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ABSTRACT

Optimal transport (OT) finds a least cost transport plan between two probability
distributions using a cost matrix over pairs of points. Constraining the rank of
the transport plan yields low-rank OT, which improves computational complexity
and statistical stability compared to full-rank OT. Further, low-rank OT naturally
induces co-clusters between distributions and generalizes K-means clustering.
Reversing this direction, we show that solving a clustering problem on a set of
correspondences, termed transport clustering, solves low-rank OT. This connection
between low-rank OT and transport clustering relies on a transport registration
of the cost matrix which registers the cost matrix via the transport map. We show
that the reduction of low-rank OT to transport clustering yields polynomial-time,
constant-factor approximation algorithms for low-rank OT. Specifically, we show
that for the low-rank OT problem this reduction yields a (1 4 v)-approximation
algorithm for metrics of negative-type and a (1 + ~y + /27 )-approximation al-
gorithm for kernel costs where v € [0, 1] denotes the approximation ratio to the
optimal full-rank solution. We demonstrate that transport clustering outperforms
existing low-rank OT methods on several synthetic benchmarks and large-scale,
high-dimensional real datasets.

1 INTRODUCTION

Optimal transport finds a transport plan between two distributions in a space M provided an appro-
priate cost function ¢ : M x M — R between pairs of points in the space. When c is the squared
Euclidean cost, the cost of this optimal map is known as the Wasserstein distance or Earth Mover’s
distance, W3 (p1,v), and is one of the most natural and popular metrics for assessing the distance
between any two probability distributions u, v supported on M.

OT has gained popularity in machine learning and scientific applications for its ability to resolve
correspondences between unregistered datasets. In machine learning, optimal transport has found
applications in generative modeling (Tong et al., 2023} |Korotin et al., 2023} 2021]), self-attention
(Tay et al.l 2020; [Sander et al.| 2022; |Geshkovski et al.l[2023)), unpaired data translation (Korotin
et all,[2021; Bortoli et al., 2024} [Tong et al., [2024; Klein et al., [2024), and alignment problems in
transformers and LLMs (Melnyk et al., [ 2024; |Li et al., 2024). Moreover, OT has become an essential
tool in science, with wide-ranging applications from biology (Schiebinger et al., 2019} |Yang et al.,
2020; [Zeira et al., [2022; [Bunne et al., 2023} [Halmos et al.| [2025¢; [Klein et al., [2025) to particle
physics (Komiske et al.,[2019; |Ba et al., 2023; Manole et al., [ 2024)).

Low-rank optimal transport (Forrow et al.l 2019; Scetbon and Cuturil |2020; [Lin et al., [2021}; [Scetbon
and Cuturi, 2022} [Scetbon et al.| [2023; Halmos et al., 2024)) has emerged as an alternative to full-rank
OT that additionally constrains the rank of the transport plan. The constraints of low-rank OT have
a number of computational advantages which make it appealing, including O(nrd) time and space
scaling in the number of points n (Forrow et al.,2019; Scetbon et al.| 2021} |Lin et al., 2021; Halmos
et all,|2024) for an input rank r and a cost matrix of rank d. This has contributed to its application to
scaling optimal transport to larger datasets than with full-rank OT alone (Scetbon et al., 2021} |Klein
et all, [2025; [Halmos et al., [2025Db)).

Low-rank optimal transport also brings structural benefits for statistical robustness and co-clustering.
Specifically, the low-rank structure serves as a strong regularizer on the transport plan, producing
estimators of Wasserstein distances that are more robust to outliers and sparse sampling and achieving
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sharper statistical rates (Forrow et al.,[2019} |Lin et al., 2021)). Further, by implicitly forcing transport
to factor through a low rank or a set of latent “anchor” points, it jointly partitions the source and
target samples and aligns the resulting groups (Forrow et al.,|2019; |Lin et al., [2021). Interestingly,
K -means appears as a special case when only one dataset is considered (Scetbon and Cuturil 2022
so that low-rank optimal transport offers a strict generalization of K -means to multiple datasets.

However, several practical and theoretical factors limit low-rank OT. First, as low-rank OT is
non-convex and NP-hard, similar to NMF (Lee and Seung, 2000), it is sensitive to the choice of
initialization (Scetbon and Cuturi, [2022) and produces highly variable low-rank factors. Second,
current algorithms, which rely on local optimization through mirror-descent (Scetbon et al.| 2021}
Halmos et al., [2024) or Lloyd-type (Forrow et alJ 2019} Lin et al. [2021) approaches, consist
of a complex optimization over three or more variables. Finally, although preliminary work has
characterized theoretical properties of the low-rank OT problem (Forrow et al.l 2019;|Scetbon and
Cuturi, |2022)), existing algorithms lack provable guarantees beyond convergence to stationary points.
This contrasts with standard tools for K -means clustering that offer robust O(log K) (Arthur and
Vassilvitskii, 2007)) and (1 + €)-approximation factors (Kumar et al.,|2004) in addition to statistical
guarantees (Zhuang et al., 2023)).

Contributions. We show that low-rank OT reduces to a simple clustering problem on correspon-
dences called transport clustering. In detail, we reduce low-rank OT from a co-clustering problem
to a generalized K-means problem (Scetbon and Cuturi, [2022) via a transport registration of the
cost matrix. This registers the cost with the solution to a convex optimization problem: the optimal
full-rank transport plan. Transport clustering eliminates the auxiliary variables used in existing
low-rank solvers and converts the low-rank OT problem into a single clustering subroutine: one
low-rank factor is given by solving the generalized K -means problem on the registered cost, and the
second factor is automatically obtained from the first. We prove constant-factor guarantees for this
reduction: for kernel costs the approximation factor is (1 4+ v + 1/2) and for negative-type metrics
itis (1 + ) where 7y € [0, 1] is the ratio of the optimal rank K and full-rank OT costs. Because the
reduced problem is a (generalized) K -means instance, transport clustering inherits the algorithmic
stability and approximation guarantees of modern K -means and K -medians solvers. In addition to
its theoretical guarantees, transport clustering (TC) is a simple and practically effective algorithm for
low-rank OT that obtains lower transport cost on a range of real and synthetic datasets.

