at least one black point $\{L_B^i\}_{i=1}^k$ or P must map to M_W or $\{R_W^i\}_{i=1}^k$ via σ' . If P is such a point, we must have that P maps to M_W , as otherwise it would obtain a cost greater than 2. However, this yields a contradiction as M_B must map to a point of distance at least 1 and the cost of mapping $\sigma'(P) = M_W$ is strictly greater than 1. Applying a similar argument to the point L_B^i together with the fact that the cost of mapping $\sigma'(P) = L_B^i$ is greater than ϵ proves the optimality and uniqueness of σ .

Second, consider an optimal solution $\mathcal{X}^* = \{X_1, X_2\}, \mathcal{Y}^* = \{Y_1, Y_2\}$ to the partition reformulation (13) of the (K=2) low-rank OT problem where $\sigma(X_i) = Y_i$, i=1,2, and the cluster sizes are balanced: $|X_1| = |X_2| = |Y_1| = |Y_2|$. We will argue that the cost of such a solution $\mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*)$ is lower bounded by $\frac{4k+2}{k+1}$. In contrast, taking the solution $X_1 = \{P\} \cup \{L_B^i\}_{i=1}^k, X_2 = \{M_B\} \cup \{R_B^i\}_{i=1}^k$ and $Y_1 = \{M_W\} \cup \{L_W^i\}_{i=1}^k, Y_2 = \{Q\} \cup \{R_W^i\}_{i=1}^k$, which does not satisfy $\sigma(X_i) = Y_i$, we have that the cost

$$\mathcal{J}(\{X_1, Y_1\}, \{X_2, Y_2\}) = \frac{1}{k+1} \left(\sum_{x \in X_1} \sum_{y \in Y_1} \|x - y\|_2 + \sum_{x \in X_2} \sum_{y \in Y_2} \|x - y\|_2 \right) = 2 + \mathcal{O}(\epsilon).$$

Consequently, taking the limits $\epsilon \to 0$ and $k \to \infty$ shows that the constant factor $(1 + \gamma)$ stated in Theorem 1 is tight and arbitrarily close to 2.

Finally, we argue that the cost of any solution $\mathcal{X}^* = \{X_1, X_2\}, \mathcal{Y}^* = \{Y_1, Y_2\}$ with $\sigma(X_i) = Y_i$ has $\mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) \geq \frac{4k+2}{k+1}$. Without loss of generality, assume that $P \in X_1$. Since $\sigma(P) = Q$ and $\sigma(X_1) = Y_1$, it follows that $Q \in Y_1$. Let l denote the size of the set $\{i : L_B^i \in X_1\}$. We analyze the two cases $M_B \in X_1$ and $M_B \notin X_1$ separately.

Case 1 $(M_B \in X_1)$. Since the set sizes are balanced and $M_B \in X_1$, we have p = k + 1 - (l + 2) is equal to the size of the set $\{i : R_B^i \in X_1\}$. Consequently, the cost of the solution is lower bounded

by:

$$(k+1) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) \ge (4+3p+2l(p+1)) + 2(k-p)(k-l)$$
$$= -4l^2 - (5-4k)l + (5k+1)$$

To see this, note that the cost of mapping point $P \in X_1$ to Y_1 is at least 3+2p as P must map to the p points R_W^i , M_W , and Q. The cost of mapping the l points L_B^i to Y_1 is at least 2l(p+1) and the cost of mapping M_B to Y_1 is at least p+1. Since the size of $X_2 \cap \{L_B^i\}_{i=1}^k$ is k-l and the size of $X_2 \cap \{R_B^i\}_{i=1}^k$ is k-p, the cost of mapping X_2 to Y_2 is at least 2(k-p)(k-l). Adding the lower bounds gives the first bound and algebraic manipulation the second. Since the lower bound is a concave quadratic function in l, it is minimized at either l=0 or l=k-1. Evaluating both yields the lower bound $\mathcal{J}(\mathcal{X}^*,\mathcal{Y}^*) \geq \frac{4k+2}{k+1}$.

Case 2 $(M_B \notin X_1)$. Since the set sizes are balanced and $M_B \notin X_1$, we have p = k - l is equal to the size of the set $\{i : R_B^i \in X_1\}$. By a similar argument to the previous case, we have that the cost of the solution is lower bounded by:

$$(k+1) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) \ge 2 + 2p + 2l(p+1) + 2lp + 2(k-l+k-p) + 4(k-l)(k-p)$$
$$= -8l^2 + 8kl + (4k+2).$$

Since the lower bound is again a concave quadratic function in l, it is minimized at either l=0 or l=k. Evaluating both yields the lower bound $\mathcal{J}(\mathcal{X}^*,\mathcal{Y}^*) \geq \frac{4k+2}{k+1}$. This completes the proof of the first part of Proposition 1.

Squared Euclidean Cost. Fix $1>\epsilon>0$. The construction consists of two datasets X and Y each with 2k+2 points placed along the edges of the square $[0,2]\times[0,2]$. The first two points $P_1=(1+\epsilon,2)$ and $P_2=(1-\epsilon,0)$ are on the top and bottom edges of the square. The second two points $Q_1=(0,1)$ and $Q_2=(2,1)$ are set on the left and right edges of the square. Finally, 2k points $L_W^i=L_B^i=(0,2)$ and $R_W^i=R_B^i=(2,0)$ are placed along the top left and bottom right corners of the square. The sets X and Y are then defined as $X=\{P_1,P_2\}\cup\{L_B^i\}_{i=1}^k\cup\{R_B^i\}_{i=1}^k$ and $Y=\{Q_1,Q_2\}\cup\{L_W^i\}_{i=1}^k\cup\{R_W^i\}_{i=1}^k$. A diagram of the construction is provided in Figure 3 for the case when k=2.

First, we show that under the squared Euclidean cost function there is a unique Monge map $\sigma: X \to Y$ defined as $\sigma(P_i) = Q_i$, $\sigma(L_B^i) = L_W^i$, and $\sigma(R_B^i) = R_B^i$, up to a relabeling of the corner points $\{L_B^i\}_{i=1}^k \cup \{R_B^i\}_{i=1}^k$. The preceding Monge map has cost equal to $4+2\epsilon^2-4\epsilon < 4$ as $\epsilon^2 < \epsilon$. Next, suppose that there is a distinct (up to a relabeling of the corner points) Monge map σ' with equal (or lower) cost. Note that since σ' is an optimal Monge map, then $\sigma'(L_B^i) \neq R_W^j$ for any j, as the cost of mapping point L_B^i to R_W^j is 8. Similarly, L_B^i cannot map to Q_1 . Therefore, if $\sigma' \neq \sigma$ it must be the case that $\sigma'(L_B^i) = Q_2$ for some i. Then, either $\sigma'(P_1) = Q_1$ or $\sigma'(P_2) = Q_1$, but in either case mapping the remaining point results in a cost of at least 4, a contradiction to the optimality of σ' .

Second, consider an optimal solution $\mathcal{X}^* = \{X_1, X_2\}, \mathcal{Y}^* = \{Y_1, Y_2\}$ to the partition reformulation (13) of the (K=2) low-rank OT problem where $\sigma(X_i) = Y_i$, i=1,2, and the cluster sizes are balanced: $|X_1| = |X_2| = |Y_1| = |Y_2|$. We will argue that the cost of such a solution $\mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*)$ is lower bounded by $\frac{12k+4}{k+1} + \mathcal{O}(\epsilon)$. In contrast, taking the solution $X_1 = \{P_1\} \cup \{L_B^i\}_{i=1}^k, X_2 = \{P_2\} \cup \{R_B^i\}_{i=1}^k$ and $Y_1 = \{Q_2\} \cup \{L_W^i\}_{i=1}^k, Y_2 = \{Q_1\} \cup \{R_W^i\}_{i=1}^k$, which does not satisfy $\sigma(X_i) = Y_i$, we obtain the cost

$$\mathcal{J}(\{X_1, Y_1\}, \{X_2, Y_2\}) = 4 + \mathcal{O}(\epsilon).$$

Consequently, taking the limits $\epsilon \to 0$ and $k \to \infty$ shows that the constant factor stated in Theorem 1 is lower bounded by 3 in the worst case.

Finally, we argue that the cost of any solution $\mathcal{X}^* = \{X_1, X_2\}, \mathcal{Y}^* = \{Y_1, Y_2\}$ with $\sigma(X_i) = Y_i$ has $\mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) \geq \frac{12k+4}{k+1}$. Without loss of generality, assume that $P_1 \in X_1$. Since $\sigma(P_1) = Q_1$ and $\sigma(X_1) = Y_1$, it follows that $Q_1 \in Y_1$. Let l denote the size of the set $\{i : L_B^i \in X_1\}$. We analyze the two cases $P_2 \in X_1$ and $P_2 \notin X_1$ separately.

Case 1 $(P_2 \notin X_1)$. In this case, the size of the set $\{i : R_B^i \in X_1\}$ is p = k - l following the fact that $|X_1| = k + 1$ and $P_2 \notin X_1$. Then, the cost of the solution is lower bounded by:

$$(k+1) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) \ge (8lp+5l) + (8lp+p) + (2+l+5p) + (8(k-l)(k-p)+k-l) + (8(k-l)(k-p)+5(k-p)) + (2+5(k-l)+k-p)$$

$$= -32l^2 + 32kl + 4(1+3k).$$

To derive the previous bound, we explicitly tabulate the cost between all types of points. Specifically, the cost of mapping $\{L_B^i:L_B^i\in X_1\}$ to all points in Y_1 is at least 8lp+5l. The cost of mapping $\{R_B^i:R_B^i\in X_1\}$ to all points in Y_1 is at least 8lp+p. The cost of mapping P_1 in P_1 is P_1 in P_2 in P_3 is P_4 in P_4 in P_4 in P_4 is P_4 in P_4 is either optimized at P_4 or P_4 in P_4 in

Case 2 $(P_2 \in X_1)$. In this case, the size of the set $\{i : R_B^i \in X_1\}$ is p = k - l - 1 following the fact that $|X_1| = k + 1$ and $P_2 \notin X_1$. Then, the cost of the solution is lower bounded by:

$$(k+1) \cdot \mathcal{J}(\mathcal{X}^*, \mathcal{Y}^*) \ge (l+5l+8lp) + (4+l+5p) + (4+5l+p) + (8lp+5p+p) + 2 \cdot 8(k-p)(l-l)$$

= $-25l^2 + (-25+25k)l + 28k - 4$.