2 BACKGROUND

Suppose X = {x1,...,x,}and Y = {y1,...,yn } are datasets with n and m data points in a space
M. Letting A, = {p € R} : >, p; = 1} denote the probability simplex over n elements, one
may represent dataset each explicitly over the support with probability measures 1 = Y\ | @;0,,
and v = Z;":l b;d,, for probability vectors a € A,, and b € A,;,. The optimal transport framework

(Peyré et al., 2019) aims to find the least-cost mapping between these datasets ;. — v as quantified
viaacost functionc: X x Y — R.

Optimal Transport. The Monge formulation (Monge, |1781) of optimal transport finds a map
T* : M — M of least-cost between the measures p and v, T* = argming, 1,,,—, Epc(z, T(2)).

Here, Ty denotes the pushforward measure of p under 7', defined by Tyu(B) = pu(T~'(B))
for any measurable set B C M. Define the set of couplings I'(i,v) to be all joint distri-
butions « with marginals given by u and v. The Kantorovich problem (Kantorovich, [1942)
relaxes the Monge-problem by instead finding a coupling of least-cost v* between p and v:
y* € argmin,ep,, ) E, c(z,y). This relaxation permits mass-splitting and guarantees the ex-
istence of a solution between any pair of measures ;4 and v (Peyré et al.| 2019).

In the discrete setting, the Kantorovich problem is equivalent to the linear optimization

n m

ponin ;;Pu cl@i,y;) = pmin (C,P)r, (1
over the transportation polytope T(a,b) = {P eRY™:P1,, =a,PT1, = b} defined by
marginals @ € A, and b € A,,. (A,B), = tr ATB denotes the Frobenius inner product and
[e(zi,y;)] = (C)i; € R™™™ is the cost matrix evaluated at all point pairs in X,Y".
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Low-rank Optimal Transport. Low-rank optimal transport (OT) constrains the non-negative rank
of the transport plan P to be upper bounded by a specified constant K. This has computational
(Scetbon et al., 2021} |Scetbon and Cuturi, [2022; [Halmos et al.| [2024)), statistical (Forrow et al.,
2019), and interpretability benefits (Forrow et al., [2019; [Lin et al., [2021} [Halmos et al.| [2025al),
with the drawback that it results in a non-convex and NP-hard optimization problem. For a matrix
M e Rixm, the nonnegative rank (Cohen and Rothblum, [1993) is rank, (M) £ min{K : M =

K .. ; . .
> =1 qiriT ,qi,T; > 0}, or the minimum number of nonnegative rank-one matrices which sum to

M. The low-rank Kantorovich problem (Scetbon et al.,|[2022}; 2023 [Halmos et al., 2024) is then
i C,P),.: ky (P) <K 2
piin {(C,P)p : ranky (P) < K} )

which constrains the (nonnegative) rank of the transport plan P to be at most K. Following (Cohen
and Rothblund, [1993; Scetbon et al., [2021)), the low-rank Kantorovich problem (IZ]) is equivalent to

min__ (C,Qdiag(g")R"),, 3)

i
QEHQ,Q,ReHb,g
gEAK

which explicitly parameterizes the low-rank plan P as the product of two rank K transport plans Q and
R with outer marginals Qlx = a, R1x = b and a shared inner marginal g = QTln =R"1,,.

K-Means and Generalized K -Means. Given a dataset X, the K -means problem finds a partition
= {Ck}ff:l of X with K clusters and means 1, . . ., s such that the total distance of each point
to its nearest mean is minimized. Letting the k-th cluster mean be p;, = ﬁ Zieck x;, the K-means

problem minimizes the distortion
min Z Z 2 — pel3- 4)
CremieCy

Using the identity |Cr| 3=, cc, 20 — mxll3 = 3 X2, jec, i — ;3 yields an equivalent mean-free
formulation of (@) in terms of pairwise distances:

. 1 1
min Z Cal Z 5“%‘ — a3 (%)
Crem 1,jE€Ck
Define the assignment matrix nQ € {0, 1}"*¥ by Q. = % if i € Ci, and 0 otherwise. Then, ()

is equivalently expressed (up to the constant factor n) as a sum over all assignment variables with
cluster proportions given by |C| /n =), Qux:
n n
1 n
: T T 2
(Cpz, Qdiag(1/Q '1,)Q ' )r = ZZ > llzi =2 Qikaﬂc ©)
i=1 j=1Crem

where (Cyz2)i; = (1/2)||z; — 5 ||2. In the preceding assignment form, (6)) is the cost of the rank K
transport plan P = Qdiag(g~')R'" where R = Q and g = Q' 1,,. Following this observation,
Scetbon and Cuturi| (2022)) introduced generalized K-means as the extension of (4)) to arbitrary cost
functions c¢(x;, z;) by replacing C* in the mean-free formulation (6) with a general cost C. Let L
denote the disjoint set union operator. In partition form this yields the following problem.
Definition 1. Given a cost matrix C;; = c(x;,x;) € R™*", the generalized K-means problem is to
minimize over partitions m = {Cj,}5_, the distortion:

K
. 1
min ; |C7 Z ez, xj) : Cr. = [n] @)

Define the set of hard transport plans to be Il4(a,b) £ {P € RT** : Ply = a,P'1, =
b, |Pllo = n}, where |P|lo = |[{(¢,5) : P;; > 0}|. Then, (7) is equivalent to the optimization
problem

min (C,Qdiag(1/Q"1,) Q") r, ®)

QET, (un, -)
where u,, = %1,1 is the uniform marginal. Interestingly, when X =Y, a = b = u,, and C = Ceg’
the optimal solution (Q, R, g) of (3) always has Q = R € II,(u,, g) following Proposition 9

in Scetbon and Cuturi| (2022). Consequently, K -means strictly reduces to low-rank OT (see also
Corollary 3 in|Scetbon and Cuturi| (2022)), proving that the low-rank OT problem (3)) is NP-hard.
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Figure 1: TC on (a) a synthetic 2-Moons (X) and 8-Gaussians (Y) dataset (n = m = 1024) from
Tong et al|(2023) with the (b) Monge map alignment of X and Y = o(X) using [Halmos et al.
(2025b)). TC reduces low-rank OT (co-clustering) to (c) clustering a single set of Monge registered
correspondences using generalized K -means.

3 TRANSPORT CLUSTERING

We introduce a hard assignment variant of the low-rank OT problem and argue that it naturally
generalizes K -means to co-clustering two datasets. We introduce Monge registration of the cost
matrix as a tool for reducing low-rank OT to generalized K-means and discuss approximation
guarantees for the reduction. Finally, we introduce Kantorovich registration as the analogue of Monge
registration for the soft assignment low-rank OT problem (3)). As this reduction converts low-rank
OT from a co-clustering problem to a clustering problem, we refer to the procedure as transport
clustering.

Clustering methods such as K-Means output hard assignments of points to clusters to represent a
partition. The extension of (3)) to co-clustering with a bipartition then requires the low rank factors
to represent hard co-cluster assignments. Specifically, we require that the transport plans Q and R
in (@) lie in the set of hard transport plans II,(a, b)'|instead of II(a, b), mirroring the assignment
version of K -means in Section 2l

Definition 2. Given a cost matrix C;; = c(z;,y;) € R"*™, the assignment form of the (hard)
low-rank optimal transport problem is to solve:
min (C,Qdiag(1/g)R ") p. )

Q7R€H. (unv g)
gEAK

There is an equivalent partition-form of (9) which parallels the partition form of K -means in[Zhuang
et al] (2023). In particular, one finds a pair of partitions 7x = {Cx 1}, my = {Cy x} minimizing the
distortion:

K K K
. 1
L E 1Chl E E c(zi,y;) ¢ [Cx.k| = |Cykl, |_| Cx k= |_| Cyx=[n] p. (10)
P =1 =1

i€Cx 1 JECY K

This form (T0) solves for a bipartition, implying (9) is a form of co-clustering (Appendix [AT). When
the sets X and Y are distinct, (I0) provides a natural generalization of K-means for co-clustering:
(i) there are K co-clusters, (ii) each dataset receives a distinct partition 7x, my, (iii) co-cluster
sizes are matched |Cx x| = |Cy x|, and (iv) one minimizes a distortion ¢(z;,y;). When X =Y and
Cx . = Cy,k, observe that this exactly recovers the generalized K-means problem.

As an example, the decomposition of (I0) for the squared Euclidean cost can be written as

K K K
Jmin S0 S = w3+ D Ny — e 3+ Y Gkl — 113

k=14€Cx k k=1j€Cy k=1

'A well-known result on network flows (see|Peyré et al.|(2019)) states that vertices of the (soft) transportation
polytope II(a, b) have < n + K — 1 non-zero entries, implying that the solutions of the (soft) low-rank OT
problem (3) are nearly hard transport plans.
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where pf = @ > icc,, vifor Z = X,Y (see Remark . While (@) finds a single centroid per

cluster, this is a natural generalization for optimizing two: one minimizes two K-means distortions
of pi¥, py on X and Y, and an additional distortion between the cluster centers ;s , 1) . When
X =Y and p;¥ = p, this collapses to K -means.

To solve the low-rank OT problem (9)-(10), we propose a reparameterization trick motivated by the
assignment form (). Specifically, as the matrices Q, R € II4(u,,, g) are hard assignment matrices
with matching column and row sums there exists a permutation of the rows of R (resp. Q) that
takes R to Q. Formally, for any feasible Q, R, there exists a permutation matrix P, € P,, with
R = PIQ. With this reparameterization, we reformulate @I) as follows,

min C,Qdiag(¢g HR")p = min C,Qdiag(g ) (PTQ) )£,

Q,Ren.(umg),< Qdiaglg™ )R )r Qen.(un,g),< Qdiag(g™) (P, Q) )r
geAK P,EP,,
geEAK

= min  (CP],Qdiag(g”")Q")r, (11
Qen.g;)n,g),< T Qdiag(g™HQT)p, (1)

gEAK

where P, is the set of permutation matrices. This reformulation of (9) might appear to offer little:
the optimization remains over a difficult and non-convex pair of variables (Q, P, ). However, the
reformulation offers a new perspective: for P, fixed, is a symmetric optimization problem
over a single assignment matrix Q with respect to the registered cost matrix CP .

In fact, when P, is fixed in (TT)) the result is exactly the generalized K -means problem (7)) discussed
in Section[2] Unfortunately, however, the reduction from (9)) to (7) requires a priori knowledge of the
optimal choice for this unknown permutation P,. This leads us to ask:

Is there an efficiently computable choice of permutation matrix P that accurately
reduces low-rank optimal transport to the generalized K -means problem?

We answer this question in the affirmative. Specifically, we show that taking the optimal Monge
map P, as the choice of P, yields a constant-factor approximation algorithm (Algorithm I} for
(hard) low-rank OT given an algorithm for solving the generalized K -means problem (Section ).
The resulting transport clustering (TC) algorithm first finds a correspondence between X and Y and
then clusters the transport registered cost, effectively clustering on the correspondences (Figure T)).

Algorithm 1 (Transport Clustering).
(i) Compute the optimal Monge map by solving P« & n - arg minperi(u, u,)(C, P)r.

(i) Register the cost matrix C = CP;* and solve the generalized K-means problem with
C for Q = argmingeqy, () (C, Q diag(1/Q"1,) Q") .
(iii) Output the pair (Q,PL. Q).

Using standard algorithms for the Monge problem such as the Hungarian algorithm (Kuhnl [1955) or
the Sinkhorn algorithm (Cuturi, 2013), ones easily implements step (i) in polynomial time. For step
(ii), we propose two algorithms for generalized /K -means problem based upon (1) mirror descent and
(2) semidefinite programming based algorithms for K-means (Peng and Wei, |2007} |[Fei and Chenl
2018; Zhuang et al., [2023)).

Given a (1 + €)-approximation algorithm A for K -means, an appropriate initialization for step (ii)
of Algorithm [1| maintains the constant factor approximation guarantee with an additional (1 + €)
factor. An analogous statement holds for metric costs where the K -means solver A is replaced with a
K -medians solver, yielding polynomial-time constant-factor approximations for low-rank OT with
metric and kernel costs independent of an algorithm for generalized K -means (Section 4.

Finally, we note that an analogous notion of Kantorovich registration exists for the soft assignment
variant of the low-rank OT problem (3)) with arbitrary marginals a, b supported on X and Y with
n # m. In this setting, rather than register via the Monge permutation, one registers by the optimal
Kantorovich plan P* using either Q = P* diag(1/b)R or R = (P*) diag(1/a)Q. When solving
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with respect to Q, this results in a (soft) generalized K -means problem:

erﬁi(n : (CP*" diag(1/a), Qdiag(1/Q"1,)Q") ..
cll(a,-

To obtain R, one applies the conjugation R = (P*)T diag(1/a)Q, which ensures that R1x =
(P*)T diag(1/a)Qlx =band R"1,, = QT diag(1/a)P*1,, = g.