This follows an explicit tabulation of teh cost between all types of points. Since the lower bound is a concave quadratic function in l, it is either optimized at l=0 or l=k - 1. Evaluating the lower bound at these points yields the inequality $\mathcal{J}(\mathcal{X}^*,\mathcal{Y}^*) \geq \frac{28k+4}{k+1} \geq \frac{12k+4}{k+1}$. This completes the proof of the second part of Proposition 1.

A.3 PROOF OF CONNECTION BETWEEN LOW-RANK OPTIMAL TRANSPORT AND K-MEANS

We provide a brief proof of the connection between low-rank optimal transport and K-means stated in the main text. The statement and proof are attached below.

Remark 1. Suppose $\mu_k^X = \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_{X,k}} x_i$, $\mu_k^Y = \frac{1}{|\mathcal{C}_k|} \sum_{j \in \mathcal{C}_{Y,k}} y_j$ where $|\mathcal{C}_{X,k}| = |\mathcal{C}_{Y,k}| = |\mathcal{C}_k|$. Then, for the squared Euclidean cost (10) is equal to a pair of K-means distortions on X, Y and a term quantified the separation between assigned means μ_k^X , μ_k^Y

$$\begin{split} & \sum_{k=1}^{K} \frac{1}{|X_k|} \sum_{i \in X_k} \sum_{j \in Y_k} \|x_i - y_j\|_2^2 \\ & = \sum_{k=1}^{K} \left(\sum_{i \in \mathcal{C}_{X,k}} \|x_i - \boldsymbol{\mu}_k^X\|_2^2 + \sum_{j \in \mathcal{C}_{Y,k}} \|y_j - \boldsymbol{\mu}_k^Y\|_2^2 + |\mathcal{C}_k| \|\boldsymbol{\mu}_k^X - \boldsymbol{\mu}_k^Y\|_2^2 \right) \end{split}$$

Proof. Starting from the definition of the partition form of the low-rank cost $\mathbb{C}^{\ell_2^2}$, we have

$$\sum_{k=1}^{K} \frac{1}{|X_k|} \sum_{i \in X_k} \sum_{j \in Y_k} \|x_i - y_j\|_2^2 = \sum_{k=1}^{K} \sum_{i \in \mathcal{C}_{X,k}} \|x_i\|_2^2 + \sum_{j \in \mathcal{C}_{Y,k}} \|y_j\|_2^2 - 2 \cdot |\mathcal{C}_k| \langle \boldsymbol{\mu}_k^X, \boldsymbol{\mu}_k^Y \rangle$$

By adding and subtracting $|\mathcal{C}_k| \|\boldsymbol{\mu}_k^X\|_2^2$ and $|\mathcal{C}_k| \|\boldsymbol{\mu}_k^Y\|_2^2$, we find the right hand side is equal to

$$\sum_{k=1}^{K} \left(\sum_{i \in \mathcal{C}_{X,k}} \|x_i\|_2^2 - |\mathcal{C}_k| \|\boldsymbol{\mu}_k^X\|_2^2 + \sum_{j \in \mathcal{C}_{Y,k}} \|y_j\|_2^2 - |\mathcal{C}_k| \|\boldsymbol{\mu}_k^Y\|_2^2 + |\mathcal{C}_k| \left(\|\boldsymbol{\mu}_k^X\|_2^2 - 2 \cdot \langle \boldsymbol{\mu}_k^X, \boldsymbol{\mu}_k^Y \rangle + \|\boldsymbol{\mu}_k^Y\|_2^2 \right) \right)$$

We conclude by observing $\sum_{k=1}^K \sum_{i \in \mathcal{C}_{X,k}} \|x_i\|_2^2 - |\mathcal{C}_k| \|\boldsymbol{\mu}_k^X\|_2^2 = \sum_{k=1}^K \sum_{i \in \mathcal{C}_{X,k}} \|x_i - \boldsymbol{\mu}_k^X\|_2^2$ (resp. for Y) and identifying $\|\boldsymbol{\mu}_k^X\|_2^2 - 2 \cdot \langle \boldsymbol{\mu}_k^X, \boldsymbol{\mu}_k^Y \rangle + \|\boldsymbol{\mu}_k^Y\|_2^2$ as a difference between means. This results

in the following form for the right hand side:

$$\sum_{k=1}^{K} \left(\sum_{i \in \mathcal{C}_{X,k}} \|x_i - \boldsymbol{\mu}_k^X\|_2^2 + \sum_{j \in \mathcal{C}_{Y,k}} \|y_j - \boldsymbol{\mu}_k^Y\|_2^2 + |\mathcal{C}_k| \|\boldsymbol{\mu}_k^X - \boldsymbol{\mu}_k^Y\|_2^2 \right),$$

and completes the proof.

A.4 GENERALIZED K-MEANS ALGORITHMS

A.4.1 MIRROR DESCENT (GKMS)

Here we present an algorithm for generalized K-means – which we call (GKMS) – that solves generalized K-means locally using mirror-descent. GKMS consists of a sequence of mirror-descent steps with the neg-entropy mirror map $\psi(q) = -\sum q_{ij}\log q_{ij}$ with KL as the proximal function. This results in a sequence of exponentiated gradient steps with Sinkhorn projections onto a single marginal Sinkhorn (1966). Notably, Lloyd's algorithm for K-means, which is the most popular local heuristic for minimizing the K-means objective, alternates between an update to means $\{\mu_k\}_{k=1}^K \subset \mathbb{R}^d$ and hard-cluster assignments $\mathbf{Z} \in \{0,1\}^{n \times K}$. This algorithm only optimizes cluster assignments for a fixed cost \mathbf{C} , lacking an explicit notion of points or centers in \mathbb{R}^d . Moreover, it permits dense initial conditions $\mathbf{Q}^{(0)}$ and represents $\mathbf{Q} \in \mathbb{R}^{n \times K}_+$. As the loss lacks entropic regularization, in theory the sequence $(\mathbf{Q}^{(n)})_{n=1}^\infty$ converges in ℓ_2 to sparse solutions, but requires a final rounding step to ensure it lies in the set of hard couplings.

We state the generalized K-means problem with its constraints explicitly as:

$$\min_{\mathbf{Q} \in \mathbb{R}^{n \times K}} \left\langle \mathbf{C}^{\dagger}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_{n}) \mathbf{Q}^{\top} \right\rangle_{F}$$
s.t.
$$\mathbf{Q} \mathbf{1}_{K} = \boldsymbol{u}_{n}, \mathbf{Q} \geq \mathbf{0}_{n \times K}.$$

To derive the associated KKT conditions, one introduces the associated dual variables $\lambda \in \mathbb{R}^n$ and a non-negative matrix $\Omega \in \mathbb{R}_+^{n \times K}$. From this, we derive a lower bound to the primal by constructing the Lagrangian L as

$$L(\mathbf{Q},\ \boldsymbol{\Omega},\ \boldsymbol{\lambda}) = \left\langle \mathbf{C}^{\dagger}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_{n}) \mathbf{Q}^{\top} \right\rangle_{F} + \left\langle \boldsymbol{\lambda}, \mathbf{Q} \mathbf{1}_{K} - \boldsymbol{u}_{n} \right\rangle - \operatorname{tr} \boldsymbol{\Omega}^{\top} \mathbf{Q}$$

Denote $\mathbf{D}^{-1} = \operatorname{diag}(1/\mathbf{Q}^{\top}\mathbf{1}_n)$. For arbitrary directions $\mathbf{V} \in \mathbb{R}^{n \times K}$ one has the direction derivative in \mathbf{Q} for \mathcal{F} is

$$D\left\langle \mathbf{C}^{\dagger},\mathbf{Q}\mathbf{D}^{-1}\mathbf{Q}^{\top}\right\rangle _{F}[\mathbf{V}]=\left\langle \mathbf{C}^{\dagger},\mathbf{V}\mathbf{D}^{-1}\mathbf{Q}^{\top}\right\rangle _{F}+\left\langle \mathbf{C}^{\dagger},\mathbf{Q}\mathbf{D}^{-1}\mathbf{V}^{\top}\right\rangle _{F}+\left\langle \mathbf{C}^{\dagger},\mathbf{Q}\mathbf{D}\operatorname{diag}(1/\mathbf{Q}^{\top}\mathbf{1}_{n})[\mathbf{V}]\mathbf{Q}^{\top}\right\rangle _{F}$$
 by symmetry in \mathbf{Q} , this is

$$= \left\langle \mathbf{C}^{\dagger,\top} + \mathbf{C}^{\dagger}, \mathbf{Q} \mathbf{D}^{-1} \mathbf{V}^{\top} \right\rangle_{F} + \frac{1}{2} \left\langle (\mathbf{C}^{\dagger} + \mathbf{C}^{\dagger,\top}), \mathbf{Q} D \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_{n}) [\mathbf{V}] \mathbf{Q}^{\top} \right\rangle_{F}$$
$$= \left\langle \mathbf{S} \mathbf{Q} \mathbf{D}^{-1}, \mathbf{V} \right\rangle - \frac{1}{2} \left\langle \mathbf{1}_{n} \operatorname{diag}^{-1} (\mathbf{Q}^{\top} \mathbf{D}^{-1} \mathbf{S} \mathbf{Q} \mathbf{D}^{-1}) \mathbf{V} \right\rangle_{F}$$