4 THEORETICAL RESULTS

Approximation of low-rank optimal transport by generalized K -means. In this section, we justify
the reduction from the low-rank optimal transport problem (3) to the generalized K -means problem
by proving that solving the proxy problem (7)) incurs at most a constant factor in cost. All proofs
are found in Appendix [A.T]

In detail, we derive a (2 + ) approximation ratio for any cost ¢(+, -) satisfying the triangle inequality
and a (1 + v + /27) approximation ratio for any cost induced by a kernel, which includes the
squared Euclidean cost. For metrics of negative type, we provide an improved approximation ratio of
(14 ~). Examples of negative type metrics include all ¢, metrics for p € [1, 2] and weighted linear
transformations thereof (see Theorem 3.6 Meckes|(2013)). Any metric embeddable in £, p € [1, 2],
is also of negative type. For example, tree metrics are exactly embeddable in £,, while shortest path
metrics are approximately embeddable in £, with small distortion (Abraham et al., 2005).

To state our results, we write that a cost matrix C is induced by a cost ¢(-, -) if there exists points
X={z1...,zpandY = {y1,...,y,} such that C;; = c(x;, y,). A costc(-,-) is a kernel cost if
c(z,y) = ||¢(x) — ¢(y)]|3 for some feature-map ¢ : X — R?. A cost function c(-, -) is conditionally
negative semidefinite if y -, Z?’:l o c(z,x;) < 0 forall zq,...,z, and aq, ..., o, such
that 3", o; = 0. Equivalently, this requires all cost matrices C induced by ¢(-, -) to be negative
semidefinite C < 0 over 1.> = {¢ € R" : (£,1,,) = 0}. A cost function c(-, ) is said to be of
negative type if it is a metric and conditionally negative semidefinite.

Theorem 1. Let C € R™*"™ be a cost matrix either induced by i) a metric of negative type, ii) a
kernel cost, or iii) a cost satisfying the triangle inequality. If P« denotes the full-rank optimal
transport plan for C and C = CP L, is the Monge registered cost, then

min (G, Qdiag(g~ ) Q")

QeElle (un, g),
geEAK
<(1+7) - min (C,Qdiag(g H R p, (Metrics of Negative Type)
Q7R‘€H0(unﬁg)7
geEAK
< (1+5v+vV2y) - min (C,Qdiag(g"H R "), (Kernel Costs)
QReIle (un, g),
gEAK
< (I+v4+p) - min (C,Qdiag(g H R p, (General Metrics)
Q,Renh(umg),
geEAK

where y € [0, 1] is the ratio of the cost of the optimal rank n and rank K solutions and p € [0,1] is
the min-ratio of the cluster-variances defined in Lemmald)]

Note that the approximation ratio v < 1 as the optimal cost decreases monotonically with the rank.
Consequently, the upper bound in Theorem [I]is at worst a 2-approximation for negative type metric
costs and at worst a (2 + \/5 -approximation for kernel costs. Further, following the argument in
(Scetbon and Cuturi, [2022), ~ is typically much smaller than one, especially for small » < n. Finally,
we note that the statements of Theorem [I|holds even when g is held fixed in both the upper and lower
bounds. This follows from analyzing the proof of the theorem.

Next, we show that the derived approximation ratios are essentially tight and cannot be further
improved without additional assumptions. Specifically, we show that when g is fixed, the upper
bound in Theorem is realized by explicit examples in R2. We provide separate examples for the
Euclidean and squared Euclidean distances (Appendix [A.2). Formally, we have the following result.
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Proposition 1. For all € > 0, there exists an integer n and datasets X, Y of size n such that for the
cost matrix C € R.*"™ induced on these points by either the Euclidean or squared Euclidean cost,

min (G, Qdiag(g~) Q")

QEH.(’LLH,Q)

>(2—¢) - i C,Qdiag(g HR ") p, Euclidean Metri
>(2-¢) Q’Relﬁl.l?u"’g) (C,Qdiag(g” )R )r (Euclidean Metric)
>@B—¢) - min (C,Qdiag(g HR")p, (Squared-Euclidean Distance)

Q,Rell, (un7 g)

for some g € Ak and C = CP. the Monge registered cost.

The preceding lower bounds rely on (1) unstable arrangements of points, where the Monge map
changes dramatically upon an e-perturbation, and (2) a limit where the size of a the sets of the
points X, Y is taken to co as | X| 1 0o, |Y| 1 oco. In finite settings with stable Monge maps, the
approximation ratios in Theorem [Imay be greatly improved.

Guarantees from Transport registered initialization with K -means and K -medians. In the pre-
ceding section, we derived constant factor approximation guarantees by reducing low-rank OT to gen-
eralized K -means via Algorlthm However, C does not necessarily express a matrix of intra-dataset
distances, so that even for kernel costs and metrics one cannot directly solve generalized K -means us-
ing K-means or K-medians. In Theorem 2, we show that by solving K -means or K -medians cluster-
ing optimally on X, Y separately to yield Q x, Ry and taking the minimum of the Monge-registered
solutions (Qx,PJ.Qx) and (P,-Ry,Ry) in cost (Q,R) — (C,Qdiag(1/Q"1,)R "), the
constant factor approximation guarantees are preserved. In other words, using the best initialization in
generalized K -means between Q(®) = Qx and Q(©) = P,-Ry by solving K-means or K -medians
already ensures a constant-factor approximation to low-rank OT on initialization, which only requires
an algorithm for generalized K -means with a local descent guarantee to maintain the approximation.

Let A;, A denote blackbox (1 + €)-approximation algorithms for K-means and K -medians. For
example, such polynomial time approximation algorithms exist when the dimension is fixed for K-
means (Kumar et al., [2004), and (1 + €) approximation algorithms exist for /& -medians (Kolliopoulos
and Rad,2007). Then, we have the following guarantee for Algorithm[I] when using Algorithm [2[to
implement step (ii) of the procedure.

Theorem 2. Let C be a n-by-n cost matrix either induced by i) a metric of negative type, ii) a kernel
cost, or iii) a cost satisfying the triangle inequality. Let (Q*, R*) be the solution output by using
Algorithm 2] for step (ii) of Algorithm[I|with oracles A, and As. Then,

(1+e)7"(C,Q diag(1/(Q") 1) (R") ")

<(2+42y) - min (C,Qdiag(g HR")p (Metrics of Negative Type)
Q,Rell, (un s 9)7
gEAK
< 1+9++v29) - min (C,Qdiag(g  HR")p (Kernel Costs)
Q,REI, (un, g),
gEAK
< (242v+42p) - min (C,Qdiag(g HR")p (General Metrics)
Q7R6H2A(un, 9)7
gEAK

where v, p € [0,1] are defined as in Theorem|]|

Generalized K -means Solver. To solve the generalized K -means problem we propose (1) a mirror-
descent algorithm called GKMS that solves generalized K -means locally, like Lloyd’s algorithm, and
(2) a semidefinite programming based approach. GKMS solves a sequence of diagonal, one-sided
Sinkhorn projections (Cuturi| 2013) of a classical exponentiated gradient update. Suppose (%), is
a positive sequence of step sizes for a mirror-descent with respect to the KL divergence. Then, the

update for Q(¥) is given by:
Q™Y « p, (Q(k) © exp (—nVaF lqw) ) : (12)

where F(Q) 2 (C,Qdiag(1/Q"1,)Q")r and P, .(X) = diag(u,/X1x)X is a Sinkhorn
projection onto the set of positive matrices with marginal w,,, II(u,, ) = {X € RiXK  X1g =
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Figure 2: The relative cost of the rank K € {50, 75,...,250} transport plan inferred LOT, FRLC,
and LatentOT compared to the cost of the transport plan inferred by TC across 315 synthetic
instances (lower is better). Each dataset contains n = m = 5000 data points. LatentOT is excluded
from the stochastic block model evaluation as it takes as input a squared Euclidean cost matrix.

U, }. Observe that solving low-rank OT (9) with the constant-factor guarantees of Theorem [2|only
requires (I2) to decrease the cost from the initialization of Algorithm[2] We show in Proposition [3]that
assuming a § lower bound on QTln (similar to|Scetbon et al.[(2021); Halmos et al.|(2024)), relative-
smoothness to the entropy mirror-map ¢ holds |[VF*+D) — VF®) | p < g [|[VypEHD) — vyp®)|| 5
for 8 = poly(n,||C||r,d). By the descent lemma (Lu et al.l 2018), this implies that Theorem
provides upper bounds on the quality of the final solution of GKMS. See Appendix [A.4.T|for more
details on the GKMS algorithm and Appendix [A.4.2|for a semidefinite programming approach

Complexity Analysis. The time and space complexity of Algorithm [I|depends on the complexity of
optimal transport and generalized K-means. Procedures such as /Agarwal et al.|(2024)) and [Halmos
et al] (2025b) permit OT to scale with O(n) time and O(n) space complexity for constant dimension
d. GKMS requires O(ndr) iteration complexity if the cost is factorized C = U4V} and O(nr) space
to store Q. In addition, recent SDP approaches for K -means using the Burer-Monteiro factorization
Zhuang et al.|(2023) likewise provide linear time and space complexity for generalized /K -means.

5 NUMERICAL EXPERIMENTS

We present numerical experiments for three synthetic and two real datasets to demonstrate the
effectiveness of transport clustering (TC) for low-rank OT and co-clustering. Implementation details

are provided in Appendix

Synthetic Validation. We constructed three synthetic datasets to evaluate low-rank OT methods
and evaluated transport clustering against three existing low-rank OT methods: LOT (Scetbon et al.
2021), FRLC (Halmos et al., [2024), and LatentOT (Lin et al.,|2021). The three synthetic datasets
are referred to as 2-Moons and 8-Gaussians (2M-8G) (Tong et al., 2023} |Scetbon et al. [2021)),
shifted Gaussians (SG), and the stochastic block model (SBM). The 2M-8G dataset contained three
instances at noise levels o2 € {0.1,0.25,0.5}, the SG dataset contained three instances at noise
levels 02 € {0.1,0.2,0.3}, and the SBM dataset contained a single instance. Each instance contained
n = m = 5000 points and methods were evaluated across a spectrum of ranks K € {50, 75, ...,250}
and K € {10,...,100} with five random seeds s € {1,2, 3,4, 5}. In total, each algorithm was ran
on 64 instances for 5 random seeds. Synthetic dataset simulation details are provided in Appendix
B.2

To evaluate the low-rank OT methods, we computed the relative cost of the low-rank OT plans output
by existing methods compared to the cost of the low-rank OT plan output by TC. Across all synthetic
datasets, TC was consistently the best performing method in terms of minimizing the low-rank OT
cost (Figure2). On the 2M-8G dataset, TC outperformed all methods in the highest noise setting
(Figure 2] [7) and was slightly (< 1% difference) outperformed by FRLC in the low noise, high rank
setting. On the SG dataset, TC was the top performing method and obtained an average relative
improvement of 23% compared to the next best performing method LOT (Figure 2} [5). On the SBM
dataset, TC outperformed all methods and obtained an average relative improvement of 4% compared
to the next best performing method LOT (Figure 2} ).
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Table 1: Comparison of low-rank OT methods across three datasets: CIFAR-10 (n = 60,000),
smallest mouse embryo split (n = 18,819), and largest mouse embryo split (n = 131,040).

Dataset Method Rank OT Cost| AMI(A/B)T ARI(A/B)T CTAY
CIFAR-10 LOT 10 234733 0.430/0.427 0.306/0.303 0.358
(60,000) FRLC 10 235950 0.411/0.407 0.281/0.277 0.351
’ TC 10 231.200 0.478/0.476 0.358/0.356 0.412
Mouse embryo TC 43 0.506 0.639/0.617 0.329/0.307 0.722
E8.5 — E8.75 FRLC 43 0.553 0.556/0.531 0.217/0.199  0.525
(18,819) LOT 43 0.520 0.605/0.592 0.283/0.272 0.611
Mouse embryo  TC 80 0.389 0.554/0.551 0.172/0.169 0.564
E9.5 — E9.75 FRLC 80 0.399 0.491/0.487 0.116/0.115  0.447
(131,040) LOT 80 - —/- -/- -

To evaluate co-cluster recovery, we computed the ARI/AMI with reference to the ground truth clusters
when the rank K matched the true number of clusters (K = 250 for SG, K = 100 for SBM). On
the SG dataset, TC was the second best performing method (Figure [5) with a slightly worse average
ARI/AMI than LatentOT (TC 0.97/0.99; LOT 0.94/0.98; FRLC 0.60/0.88; LatentOT: 1.00/1.00).
On the SBM dataset, TC was the best performing method (Figure ) and obtained the highest average
ARI/AMI (TC 0.09/0.20; LOT 0.02/0.02; FRLC 0.02/0.01).