So that for $\mathbf{S}=(1/2)(\mathbf{C}^{\dagger,\top}+\mathbf{C}^{\dagger})$ the symmetrization of \mathbf{C}^{\dagger} we find

$$\nabla_{\mathbf{Q}} L = \mathbf{S} \mathbf{Q} \mathbf{D}^{-1} - \frac{1}{2} \mathbf{1}_n \operatorname{diag}^{-1} (\mathbf{Q}^{\top} \mathbf{D}^{-1} \mathbf{S} \mathbf{Q} \mathbf{D}^{-1}) - \boldsymbol{\lambda} \mathbf{1}_K^{\top} - \boldsymbol{\Omega}$$

Thus, one may summarize the KKT conditions for generalized K-means by

$$\begin{split} \mathbf{SQD}^{-1} - \frac{1}{2} \mathbf{1}_n \operatorname{diag}^{-1} (\mathbf{Q}^\top \mathbf{D}^{-1} \mathbf{SQD}^{-1}) - \lambda \mathbf{1}_K^\top - \Omega &= \mathbf{0}_{n \times K}, \\ \mathbf{Q} \mathbf{1}_K &= \frac{1}{n} \mathbf{1}_n, \\ \mathbf{Q} &\geq \mathbf{0}_{n \times K}, \\ \mathbf{\Omega} \odot \mathbf{Q} &= \mathbf{0}_{n \times K}. \end{split}$$

Next, let us suppose we consider a mirror-descent on the generalized K-means loss with respect to the mirror-map given by the neg-entropy $\psi = -H(p)$, and associated divergence $D_{\psi}(p \mid q) = \mathrm{KL}(p \mid\mid q)$.

Proposition 2. Suppose $(\gamma_k)_{k>0}$ is a positive sequence of step-sizes for a mirror-descent with respect to the KL divergence on the variable \mathbf{Q} in (7). That is, using the update rule

> $\mathbf{Q}^{(k+1)} \triangleq \underset{\mathbf{Q} \in \Pi(\mathbf{u}_n, \cdot)}{\arg \min} \langle \mathbf{Q}, \nabla_{\mathbf{Q}} \mathcal{F} \mid_{\mathbf{Q}^{(k)}} \rangle_F + \frac{1}{\gamma_k} \mathrm{KL}(\mathbf{Q} \| \mathbf{Q}^{(k)}),$ (29)

where we define the generalized K-means loss function as

$$\mathcal{F}(\mathbf{Q}) \triangleq \langle \mathbf{C}^{\dagger}, \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_n) \mathbf{Q}^{\top} \rangle_F$$
.

Then the updates are of exponentiated-gradient form with one-sided Sinkhorn projections,

$$\mathbf{Q}^{(k+1)} \leftarrow P_{\boldsymbol{u}_n, \cdot} \left(\mathbf{Q}^{(k)} \odot \exp \left(-\gamma_k \nabla_{\mathbf{Q}} \mathcal{F} \mid_{\mathbf{Q}^{(k)}} \right) \right), \tag{30}$$

where $P_{\boldsymbol{u}_n,\cdot}(\mathbf{X}) = \operatorname{diag}(\boldsymbol{u}_n/\mathbf{X}\mathbf{1}_K)\mathbf{X}$.

Proof. From the first-order stationary condition, we have that

$$\begin{aligned} & \nabla_{\mathbf{Q}} \mathcal{F} \mid_{\mathbf{Q} = \mathbf{Q}^{(k)}} - \lambda \mathbf{1}_{K}^{\top} - \mathbf{\Omega} + \frac{1}{\gamma_{k}} \log \left[\frac{\mathbf{Q}}{\mathbf{Q}^{(k)}} \right] = \mathbf{0}_{n \times K} \\ & \mathbf{Q} = \mathbf{Q}^{(k)} \odot \exp \left(\gamma_{k} \left(-\nabla_{\mathbf{Q}} \mathcal{F} \mid_{\mathbf{Q} = \mathbf{Q}^{(k)}} + \lambda \mathbf{1}_{K}^{\top} + \mathbf{\Omega} \right) \right) \end{aligned}$$

For notational simplicity, denote $K^{\Omega} = e^{-\gamma_k \nabla_{\mathbf{Q}} \mathcal{F}|_{\mathbf{Q}^{(k)}}} \odot e^{\gamma_k \Omega}$. From the constraint, we deduce

$$\mathbf{Q} \mathbf{1}_K = \operatorname{diag}(e^{\gamma_k \lambda}) \quad \left[\mathbf{Q}^{(k)} \odot \mathbf{K}^{\Omega} \right] \mathbf{1}_K = \mathbf{u}_n$$
$$\mathbf{Q}^{(k)} \odot \mathbf{K}^{\Omega} \mathbf{1}_K = \operatorname{diag}(e^{-\gamma_k \lambda}) \mathbf{u}_n = \frac{1}{n} e^{-\gamma_k \lambda}$$

So that we find the exponential of the dual variable to be

$$e^{\gamma_k \lambda} = (1/n) \mathbf{1}_n \oslash \left(\mathbf{Q}^{(k)} \odot \mathbf{K}^{\Omega} \, \mathbf{1}_K \right) = \mathbf{u}_n \oslash \left(\mathbf{Q}^{(k)} \odot \mathbf{K}^{\Omega} \, \mathbf{1}_K \right)$$

Thus, in the identification of $\mathbf{Q} \in \Pi_{u_n}$, we may evaluate the value of $e^{\gamma_k \lambda}$ for dual variable $\lambda \in \mathbb{R}^n$ and find the following update

$$\mathbf{Q} = \mathbf{Q}^{(k)} \odot \exp\left(\gamma_k \left(-\nabla_{\mathbf{Q}} \mathcal{F} \mid_{\mathbf{Q} = \mathbf{Q}^{(k)}} + \lambda \mathbf{1}_K^{\top} + \Omega\right)\right)$$

$$= \operatorname{diag}(e^{\gamma_k \lambda}) \mathbf{Q}^{(k)} \odot \exp\left(\gamma_k \left(-\nabla_{\mathbf{Q}} \mathcal{F} \mid_{\mathbf{Q} = \mathbf{Q}^{(k)}} + \Omega\right)\right)$$

$$= \operatorname{diag}\left(\mathbf{u}_n / \left(\mathbf{Q}^{(k)} \odot \mathbf{K}^{\Omega} \mathbf{1}_K\right)\right) \left(\mathbf{Q}^{(k)} \odot \mathbf{K}^{\Omega}\right)$$

Supposing $Q_{ij}^{(0)} > 0$ and supposing $\nabla_Q \mathcal{F}$ is bounded, it directly follows that the entries of \mathbf{Q} are positive and thus from the complementary slackness condition, $\Omega_{ij}Q_{ij} = 0$, we find that the dual multiplier $\Omega_{ij}=0$. It follows that $Q_{ij}^{(k)}>0$ for all iterations k, and likewise $\Omega_{ij}^{(k)}=0$, so that $K^{\Omega}=e^{-\gamma_k\nabla_{\mathbf{Q}}\mathcal{F}|_{\mathbf{Q}^{(k)}}}\odot e^{\gamma_k\mathbf{0}}=e^{-\gamma_k\nabla_{\mathbf{Q}}\mathcal{F}|_{\mathbf{Q}^{(k)}}}$. Thus, for

$$\mathbf{K}^{n} = e^{-\beta k \cdot \mathbf{Q}^{n} \cdot \mathbf{Q}^{(k)}} \odot e^{\gamma_{k} \cdot \mathbf{Q}} = e^{-\beta k \cdot \mathbf{Q}^{n} \cdot \mathbf{Q}^{(k)}}$$
. Thus, for

$$\mathbf{K}^{(k)} = \mathbf{Q}^{(k)} \odot e^{-\gamma_k \nabla_{\mathbf{Q}} \mathcal{F}|_{\mathbf{Q}^{(k)}}}$$
(31)

we conclude that the update is given by

$$\mathbf{Q}^{(k+1)} = \operatorname{diag}\left(\mathbf{u}_n / \mathbf{K}^{(k)} \mathbf{1}_K\right) \mathbf{K}^{(k)}$$
(32)

Since the mirror-descent (29) is a case of the classical exponentiated gradient and Bregman-projection on the KL-proximal function Peyré et al. (2019), one can also derive this by the stationary condition for the kernel

$$0 = \nabla_{\mathbf{Q}} \mathcal{F} \mid_{\mathbf{Q} = \mathbf{Q}^{(k)}} + \frac{1}{\gamma_k} \log \mathbf{K} \oslash \mathbf{Q}^{(k)}$$
$$- \frac{1}{\gamma_k} \log \mathbf{K} \oslash \mathbf{Q}^{(k)} = \nabla_{\mathbf{Q}} \mathcal{F} \mid_{\mathbf{Q} = \mathbf{Q}^{(k)}}$$

With an update for the positive kernel K given by $K := \mathbf{Q}^{(k)} \odot \exp(-\gamma_k \nabla_{\mathbf{Q}} \mathcal{F}(\mathbf{Q}^{(k)}))$, The associated Bregman projection with respect to the KL-divergence Peyré et al. (2019) is therefore $\min_{\mathbf{Q} \in \Pi_{\mathbf{u}_n}} \mathrm{KL}(\mathbf{Q} \mid\mid \mathbf{K})$, which coincides with the projection in (32).

To address convergence, let us recall the definition of relative smoothness.

Definition 3 (Relative smoothness). Let L > 0 and let $f \in C^1(\mathbb{R}^n, \mathbb{R})$. Additionally, for reference-function ω let D_{ω} be its associated distance generating (prox) function. f is then L-smooth relative to ω if:

$$f(y) \le f(x) + \langle \nabla f(x), x - y \rangle + LD_{\omega}(y, x)$$

In general, if an objective f is L-relatively smooth to ψ , the descent lemma applied to mirror-descent guarantees that for $\gamma_k \leq 1/L$ one decreases the loss. In particular, one has

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + LD_{\psi}(x^{k+1}, x^k)$$
 (33)

Where, since we have

$$x^{k+1} := \underset{x}{\operatorname{arg\,min}} \langle \nabla f(x^k), x \rangle + \frac{1}{\gamma_k} D_{\psi}(x, x^k)$$
$$\langle \nabla f(x^k), x^{k+1} \rangle + \frac{1}{\gamma_k} D_{\psi}(x^{k+1}, x^k) \leq \langle \nabla f(x^k), x^k \rangle + \frac{1}{\gamma_k} D_{\psi}(x^k, x^k) = \langle \nabla f(x^k), x^k \rangle$$

The property of L-smoothness and taking $\gamma_k \leq 1/L$ implies descent, as

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} \rangle + \frac{1}{\gamma_k} D_{\psi}(x^{k+1}, x^k) - \langle \nabla f(x^k), x^k \rangle + \left(L - \frac{1}{\gamma_k}\right) D_{\psi}(x^{k+1}, x^k)$$

$$\leq f(x^k) + \langle \nabla f(x^k), x^k \rangle - \langle \nabla f(x^k), x^k \rangle + \left(L - \frac{1}{\gamma_k}\right) D_{\psi}(x^{k+1}, x^k)$$

$$= f(x^k) + \left(L - \frac{1}{\gamma_k}\right) D_{\psi}(x^{k+1}, x^k)$$

Where $D_{\psi}(x^{k+1}, x^k) \geq 0$ and $\gamma_k \leq 1/L$ implies a decrease. Thus, we next aim to show that the proposed mirror-descent, under light regularity conditions, is L-smooth and thus guarantees local descent for appropriate choice of step-size γ_k .

Proposition 3. Suppose that for the neg-entropy mirror-map, $\psi(\mathbf{Q}) = \sum_{ij} \mathbf{Q}_{ij} \log \mathbf{Q}_{ij}$, one considers the loss $\mathcal{F} := \left\langle \mathbf{S}, \mathbf{Q} \mathbf{D}^{-1} \mathbf{Q}^{\top} \right\rangle_{F}$ for \mathbf{Q} in the set $\Pi(\boldsymbol{u}_{n}, \cdot)$ and $\mathbf{D}^{-1} = \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_{n})$. Moreover, suppose the following floor conditions hold: $\mathbf{Q}_{ij} \geq \epsilon > 0$, $\left(\mathbf{Q}^{\top} \mathbf{1}_{n}\right)_{k} \geq \delta > 0$. Then, \mathcal{F} is L-smooth relative to ψ :

$$\|\nabla_{\mathbf{Q}}^{(k+1)} - \nabla_{\mathbf{Q}}^{(k)}\|_{F} \le \left(L_{A} + \frac{L_{A}\sqrt{n}}{\delta}\right) \|\nabla\psi^{(k+1)} - \nabla\psi^{(k)}\|_{F}, \tag{34}$$

$$L_A := \left(\frac{\|\mathbf{S}\|_F}{\delta} + \frac{\sqrt{n} \|\mathbf{S}\|_F}{\delta^2}\right) \tag{35}$$

Proof. Following Scetbon et al. (2021) or Halmos et al. (2024), by either strictly enforcing a lower-bound on the entries of g or adding an entropic regularization (e.g. a KL-divergence to a fixed marginal, such as u_r , with a sufficiently high penalty τ), one may assume floors of the form

$$\mathbf{Q}_{ij} \ge \epsilon > 0, \quad (\mathbf{Q}^{\top} \mathbf{1}_n)_k \ge \delta > 0$$

 $\|\operatorname{diag}(\mathbf{Q}^{\top} \mathbf{1}_n)^{-1}\|_{\operatorname{op}} \le \frac{1}{\delta}$

Additionally, note that $\mathbf{Q}_{ik} \in [0, 1/n]$ and $\|\mathbf{Q}\|_F^2 = \sum_{ik} \mathbf{Q}_{ik}^2 < \sum_{ik} \mathbf{Q}_{ik} = 1$. Now, starting from

$$\nabla_{\mathbf{Q}} := \nabla_{\mathbf{Q}}^{(A)} + \nabla_{\mathbf{Q}}^{(B)} = \mathbf{SQD}^{-1} - \frac{1}{2} \mathbf{1}_n \operatorname{diag}^{-1} (\mathbf{Q}^{\top} \mathbf{D}^{-1} \mathbf{SQD}^{-1})$$

We see

$$\begin{split} & \|\nabla_{\mathbf{Q}^{(k+1)}} - \nabla_{\mathbf{Q}^{(k)}}\|_F \leq \underbrace{\|\mathbf{S}\mathbf{Q}^{(k+1)}\mathbf{D}_{k+1}^{-1} - \mathbf{S}\mathbf{Q}^{(k)}\mathbf{D}_{k}^{-1}\|_F}_{\text{Term 1}} \\ & + \frac{1}{2}\underbrace{\left\|\mathbf{1}_n \left(\operatorname{diag}^{-1}(\mathbf{Q}^{(k+1),\top}\mathbf{D}_{k+1}^{-1}\mathbf{S}\mathbf{Q}^{(k+1)}\mathbf{D}_{k+1}^{-1}) - \operatorname{diag}^{-1}(\mathbf{Q}^{(k),\top}\mathbf{D}_{k}^{-1}\mathbf{S}\mathbf{Q}^{(k)}\mathbf{D}_{k}^{-1})\right)\right\|_F}_{\text{Term 2}} \end{split}$$

From the first term, one finds

$$\|\mathbf{S}\mathbf{Q}^{(k+1)}\mathbf{D}_{k+1}^{-1} - \mathbf{S}\mathbf{Q}^{(k)}\mathbf{D}_{k}^{-1}\|_{F} \le \|\mathbf{S}\|_{F}\|\mathbf{Q}^{(k+1)}\mathbf{D}_{k+1}^{-1} - \mathbf{Q}^{(k)}\mathbf{D}_{k}^{-1}\|_{F}$$

$$\le \|\mathbf{S}\|_{F} \left(\|\mathbf{Q}^{(k+1)}\|_{F}\|\mathbf{D}_{k+1}^{-1} - \mathbf{D}_{k}^{-1}\|_{F} + \|\mathbf{D}_{k}^{-1}\|_{F}\|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_{F}\right)$$

As one has $\|\mathbf{D}_{k+1}^{-1} - \mathbf{D}_{k}^{-1}\|_{F} = \|\mathbf{D}_{k}^{-1}\mathbf{D}_{k+1}^{-1}(\mathbf{D}_{k+1} - \mathbf{D}_{k})\|_{F} \le \delta^{-2}\|\mathbf{D}_{k+1} - \mathbf{D}_{k}\|_{F}$ and since

$$\|(\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)})^{\top} \mathbf{1}_n\|_2 \le \sqrt{n} \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F$$
(36)

One collects a bound on the first term of the form

$$\leq \left(\frac{\|\mathbf{S}\|_{F}}{\delta} + \frac{\sqrt{n} \|\mathbf{S}\|_{F}}{\delta^{2}}\right) \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_{F} := L_{A} \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_{F}$$
(37)

For the second, observe that

$$\|\mathbf{1}_n \operatorname{diag}^{-1} \mathbf{X}\|_F^2 = \operatorname{tr}(\mathbf{1}_n \operatorname{diag}^{-1} \mathbf{X})^{\top} (\mathbf{1}_n \operatorname{diag}^{-1} \mathbf{X})$$
$$= n \|\operatorname{diag}^{-1} \mathbf{X}\|_F^2 \le n \|\mathbf{X}\|_F^2$$

So that $\|\mathbf{1}_n \operatorname{diag}^{-1} \mathbf{X}\|_F \leq \sqrt{n} \|\mathbf{X}\|_F$. Thus, we find the second term is bounded by

$$\leq \frac{\sqrt{n}}{2} \left\| \mathbf{Q}^{(k+1),\top} \mathbf{D}_{k+1}^{-1} \mathbf{S} \mathbf{Q}^{(k+1)} \mathbf{D}_{k+1}^{-1} - \mathbf{Q}^{(k),\top} \mathbf{D}_{k}^{-1} \mathbf{S} \mathbf{Q}^{(k)} \mathbf{D}_{k}^{-1} \right\|_{F}$$

$$= \frac{\sqrt{n}}{2} \left\| \mathbf{Q}^{(k+1),\top} \mathbf{D}_{k+1}^{-1} \nabla_{\mathbf{Q}}^{(k+1,A)} - \mathbf{Q}^{(k),\top} \mathbf{D}_{k}^{-1} \nabla_{\mathbf{Q}}^{(k,A)} \right\|_{F}$$

$$\leq \frac{\sqrt{n}}{2} \| \mathbf{Q}^{(k+1)} \|_{F} \| \mathbf{D}_{k+1}^{-1} \|_{F} \| \nabla_{\mathbf{Q}}^{(k+1,A)} - \nabla_{\mathbf{Q}}^{(k,A)} \|_{F} + \frac{\sqrt{n}}{2} \| \nabla_{\mathbf{Q}}^{(k,A)} \|_{F} \| \mathbf{Q}^{(k+1),\top} \mathbf{D}_{k+1}^{-1} - \mathbf{Q}^{(k),\top} \mathbf{D}_{k}^{-1} \|_{F}$$