Co-Clustering on CIFAR10. Following [Zhuang et al.|(2023) we applied low-rank OT methods to
the CIFAR-10 dataset, which contains 60,000 images of size 32 x 32 x 3 across 10 classes. We use a
ResNet to embed the images to d = 512 (He et al., 2016) and apply a PCA to d = 50, following the
procedure of |Zhuang et al.|(2023)). We perform a stratified 50:50 split of the images into two datasets
of 30,000 images with class-label distributions matched. We co-cluster these two datasets using the
methods which scale to it: TC, FRLC (Halmos et al.,[2024), and ZL.OT [Scetbon et al.|(2021)). We set the
rank K = 10 to match the number of labels. For TC we solve for P~ with|Halmos et al.|(2025b) and
solve generalized K -means with GKMS. On this 60k point alignment, TC attains the lowest OT cost of
231.20 vs. LOT (234.73) and FRLC (235.95). To evaluate the co-clustering performance of TC we
evaluate the AMI and ARI of the labels derived from the asymmetric factors against the ground-truth
class label assignments (Table[T). TC shows stronger agreement on both marginals (AMI/ARI: split A
0.478,/0.358, split B 0.476,/0.356) than LOT (0.430/0.306, 0.427/0.303) or FRLC (0.411/0.281,
0.407/0.277). To assess the accuracy of co-clustering across distinct domains, we computing the
class-transfer accuracy (CTA): the fraction of mass aligned between ground-truth classes across
datasets over the total (for p the class-class transport matrix, thisis tr p /> pi x/). TC attains a CTA
of 0.412, compared to LOT (0.358) and FRLC (0.351), indicating more accurate cross-domain label
transfer. See Section B3] for more details.

Large-Scale Single-Cell Transcriptomics. Recent single-cell datasets have sequenced millions
of nuclei from model organisms such as the mouse (Qiu et al.| [2024; |2022) and zebrafish (Liu
et all,2022) across time to characterize cell-differentiation and stem-cell reprogramming. Optimal
transport has emerged as the canonical tool for aligning single-cell datasets (Schiebinger et al., 2019;
Zeira et al., [2022} [Liu et al., 2023} Halmos et al.,2025¢; Klein et al., [2025)), and low-rank optimal
transport has recently emerged as a tool to co-cluster or link cell-types across time, allowing one to
infer a map of cell-type differentiation (Halmos et al., [2025a; Klein et al., [2025). We benchmark
the co-clustering and alignment performance of TC, LOT, and FRLC on a recent, massive-scale
dataset of single-cell mouse embryogenesis |Qiu et al.| (2024) measured across 45 timepoint bins
with combinatorial indexing (sci-RNA-seq3). We align 7 time-points with n = 18819-131040 cells
(stages E8.5-E10.0) for a total of 6 pairwise alignments (Table[I} Supplementary Table[2). We set the
rank K € {43,53,57,67,80, 77} to be the number of ground-truth cell-types. While LOT runs up to
E8.75-9.0 (30240 cells) and fails to compute an alignment past E9.0-E9.25 (45360 cells), we find TC
and FRLC scale to all pairs. Transport clustering yields lower OT cost, higher AMI, and higher ARI
than both LOT and FRLC on all dataset pairs (Supplementary Table[2)). Notably, the co-clustering
performance is also improved for all timepoints: as an example, on E8.5-8.75 TC achieves a CTA
of 0.722 and correctly maps the majority of mass between recurring cell-types across the different
datasets, compared to LOT (0.611) and FRLC (0.525). See Section [B.4] for more details on this
experiment.
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A APPENDIX

A.1 APPROXIMATION GUARANTEES FOR LOW-RANK OPTIMAL TRANSPORT

To prove the approximation guarantees stated in Theorem [I] we start by proving the equivalence
between the partition formulation (I0) and the assignment formulation (9) of the (hard) low-rank OT
problem.

Throughout, we assume that C is induced by a cost matrix ¢(-,-) on X = {z1,...,2,} and
Y = {y1,...,yn}, matching the assumptions in Theorem([I] Denote the set of partitions of {1, ..., né‘»
as P,, and the set of partitions of size K as Pff . Define the cost 7 (X', V) of two partitions X', Y € P;.

eSS S o)

ZGXk JEY

Then, the assignment formulation (9) is equivalent to the following partition formulation over the
datasets X and Y:

min  {J(X, V) : | Xx| = |Yi], X,V € PE}. (13)
X:{Xk}le
y:{Yk}i{:l

The form (I3)) is a concise form of (I0) that is used in the proofs. To see the equivalence, note that
the cost of a solution (Q, R, g) equals

(C,Qdiag(g ")RT)

n n

= ZZ i1[Qdiag(g )R], = ZZCW Z Q”“R“
i=1 j=1 =1 j5=1
K 1 n o n

:Z;ZZCZJQZICR]IC—Z Z Z ml’y]
k=17" i=1 j=1 Fiexy jevi

where X, = {i: Q;; > 0},Y;, = {¢ : R;;, > 0} are partitions in P,, due to the constraints on Q and
R. Rescaling the objective by n, we have that ng; ' = |X| = |Y%|. Thus, every feasible solution
(Q,R, g) of (9) induces a solution of (I3)) with equivalent cost, up to a constant factor n. For the
other direction, observe that any solution of (T3] induces a solution of (9) with equal cost, again up to
the factor of n, by following the equalities in the opposite order.

When R = P/ Q for a permutation matrix o, it follows that Y}, = o(X}y). Thus, fixing P, in
the low-rank OT problem (TI) is equivalent to requiring that Y, = o(X}). Consequently, any
approximation guarantee for the partition formulation carries directly over to (9). Formally, we
have the following statement.