Now, since we have already quantified the difference $\|\nabla_{\mathbf{Q}}^{(k+1,A)} - \nabla_{\mathbf{Q}}^{(k,A)}\|_F$ with smoothness constant L_A in (37), and also quantified $\|\mathbf{Q}^{(k+1),\top}\mathbf{D}_{k+1}^{-1} - \mathbf{Q}^{(k),\top}\mathbf{D}_{k}^{-1}\|_F$, we simply invoke both bounds from above to conclude the bound on the second term as

$$\leq \frac{L_A \sqrt{n}}{2\delta} \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F + \frac{\sqrt{n}}{2} \frac{1}{\delta} \left(\frac{\|\mathbf{S}\|_F}{\delta} + \frac{\sqrt{n} \|\mathbf{S}\|_F}{\delta^2} \right) \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F \\
= \left(\frac{L_A \sqrt{n}}{2\delta} + \frac{L_A \sqrt{n}}{2\delta} \right) \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F = \frac{L_A \sqrt{n}}{\delta} \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F$$

Thus, we find the objective to be L-smooth with constant given in terms of L_A (37)

$$\leq L \|\mathbf{Q}^{(k+1)} - \mathbf{Q}^{(k)}\|_F, \quad L = \left(L_A + \frac{L_A\sqrt{n}}{\delta}\right)$$

Lastly, for the entropy mirror-map ψ observe that for $\nabla \psi(x) = \log x$ one has for $\xi \in [\epsilon, 1]$ by the mean value theorem that $\log'(\xi)|u-v| = \xi^{-1}|u-v| = |\log u - \log v|$, so that following Scetbon et al. (2021) one concludes relative smoothness in ψ via the upper bound

$$\leq L \|\nabla \psi^{(k+1)} - \nabla \psi^{(k)}\|_F$$

Corollary 1 (Guaranteed Descent). By Proposition 3 one can ensure that \mathcal{F} is smooth relative to the entropy mirror-map ψ with constant L given in Proposition 3. For $\gamma_k \leq 1/L$, this guarantees descent on the objective and ensures the initialization guarantees of Theorem 2 are upper bounds on the final solution cost.

A.4.2 SEMIDEFINITE PROGRAMMING

Here we present an algorithm for generalized K-means via semidefinite programming. The basic idea is that the semidefinite programming approaches for K-means (Peng and Xia, 2005; Peng and Wei, 2007; Zhuang et al., 2022; 2023) apply immediately to the generalized K-means problem. First, by analyzing the argument in (Peng and Xia, 2005; Peng and Wei, 2007) for constructing an equivalent form of K-means, one observes that the generalized K-means problem (8) is equivalent to:

$$\min_{\mathbf{P}>0} \left\{ \langle \mathbf{P}, \mathbf{C} \rangle_F : \operatorname{tr}(\mathbf{P}) = K, \ \mathbf{P} \mathbf{1}_K = \mathbf{1}_n, \ \mathbf{P}^2 = \mathbf{P}, \ \mathbf{P} = \mathbf{P}^\top \right\}. \tag{38}$$

Replacing the non-convex constraint $\mathbf{P}^2 = \mathbf{P}$ with its relaxation $\mathbf{P} \succeq 0$, yields the semidefinite relaxation of generalized K-means problem (8),

$$\min_{\mathbf{P} \ge 0} \left\{ \langle \mathbf{P}, \mathbf{C} \rangle_F : \operatorname{tr}(\mathbf{P}) = K, \ \mathbf{P} \mathbb{1}_K = \mathbb{1}_n, \ \mathbf{P} \succeq 0 \right\}.$$
 (39)

The only difference between the reformulation of generalized K-means (38) and the reformulation of K-means studied in (Peng and Xia, 2005; Peng and Wei, 2007) is the structure of the cost matrix C. The advantages of the semidefinite programming approach compared to GKMS is that it provides higher quality solutions, does not depend on the initialization parameters, and provides a lower bound on the optimal cost. The disadvantage is the computational cost required to solve large semidefinite programming problems. Mildly alleviating the computational burden, we apply recent approaches from Zhuang et al. (2023) for solving the semidefinite programming problem (39).

A.5 EXACT REDUCTIONS OF GENERALIZED K-MEANS BY CLASS OF COST C

A.5.1 NEARLY NEGATIVE SEMIDEFINITE COSTS

When C is negative semidefinite, the generalized K-means problem (39) exactly coincides with the K-means problem. In these cases, approximation algorithms for K-means, such as established $(1+\epsilon)$ approximations Kumar et al. (2004) and poly-time $\log K$ approximations (e.g. k-means++ Arthur and Vassilvitskii (2007)), directly transfer to the low-rank OT setting. However, by definition, such costs express symmetric distances between a dataset and itself and are not relevant to optimal transport between distinct measures.

Interestingly, direct reduction of generalized K-means to to K-means holds for a more general class of asymmetric distances which may express costs between distinct datasets. In Proposition 5, we show such a strong condition: it is sufficient for the symmetrization of any cost C, SymC, to be conditionally negative semi-definite.

Proposition 4. Suppose we are given a cost matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ where the symmetrization of \mathbf{C} , $\operatorname{Sym}(\mathbf{C}) := \mathbf{C}^{\top} + \mathbf{C}$ is conditionally negative-semidefinite so that $\operatorname{Sym}\mathbf{C} \preceq 0$ on $\mathbf{1}_n^{\perp}$. Denote the double-centering $J = \mathbb{1} - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^{\top}$ and p.s.d. kernel $\mathbf{K} := -(1/2)J\operatorname{Sym}\mathbf{C} J \succeq 0$. Then Problem 7 reduces to kernel k-means Dhillon et al. (2004a) on \mathbf{K} :

$$\min_{\substack{\mathbf{Q} \in \Pi_{\bullet}(\boldsymbol{u}_n, \boldsymbol{g}), \\ \boldsymbol{g} \in \Delta_r}} \langle \mathbf{Q} \operatorname{diag}(1/\boldsymbol{g}) \mathbf{Q}^{\top}, \mathbf{C} \rangle_F \equiv \max_{\mathbf{Q} \in \{0,1\}^{n \times r}} \operatorname{tr} \mathbf{D}^{-1/2} \mathbf{Q}^{\top} \mathbf{K} \mathbf{Q} \mathbf{D}^{-1/2}$$
(40)

 $\mathbf{D} := \operatorname{diag}(\mathbf{g})$ denotes the diagonal matrix of cluster sizes and \mathbf{Q} the matrix of assignments.

Cost matrices induced by kernels, such as the squared Euclidean distance, are classically characterized by being conditionally negative semidefinite Schoenberg (1938); Rao (1984). For a satisfying cost \mathbf{C} , Proposition implies that 7 is equivalent to K-means with Gram matrix $\mathbf{K} = -(1/2) J \operatorname{Sym} \mathbf{C} J$. This is a stronger statement than requiring $\mathbf{C} \leq 0$. Observe that the Monge-conjugated matrix, $\operatorname{Sym} \mathbf{C}^{\dagger}$ turns an asymmetric cost into a symmetric bilinear form on (i,j). Moreover, as $\operatorname{Sym} \mathbf{C}$ plays the role of a distance matrix in the conversion to \mathbf{K} , we offer it an appropriate name

Definition 4 (Monge Cross-Distance Matrix). Let $\mathbf{C}^{\dagger} = \mathbf{C}\mathbf{P}_{\sigma^{\star}}^{\top}$ for $\mathbf{P}_{\sigma^{\star}}$ the optimal Monge permutation. Denote its symmetrization by $\mathrm{Sym}(\mathbf{C}^{\dagger}) = \mathbf{C}\mathbf{P}_{\sigma^{\star}}^{\top} + \mathbf{P}_{\sigma^{\star}}\mathbf{C}^{\top}$. In the $\mathbf{1}_{n}^{\perp}$ subspace, each element may be expressed as the cross-difference

$$\mathbf{M}_{ij}^{\dagger} = \langle x_i - x_j, T(x_i) - T(x_j) \rangle \tag{41}$$

Thus, we refer to \mathbf{M}^{\dagger} as the Cross-Distance Matrix induced by the Monge map.

Proposition 5 implies that the reduction to K-means holds if and only if the bilinear forms of the Monge gram matrix admit an inner product in a Hilbert space \mathcal{H} . In other words, if there exists a function ψ so $\langle x, T(y) \rangle := \langle \psi(x), \psi(y) \rangle$. For clustering on any symmetric cost \mathbf{C} , one has that the Monge map is the identity $T = \mathbf{I}$, so that $\langle x_i - x_j, T(x_i) - T(x_j) \rangle$ immediately reduces to a EDM $\|x_i - x_j\|_2^2$. Notably, this also holds for a more general class of distributions without identity Monge maps – multivariate Gaussians in Bures-Wasserstein space $\mathrm{BW}(\mathbb{R}^d)$ Chewi et al. (2024). These automatically admit CND cost matrices following Monge-conjugation for the squared Euclidean distance $\|\cdot\|_2^2$.

Remark 2. $\langle x, T(y) \rangle := \langle \psi(x), \psi(y) \rangle$ holds universally for transport maps between any two multivariate Gaussians Peyré et al. (2019). Let $\rho_1 = \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ and $\rho_2 = \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$. The transport map T such that $T_{\sharp}\rho_1 = \rho_2$ is given by the affine transformation $T(x) = \mathbf{A}x + \mathbf{b}$ with $\mathbf{A} = \boldsymbol{\Sigma}_1^{-1/2} \left(\boldsymbol{\Sigma}_1^{1/2} \boldsymbol{\Sigma}_2 \boldsymbol{\Sigma}_1^{1/2}\right) \boldsymbol{\Sigma}_1^{-1/2} \succeq 0$ and $\mathbf{b} = \boldsymbol{\mu}_2 - \mathbf{A}\boldsymbol{\mu}_1$. Thus, for $\psi := \sqrt{\mathbf{A}}$

$$\langle x_i - x_j, \mathbf{A}x_i + \mathbf{b} - (\mathbf{A}x_j + \mathbf{b}) \rangle = \|\sqrt{\mathbf{A}}(x_i - x_j)\|_2^2$$

In general, the conjugated cost \mathbf{M}^{\dagger} shifts \mathbf{C} to be nearer to a clustering distance matrix after symmetrization: the diagonal entries are zero $\mathbf{M}_{jj}^{\dagger}=0$, for squared Euclidean cost Brenier (1991) the entries $\langle x_i-x_j,T(x_i)-T(x_j)\rangle\geq 0$, and \mathbf{M}^{\dagger} reduces to a matrix of kernel-distances on x_i-x_j whenever $\mathrm{Sym}(\mathbf{C}^{\dagger})$ is CND. Moreover, for squared Euclidean cost one has $T=\nabla\varphi$ for a convex potential $\varphi\in\mathbf{cvx}(\mathbb{R}^d)$ Brenier (1991). Thus, to second-order, all entries may be expressed on $\mathbf{1}_n^{\perp}$ as PSD forms $\langle x_i-x_j,T(x_i)-T(x_j)\rangle\sim\langle x_i-x_j,\nabla^2\varphi(x_j)(x_i-x_j)\rangle$ for $\nabla^2\varphi(x_j)\succeq 0$.

While K-means reduces to a special case of low-rank optimal transport where $\mathbf{Q}=\mathbf{R}$, as has been previously shown Scetbon and Cuturi (2022), the other direction is significantly less obvious: it often appears that one can only gain by taking $\mathbf{Q}\neq\mathbf{R}$ and optimizing over a larger space of solutions when \mathbf{C} is an asymmetric cost with respect to a pair of *distinct* datasets X,Y. We note that when the conditions of Proposition 5 hold, generalized k-means exactly reduces to K-means, so that step (ii) inherits its existing algorithmic guarantees. In particular, suppose $\mathbf{C}\in\mathbb{R}^{n\times n}$ satisfies Proposition 5 and one may also solve K-means to $(1+\epsilon)$ using algorithm \mathcal{A} . For the Gram-matrix $\mathbf{K}=-(1/2)J\operatorname{Sym}\mathbf{C}J$ one may yield the eigen-decomposition $\mathbf{K}=\mathbf{U}\Lambda\mathbf{U}^{\top}$ and compute point $\mathbf{Z}=\mathbf{U}\Lambda^{1/2}$. Then, given a solution to K-means on $\mathbf{Z}, \ \bar{\mathbf{Q}}:=\mathcal{A}(\mathbf{Z})$, one automatically inherits $(1+\epsilon)$ -approximation of generalized K-means by the exact reduction. We detail the algorithm for this special case in Algorithm 3 below.

Algorithm 3.

- (i) Symmetrize the Monge-conjugated cost $\operatorname{Sym}(\tilde{\mathbf{C}}) = \mathbf{C} \mathbf{P}_{\sigma^*}^\top + \mathbf{P}_{\sigma^*} \mathbf{C}^\top$
- (ii) Grammize as $G = -(1/2) J \operatorname{Sym}(\tilde{\mathbf{C}}) J$ for double-centering $J = \mathbb{1}_n \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}$
- (iii) Yield Z from eigen-decomposition of $G = ZZ^{\top}$
- (iv) Run K-Means on Z to yield \mathbf{Q}
- (v) Output the pair $(\mathbf{Q}, \mathbf{P}_{\sigma^*}^\top \mathbf{Q})$.

Thus, for this class of cost, Algorithm 1 guarantees *optimal* solutions to generalized K-means by reduction to optimal solvers for K-means.

Observe two valuable invariants of the optimization problem (7): first we have an affine invariance, naturally characterized by the optimal transport constraints; second, the symmetry of the coupling optimized introduces an invariance to asymmetric components of the cost itself, so that the optimization (7) is equivalent to one on the symmetrization of the cost.

Lemma 7 (Invariances of Generalized K-Means.). Suppose we are given a cost matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$. Then the generalized K-means problem

$$\min_{\substack{\mathbf{Q} \in \Pi_{\bullet}(\boldsymbol{u}_n, \boldsymbol{g}), \\ \boldsymbol{g} \in \Delta_K}} \langle \mathbf{Q} \operatorname{diag}(1/\boldsymbol{g}) \mathbf{Q}^{\top}, \mathbf{C} \rangle_F$$
(42)

Exhibits the following invariances:

1. Invariance to asymmetric components

$$\underset{\mathbf{Q} \in \Pi_{\bullet}(\mathbf{u}_{n}, \mathbf{g}), \\ \mathbf{g} \in \Delta_{K}}{\operatorname{arg \, min}} \langle \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top}, \mathbf{C} \rangle_{F} = \underset{\mathbf{Q} \in \Pi_{\bullet}(\mathbf{u}_{n}, \mathbf{g}), \\ \mathbf{g} \in \Delta_{K}}{\operatorname{arg \, min}} \langle \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top}, \mathbf{S} \rangle_{F}$$
(43)

Where $\mathbf{C} = \mathbf{A} + \mathbf{S}$ for its symmetric component $\mathbf{S} \triangleq (1/2)(\mathbf{C} + \mathbf{C}^{\top}) \in \mathbb{S}^n$ and its skew-symmetric component $\mathbf{A} := (1/2)(\mathbf{C} - \mathbf{C}^{\top}) \in \mathbb{A}^n$.

 2. Invariance to affine offsets $f\mathbf{1}_n^{\top} + \mathbf{1}_n \mathbf{h}^{\top}$ and shifts $\gamma \mathbf{1}_n \mathbf{1}_n^{\top}$

$$\min_{\substack{\mathbf{Q} \in \Pi_{\bullet}(\mathbf{u}_n, \mathbf{g}), \\ \mathbf{g} \in \Delta_K}} \langle \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top}, \mathbf{\Lambda} + \mathbf{f} \mathbf{1}_n^{\top} + \mathbf{1}_n \mathbf{h}^{\top} + \gamma \mathbf{1}_n \mathbf{1}_n^{\top} \rangle_F$$
(44)

$$= \min_{\substack{\mathbf{Q} \in \Pi_{\bullet}(\boldsymbol{u}_n, \boldsymbol{g}), \\ \boldsymbol{g} \in \Delta_K}} \langle \mathbf{Q} \operatorname{diag}(1/\boldsymbol{g}) \mathbf{Q}^{\top}, \boldsymbol{\Lambda} \rangle_F + \boldsymbol{f}^{\top} \boldsymbol{u}_n + \boldsymbol{u}_n^{\top} \boldsymbol{h} + \gamma$$
(45)

Proof. Observe that symmetry of the matrix $\mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top}$ implies the objective (42) is equivalent to the objective on \mathbf{C}^{\top}

$$\langle \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top}, \mathbf{C} \rangle_F = \operatorname{tr} \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top} \mathbf{C} = \langle \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top}, \mathbf{C}^{\top} \rangle$$
 (46)

This directly implies (1). For (2), if $C = \Lambda + XY^{\top}$. Then, we have that

$$\langle \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top}, \mathbf{C} \rangle_F = \langle \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top}, \mathbf{\Lambda} \rangle + \operatorname{tr} \mathbf{X}^{\top} \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top} \mathbf{Y}$$

Thus, the constraints on Q imply for each case of (44) that

$$\gamma \operatorname{tr} \mathbf{1}_{n}^{\top} \mathbf{Q} \operatorname{diag}(1/\mathbf{Q}^{\top} \mathbf{1}_{n}) \mathbf{Q}^{\top} \mathbf{1}_{n} = \gamma \mathbf{1}_{n}^{\top} \mathbf{Q} \mathbf{1}_{n} = \gamma$$

$$\operatorname{tr} \mathbf{f}^{\top} \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top} \mathbf{1}_{n} = \mathbf{f}^{\top} \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{g} = \mathbf{f}^{\top} \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{g} = \mathbf{f}^{\top} \mathbf{Q} \mathbf{1}_{K} = \mathbf{f}^{\top} \mathbf{u}_{n}$$

$$(\mathbf{Q} \mathbf{1}_{n})^{\top} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top} \mathbf{h} = (\operatorname{diag}(1/\mathbf{g}) \mathbf{g})^{\top} \mathbf{Q}^{\top} \mathbf{h} = (\mathbf{Q} \mathbf{1}_{K})^{\top} \mathbf{h} = \mathbf{u}_{n}^{\top} \mathbf{h}$$

Proposition 5 (Reduction to K-Means for costs with conditionally negative semi-definite symmetrization.). Suppose we are given a cost matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$. Then generalized K-means reduces to K-means if $\operatorname{Sym} \mathbf{C} \triangleq (1/2) (\mathbf{C}^{\top} + \mathbf{C})$ is conditionally negative-semidefinite (CND) so that $\operatorname{Sym} \mathbf{C} \preceq 0$ on $\mathbf{1}_n^{\perp} = \{\xi : \langle \xi, \mathbf{1}_n \rangle = 0\}$.