Lemma 1. For any o > 0 and permutation o, the inequality

min diag(¢g Q. C)p < a - ; diag(g YR, C
Q€. (un, g), (Qdiag(g™)Q ,C)r <o QREM (. ), (Qdiag(g™) )P
Po€Pn, geEAK

where C = CP/ holds if and only if
min J(X,0(X)) <a- min  {J(X,Y): | X = |Yi], X,V € PE}.
XEP,{( X:{Xk}le
y:{Yk}le

This states that in order to prove Theorem [I] it suffices to prove the analogous inequality for the
partition formulation (T3).

We now start the proof of Theorem In the case where c(-, -) is a metric we prove both of the results
together, as many of the components are shared. The case where c(-, -) is induced by a kernel is
handled separately, as the triangle inequality is lost, and naive application of the doubled triangle
inequality results in a worse guarantee.

We start by proving the following upper bound on twice minyepr J (&, (X)), which holds for
arbitrary metrics.
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Lemma?2. Ler X = {Xy,...,Xk},Y ={Y1,..., Yk} be a feasible solution to the optimization
problem (13) and suppose that c(-, -) is a metric. Then, for any permutation o,

K
Ji+ Tp < 2M, Z%Z xl,x]+z| S clyiy). (14)
k=

1, E€Xg Z]GY

where Mo’ = Z?:l C(xivya(i))’ jl = j(O'_l(y),y), and jQ = j(X7U(X))

Proof. Consider the solution o ~1() ) = {071 (Ya)}i1, Y = {Ya }j_, to the optimization problem
(T3): this is a feasible solution as o~ ! preserves the size of sets. Using the triangle inequality, we
have that c(z;, y;) < c(w4, 2;) + ¢(2i, ;). so that taking z; := y,(;) we can bound the cost of J; as:

T = Z|k| Z Z (@i, y;)

i€ (Yy) JE€EYR

K
< Z |71| Z Z [c(@i, Yo (i) + (Yo(i), ¥5)]

€01 (Yr) JEYR

K
Y;
Z::: xmyo'() +Z|Yk¢‘ Z Z ya()ayj (15)

k=1 €01 (Yy) €0~ (Yy) JEYR
Using the fact that 01 ()) partitions {1,...,n} and performing a change of variables with o, the
upper bound (T3]) becomes
n K 1
T <Y el@nyem) + Y w1 O i) (16)
2,2
= = ,JEY)

We then apply a symmetric argument to the feasible solution (X', o (X)) of by using the bound
c(xi,y;) < ez, Io-—l(j)) + c(xrl(j), y;). This yields

J2<Z (24, Yo (1)) +Z| > el ), (17)

zjeX

and adding the bounds together completes the proof. ]

The preceding result yields the aforementioned upper bound as minycpx J(X,0(X)) <
min{ 7y, J2}. We now state two well-known folklore results relating the sum of intra- and inter-
dataset distances. For completeness, we provide proofs of the both statements.

Metrics of negative type form an interesting class of metrics as they satisfy the following relationship
between the intra-cluster and inter-cluster variances.

Lemma 3. Suppose c(-,-) is conditionally negative semidefinite. Then, for all sets of points X =
{z1...,zn}andY ={y1,...,yn},

ch(fiaxj)+zzc(yi7yj) SQ'ZZC(%,%) (18)
i=1 j=1

i=1 j=1 =1 j=1

Proof. Let Z = X UY. Define the matrix D € R?*"*?" by D, ., = ¢(z,2’). Then, since c(-, ")

is conditionally negative semidefinite, o' Do < 0 for all a s.t. a1, = 0. Set @, = 1(z €
X) —1(z € Y). Then, since | X| = |Y| we have &' 15, = 0 and therefore

a'Da = ZZc(mi,mj) + ZZc(yi,yj) -2 ZZc(sci,yj) <0

i=1j=1 i=1 j=1 i=1 j=1

This completes the proof. n
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For arbitrary metrics, the preceding bound holds with an extra factor of 2.

Lemma 4. Suppose c(-,-) is a metric. Then, for all sets of points X = {x1,...,x,} and Y =
{yla cee 7yn}:

n n n

ZZ C\Ti, Ty +ZZ yzvy] <21+p ZZ 3317% (19)

=1 j=1 =1 j=1 =1 j=1

for p € [0, 1] defined to be the minimum ratio of intra-dataset distances:

p 2 min Z?:l Z?:1 (s, ;) 21;1 27:1 c(Yi» yj) (20)
Z?:1 Z?:l c(Yi, yj) ) Z:':l Z?:l c(wi, xj)
Proof. Applying the triangle inequality gives the two inequalities
(@i, x;) < (@i, yr) + cyr, ;) and - c(yi,y;) < c(yi, xk) + c(a, y;) 2D
forall i, j,k € {1,...,n}. Taking the sum over i, j, k from 1 to n and applying symmetry of the cost
c(+, ) to the first inequality in (2T)) yields
n n n n
5 3) SLEEDEE 3) SUCHNENE 3) SIS
=1 j=1 i=1 k=1 k=1 j=1
which holds if and only if
YD elwiay) <2 ZZc(xiyyj» (22)
i=1 j=1 i=1 j=1

Applying a symmetric argument to the second inequality in (ZI) and adding the two inequalities

shows
DD clwim) + DY eliy) <4 Y clwiny).
i=1 j=1

i=1 j=1 i=1 j=1
When asymmetry p # 1 is present, the preceding bound is tightened by refining the bound on the
smaller term in the left hand side of the preceding equation to 2p - Y 7" | Z?zl c(xi,y;). This
completes the proof. |

The proof of Theorem|I]in the metric case is then a corollary of Lemmal[I| 2| 3] and[d] The details are
described in the subsequent proof.

Proof of Theorem|l|(Metric Costs). Applying the fact that (o= (Y*), V*) and (X*,o(X*)) are fea-
sible solutions together with the inequality 2 - min{a, b} < a + b, we have

minK J(X,0(X)) <min{FA, T2} < (1/2)(J1 + T2).

XePh

Applying Lemma 2] with the optimal solution of X* = {X},..., X} }and Y* = {Y",... .Y} to
the right hand side of the preceding inequality then yields the bound

K
1
Jnin, (X, U(X))SMU+I;2|X*| > el xy +ZQ| v > clyiy), @23

klijex; i,JEY)

which upper bounds the cost in terms of the intra-dataset costs of X'* and V*.