Proof. Owing to invariance of the objective to Skew(C) we may replace the minimization in (42) with a minimization over the symmetric component of C, $(1/2)(C + C^{\top}) = S$:

$$\underset{\mathbf{Q} \in \Pi_{\bullet}(\mathbf{u}_{n}, \mathbf{g}), \\ \mathbf{g} \in \Delta_{K}}{\operatorname{arg \, min}} \langle \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top}, \mathbf{C} \rangle_{F} = \underset{\mathbf{Q} \in \Pi_{\bullet}(\mathbf{u}_{n}, \mathbf{g}), \\ \mathbf{g} \in \Delta_{K}}{\operatorname{arg \, min}} \langle \mathbf{Q} \operatorname{diag}(1/\mathbf{g}) \mathbf{Q}^{\top}, \mathbf{S} \rangle_{F}$$
(47)

Observe that the solution of the objective is invariant to outer products between constant $f, h \in \mathbb{R}^n$ with the one vector $\mathbf{1}_n$, i.e. components of the form $f\mathbf{1}_n^\top + \mathbf{1}_n h^\top$. Denote the double-centering $J = \mathbb{1}_n - (1/n)\mathbf{1}_n\mathbf{1}_n^\top$. If \mathbf{S} is conditionally negative semidefinite (CND), then applying this affine invariance implies the objective is equivalent to

$$\min_{\substack{\mathbf{Q} \in \Pi_{\bullet}(u_n, g), \\ g \in \Delta_K}} \langle \mathbf{Q} \operatorname{diag}(1/g) \mathbf{Q}^{\top}, J \mathbf{S} J \rangle_F$$
(48)

Thus, for $JSJ \leq 0$ we exhibit a positive semidefinite kernel matrix $K = -(1/2) JSJ \geq 0$ and have

$$\min_{\mathbf{Q} \in \Pi_{\bullet}(\mathbf{u}_{n}, \mathbf{g}), \mathbf{Q} \operatorname{diag}(1/\mathbf{g})\mathbf{Q}^{\top}, \mathbf{C}\rangle_{F} = -2 \langle \mathbf{Q} \operatorname{diag}(1/\mathbf{g})\mathbf{Q}^{\top}, \mathbf{K}\rangle_{F}$$
(49)

$$\equiv \max_{\mathbf{Q} \in \{0,1\}^{n \times K}} \operatorname{tr} \mathbf{D}^{-1/2} \mathbf{Q}^{\top} \mathbf{K} \mathbf{Q} \mathbf{D}^{-1/2}$$
(50)

Where $\mathbf{D} \triangleq \operatorname{diag}(g)$ denotes the conventional diagonal matrix of cluster sizes and \mathbf{Q} the matrix of assignments. Thus, if $\mathbf{S} = \operatorname{Sym} \mathbf{C}$ is conditionally negative semidefinite, up to constants Problem (7) reduces to kernel k-means (Dhillon et al., 2004b).

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

For the synthetic experiments we inferred the Monge map \mathbf{P}_{σ^*} by applying the Sinkhorn algorithm implemented in ott-jax with the entropy regularization parameter $\epsilon=10^{-5}$ and a maximum iteration count of 10,000. For the real data experiments, we inferred the Monge map \mathbf{P}_{σ^*} using HiRef (Halmos et al., 2025b), and used a low-rank version of GKMS which uses a factorization of the cost $\mathbf{C}=\mathbf{A}\mathbf{B}^{\top}$ for scaling. The remaining implementation details are consistent across the synthetic and real data experiments.

For the GKMS algorithm, we used a JAX implementation of the GKMS algorithm with step size $\gamma_k=2$ for a fixed number 250 of iterations. To construct an initial solution, we first applied the K-means algorithm implemented in scikit-learn on X and Y to obtain clustering matrices \mathbf{Q}_X and \mathbf{Q}_Y . Then, using the Monge registered initialization procedure in Algorithm 2, we took the best of the two solutions \mathbf{Q}_X and $\mathbf{P}_{\sigma^*}\mathbf{Q}_Y$ as \mathbf{Q} . Next, we performed a centering step by setting $\mathbf{Q}^{(0)}=\lambda\mathbf{Q}+(1-\lambda)\mathbf{Q}'$ where \mathbf{Q}' is a random matrix in $\Pi(\mathbf{u}_n,\cdot)$ generated from the initialization procedure in Scetbon et al. (2021) with $\lambda=\frac{1}{2}$. Finally, we ran GKMS on the registered cost matrix $\tilde{\mathbf{C}}=\mathbf{C}\mathbf{P}_{\sigma^*}^{\top}$ with $\mathbf{Q}^{(0)}$ as the initial solution.

For the synthetic stochastic block model (SBM) example we applied the semidefinite programming formulation of the generalized K-means problem described in Appendix A.4.2 with the solver from Zhuang et al. (2023) to initialize $\mathbf{Q}^{(0)}$ prior to running GKMS.

B.2 Synthetic Experiments

We constructed three synthetic datasets to evaluate existing low-rank OT methods. Each dataset was constructed with n=m=5000 datapoints, resulting in a cost matrix $\mathbf{C} \in \mathbb{R}^{5000 \times 5000}$.

2-Moons and 8-Gaussians (2M-8G). In this experiment Tong et al. (2023), we generated two datasets $X,Y \subset \mathbb{R}^2$ representing two spirals (X) and 8 isotropic Gaussians (Y). In particular, we used the function <code>generate_moons</code> from the package <code>torchdyn.datasets</code> to generate the two interleaving moons as the first dataset. These are defined as semi-circles with angles $\theta_1 \sim \mathrm{Unif}(0,\pi), \, \theta_2 \sim \mathrm{Unif}(0,\pi)$ and $(r\cos\theta_1 - r\sin\theta_1) - c$ and $(r\cos\theta_2 - r\sin\theta_2) + c$ for constant offset c. We add isotropic Gaussian noise with variance 0.5. As in Tong et al. (2023), one scales all points with $\tilde{Y} = aY + b$ for a = 3, b = (-1 - 1) to overlap visually with the 8 Gaussians. For given variance $\sigma^2 = 1.0$, we generated $k \in [8]$ isotropic Gaussian clusters $\mathcal{N}(\mu_k, \sigma^2\mathbf{I}_2)$ with means on the unit circle S^2 , given by

$$\begin{pmatrix} \boldsymbol{\mu}_1 \\ \cdots \\ \boldsymbol{\mu}_8 \end{pmatrix} = \begin{cases} (1,0), \\ (-1,0), \\ (0,1), \\ (0,-1), \\ (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), \\ (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}), \\ (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), \\ (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) \end{cases}$$

The 2-moons constitutes a simple non-linear manifold and the 8-Gaussians constitutes a simple dataset with cluster structure.

Shifted Gaussians (SG). To construct the SG synthetic datasets we placed K=250 Gaussian distributions with means $\mu_1,\ldots,\mu_k\in\mathbb{R}^K$ at the basis vectors $e_1,\ldots,e_K\in\mathbb{R}^K$. Similarly, we constructed another set of means μ'_1,\ldots,μ'_k by perturbing the means $\mu'_i=\mu_i+\epsilon_i$ with $\epsilon_i\sim\mathcal{N}(0,\frac{0.1}{\sqrt{n}}\mathbf{I}_K)$. Then, we randomly sampled groups of size m_1,\ldots,m_K with $\sum_{k=1}^K m_k=n$ by randomly sampling a partition of n of size K. Then, for both datasets K and K, we assigned cluster 1 to the first K1 points, cluster 2 to the next K2 points, ..., and cluster K3 to the final K4 points. For

points in cluster k in dataset X, we sample m_k points from $\mathcal{N}(\boldsymbol{\mu}_k, \frac{\sigma^2}{\sqrt{n}}\mathbf{I}_K)$. Similarly, for points in cluster k in dataset Y, we sample m_k points from $\mathcal{N}(\boldsymbol{\mu}_k', \frac{\sigma^2}{\sqrt{n}}\mathbf{I}_K)$.

To construct the cost matrix, we take $C_{ij} = ||x_i - y_j||_2^2$. We construct three instances using different noise values $\sigma^2 \in \{0.1, 0.2, 0.3\}$.

Stochastic Block Model (SBM). To construct the SBM instance, we generated a graph G=(V,E) from a stochastic block model using within cluster probability p=0.5 and between cluster probability q=0.25 over K=100 clusters of fixed size m=50. Edge weights w_e were generated by randomly sampling weights from Unif(1.0,2.0). The cost matrix $\mathbf{C}_{ij}=d_G(i,j)$ was taken as the shortest path distance between vertices i and j in G with the weight function w.

B.3 CIFAR10

We follow the protocol of Zhuang et al. (2023) in this experiment by comparing all low-rank OT methods on the CIFAR-10 dataset, containing 60,000 images of size $32 \times 32 \times 3$ across 10 classes. We use a ResNet (resnet18-f37072fd.pth) to embed the images to dimension d=512 He et al. (2016) and apply a PCA to d=50, following the procedure of Zhuang et al. (2023). We then perform a stratified 50/50 split of the images into two datasets of 30,000 images with class-label distributions matched. We use a fixed seed for this, as well as for the low-rank OT solvers following the ott-jax implementation of Scetbon et al. (2021). For low-rank OT, we set the rank to K=10 to match the number of class labels. To run TC we solve for the coupling \mathbf{P}_{σ^*} with Hierarchical Refinement due to the size of the dataset Halmos et al. (2025b), and solve generalized K-means with mirror-descent. In this experiment, we specialize to the squared-Euclidean cost $\|\cdot - \cdot\|_2^2$.

For our evaluation metrics, we first compute the primal OT cost of each low-rank coupling as our primary benchmark. We also evaluate AMI and ARI to the ground-truth marginal clusterings, given by annotated class labels. We compute our predicted labels via the argmax assignment of labels as $\hat{y}(i) = \arg\max_z \mathbf{Q}_{i,z}$ and $\hat{y}'(j) = \arg\max_z \mathbf{R}_{j,z}$. Lastly, we assess co-clustering performance by using the class-transfer accuracy (CTA). Given a proposed coupling \mathbf{P} , define the class-to-class density matrix for two ground-truth classes k, k' (distinguished from the predicted classes of the arg-max of the low-rank factors) to be

$$(
ho)_{k,k'} = \sum_{ij} \mathbf{P}_{ij} \mathbb{1}_{i \in \mathcal{C}_k} \mathbb{1}_{j \in \mathcal{C}_{k'}}$$

The class-transfer accuracy is then defined to be

$$CTA(\mathbf{P}) = \frac{\operatorname{tr} \rho}{\sum \rho_{k,k'}}$$
 (51)

in other words, the fraction of mass transferred between ground-truth classes (i.e. the diagonal of ρ) over the total mass transferred between all class pairs.

B.4 SINGLE-CELL TRANSCRIPTOMICS OF MOUSE EMBRYOGENESIS

We validate TC against LOT Scetbon et al. (2021) and FRLC Halmos et al. (2024) on a recent, massive-scale dataset of single-cell mouse embryogenesis measured across 45 timepoint bins with combinatorial indexing (sci-RNA-seq3) Qiu et al. (2024). In aggregate, this dataset contains 12.4 million nuclei across timepoints and various replicates. As our experiment, we align the first replicate across 7 timepoints (E8.5, E8.75, E9.0, E9.25, E9.5, E9.75, E10.0) for a total of 6 adjacent timepoint pairs. For each timepoint pair, we use scanpy to read the h5ad file and follow standard normalization procedures: sc.pp.normalize_total to normalize counts, sc.pp.log1p to add pseudocounts for stability, and run sc.tl.pca to perform a PCA projection of the raw expression data to the first d=50 principle components (using SVD solver "randomized"). As we use Halmos et al. (2025b) as the full-rank OT solver, subsampling each dataset slightly to ensure that n has many divisors for hierarchical partitioning. Similarly to the CIFAR evaluation, we ensure that the two datasets have a balanced proportion of classes – which, in this case, represent cell-types annotated from cell_id in the df_cell.csv metadata provided in Qiu et al. (2024). We set the rank K to be the minimum of the number of cell-types present at timepoint 1 and timepoint 2. We run LOT, FRLC, and TC on this data with the squared Euclidean cost. In both cases, we input the data

Table 2: Single-cell transcriptomics alignment on consecutive mouse embryo timepoints. We report OT cost (lower is better), AMI/ARI for each split (A/B), and class-transfer accuracy (CTA; higher is better).

Timepoints	Method	Rank	OT Cost ↓	AMI (A/B)↑	ARI (A/B)↑	CTA ↑	Runtime (s)
$E8.5 \rightarrow E8.75$ (18,819 cells)	TC FRLC LOT	43 43 43	0.506 0.553 0.520	0.639 / 0.617 0.556 / 0.531 0.605 / 0.592	0.329 / 0.307 0.217 / 0.199 0.283 / 0.272	0.722 0.525 0.611	63.38 16.45 8.77
E8.75 \rightarrow E9.0 (30,240 cells)	TC FRLC LOT	53 53 53	0.384 0.405 0.390	0.597 / 0.598 0.534 / 0.541 0.559 / 0.567	0.231 / 0.230 0.174 / 0.178 0.193 / 0.197	0.545 0.492 0.487	177.12 16.92 10.88
E9.0 \rightarrow E9.25 (45,360 cells)	TC FRLC LOT	57 57 57	0.452 0.481	0.563 / 0.554 0.524 / 0.515 -/-	0.190 / 0.187 0.158 / 0.155 -/-	0.500 0.471	286.95 19.31 -
E9.25 \rightarrow E9.5 (75,600 cells)	TC FRLC LOT	67 67 67	0.411 0.431	0.562 / 0.567 0.484 / 0.488 -/-	0.191 / 0.194 0.129 / 0.130 -/-	0.565 0.441	470.61 33.91
E9.5 \rightarrow E9.75 (131,040 cells)	TC FRLC LOT	80 80 80	0.389 0.399	0.554 / 0.551 0.491 / 0.487 -/-	0.172 / 0.169 0.116 / 0.115 -/-	0.564 0.447	806.81 58.58
E9.75 \rightarrow E10.0 (120,960 cells)	TC FRLC LOT	77 77 77	0.361 0.379	0.559 / 0.560 0.502 / 0.502 -/-	0.180 / 0.181 0.130 / 0.130 -/-	0.475 0.437	741.91 52.02

as point clouds X,Y as opposed to instantiating the cost ${\bf C}$ explicitly and specialize to the squared Euclidean cost.

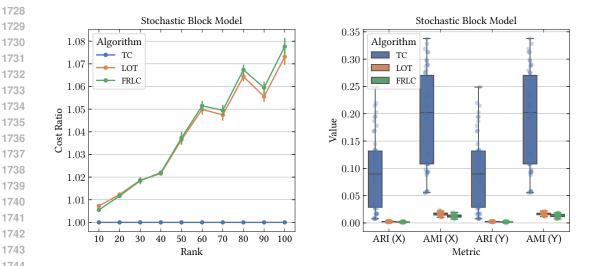


Figure 4: Comparison of low-rank OT methods on the stochastic block model dataset. (Left) Relative cost of the rank $K \in \{10, \dots, 100\}$ transport plan inferred by LOT and FRLC compared to the cost of the transport plan inferred by TC. (**Right**) Co-clustering accuracy (AMI/ARI) of TC, LOT, and FRLC at rank K = 100. The stochastic block model dataset consists of 100 clusters of size 50.

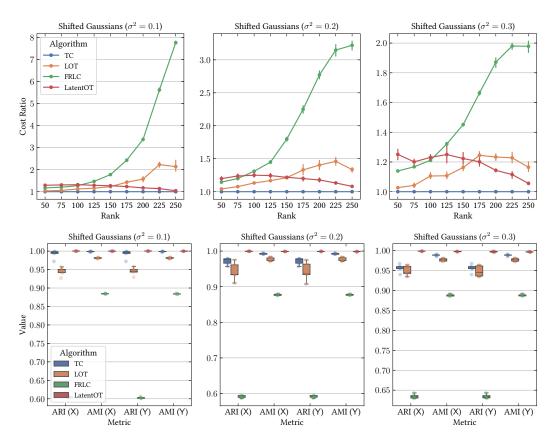


Figure 5: Comparison of low-rank OT methods on the shifted Gaussians dataset. (Top) Relative cost of the rank $K \in \{50, 75, \dots, 250\}$ transport plan inferred by LOT, FRLC, and LatentOT compared to the cost of the transport plan inferred by TC across noise levels $\sigma^2 \in \{0.1, 0.2, 0.3\}$. (Bottom) Co-clustering accuracy (AMI/ARI) of TC, LOT, FRLC, and LatentOT at rank K=250 across noise levels $\sigma^2 \in \{0.1, 0.2, 0.3\}$. The shifted Gaussians dataset consists of 250 clusters of unequal size.

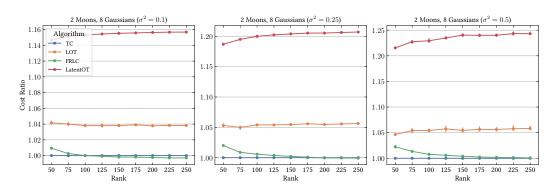


Figure 6: Relative cost of the rank $K \in \{50, 75, \dots, 250\}$ transport plan inferred by LOT, FRLC, and LatentOT compared to the cost of the transport plan inferred by TC across noise levels $\sigma^2 \in \{0.1, 0.2, 0.3\}$ for the 2-Moons and 8-Gaussians (Tong et al., 2023) dataset.

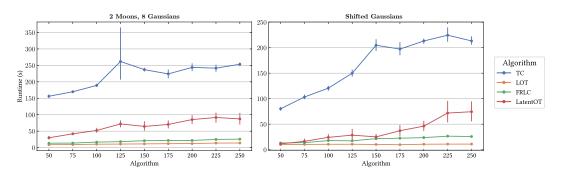


Figure 7: Runtime of TC, LOT, FRLC, and LatentOT versus the rank $K \in \{50, 75, \dots, 250\}$ for the 2-Moons and 8-Gaussians (Tong et al., 2023) dataset and the Shifted Gaussians dataset across all noise levels.

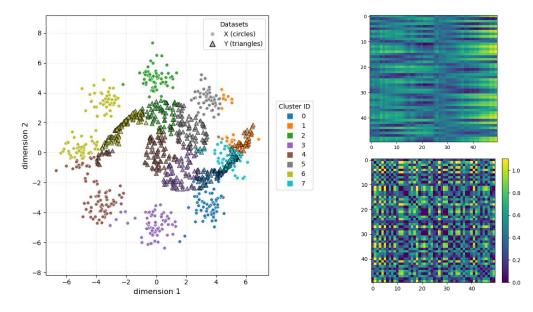


Figure 8: (Left) An example co-clustering of the two-moons 8-Gaussians dataset Tong et al. (2023) with Algorithm 3. (Right) A comparision between the raw cost matrix C (top), and the transport conjugated cost M^{\dagger} (bottom).