When c(-, -) is negative semidefinite, applying Lemmato shows that

02D ) = Mo+ (X0 0), 24

K
min J (X, o ))§M0+Z
Xep: k= | 1€X* JEYY

proving the claim. When c(-, -) is a metric, applying Lemma[4]to (23)) yields the weaker bound

min J(X,0(X)) < M, + (14 p) - T(X*, V). (25)
XePk
Combining these two bounds with the equivalence in Lemma [I|completes the proof. ]
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For kernel costs of the form c(z;,y;) = ||¢(x;) — ¢(y;)||3, the squared norm ||-||3 is not a metric
and the preceding argument no longer applies. While the proof of Theorem [I]does go through upon
replacing applications of the triangle inequality with applications of the doubled triangle inequality
lz —yll3 < 2(]|lz — 2]|3 + ||z — yl|3), it reduces the quality of the bound to 2 + 2+. To slightly
improve this bound, we derive an analog of Lemma 2] for kernel costs by applying Young’s inequality
at a different point in the argument and optimizing the bound over the introduced parameter ¢.

As a preliminary, we will make use of the following relationship between the cross cluster cost
between X and Y to the intra-cluster cost of Y.

Lemma 5. Ler X = {:Jcl,.. y¥ntandY ={y1,...,yn}. Then,

*ZZII% ygllz—Zsz— “24’722”%_%“27 (26)

=1 j=1 =1 j=1

where p(Y) = £ 3% ;.

Proof. Inserting u(Y) — p(Y") into the left hand side summation and expanding the result yields:

S e wglld = S0 s - u(Y) + ()~ 3

i=1 j=1 i=1 j—l
S S =+ LS Sy — 13
=1 j=1 =1 j=1
FESS ) (Y) ~ )
i=1 j=1
—Zm B+ o 3 Sl — 15

i=1 j=1

The second equality follows from the identity >~ [|lyi — (V)13 = 55 D21y Yo7 1y — |5 and
the identity:

%ZZ (@i — p(Y),n(Y) —y;) =Y <x - p(Y), % > (u(y) - yj)> =0.

i=1 j=1 i=1 j=1
This completes the proof. n

Next, we have the following analog of Lemma [2] specialized to the squared Euclidean cost. The
key trick is to expand one of the inner-products, and to apply both Cauchy-Schwarz and Young’s
inequality term-wise only after performing the decomposition from Lemma 5] to obtain an improved
constant.

Lemma 6. Let X = {X1,..., Xk}, Y = {Y1,..., Yk} be a feasible solution to the optimization
problem (13) and suppose that c(x;,y;) = ||z; — y;||3. Then, forallt >0

K
T+ T <2-(1+1/t) My + (2+1) Z Z |l — x3|\2+2 Z lyi — 13
k=1 1,]€EXk ,JEYy
(27)
In the preceding, My = >, ¢(€4,Yoi)), J1 = T (01 V), V), and Jo = T (X,0(X)).
Proof. By Lemmal5] the cost J; is equal to
Sk Y Tlewr
i€ (Yi)JE€EYR
K
= Do = pIP + Yl — (Vi3] (28)
k=1 iEo’fl(Yk) i€Yj
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where pu(Y3) £ IYkl > icy, Yi- Next, we expand the inner-product of the left hand side term in (28).
This yields

K
Z Z ||JI1 Yk ”2 Z Z sz —Yo(i) + Yo (i) — (Yk)||2

k=1i€o—1(Y) k=1i€o—1(Ys)

K
= Z Z (i = vow) 3 + lWowy — BRI + 2 (i = Yo(i)s Yoy — #(Yr)))
k:1i€a*1(Yk)

K
=M, +Z S Mo = BYDIP Y0 Y 2w = Yoty Vo) — B(Yr))

k=lico—1(Y%) k=1ico=1(Yx)

By an application of the Cauchy-Schwarz inequality to each inner product term followed by an
application of Young’s inequality, we obtain

K K
Z Z 2(2i — Yo(i)s Yoy — (Vi) < Z Z 2|z = Yo(i)lly [Yee) — (YR,

k=1lico—1(Yy) k=1i€o—1(Yy)

< 1
<> > (tHxi—ya(z'>H2+tHya(i>—N(Yk)I\Q)

k=1i€o—1(Ys)

K
7"”'2 Z Hya(i)_u(yk)‘Z

k=1i€o—1(Ys)

)

for any parameter £ > 0. Combining with (28)), J; is upper bounded as

<(2+1)- ZZIIyZ p(Yi)l5 + (1 +1/0)M

k=1i€Y)
K

=(2+1)- Z Z lyi — ;3 + (1 +1/)M,
k=1 ngYk

The latter part of the equality follows from the 1dent1ty'

>y = w(¥i)l3 = W\ > Ny = will3-

€Yy i,jE€Y)
Applying a symmetric argument to derive an upper bound on 7> yields
K
T2 < (2+1) Z Z llars — a4]|3 + (1 + 1/t) M,
k=1 1,]€EXk
Summing the two bounds then completes the proof. ]

Proof of Theorem|l|(Squared Euclidean and Kernel Costs). Replicating the argument of the metric
case of Theorem (1| we evaluate 7; and 7> on the sets (o~ (Y*), V*) and (X*, o (X*)) where the
optimal solution to is X* ={X{,..., X} and Y* = {Y7*,..., Y} This yields
1
min J(X,0(X)) < 5 (Jilo™ (), V") + (X", 0(X7))).
XePK 2
By Lemma |6 and Lemma 3] the right—hand side is upper-bounded by

Z @i — $]||2+Z Z lly: — y]HQ

(L4+1/t)- My + (1 +t/2) - Z

=1 k i,jEX] k ZJGY*
K

< (L4 1/t) My + (1+1/2)- Z *| > =yl
k=1 """k ieX jEY)n

= (1+1/t)- M, + (L +¢/2) - T(X*,V%).

18
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Since this holds for arbitrary ¢ > 0, we optimize the bound with respect to ¢ and find the optimal
value t = /2~. Thus, the tightest bound has coefficient

(1+1/V27) v+ (14 v/29/2) = 147+ V27,

concluding the proof. ]

Next, we show that the approximation guarantees of Theorem|1{hold with an additional (1 + €) factor
for kernel costs (resp. metric costs) when using Algorithm 2]to solve step (ii) in Algorithm [I] For
both metric and kernel costs, the proof of the approximation guarantees follows from analyzing the
proof of Theorem [T}

Algorithm 2.

(i) Compute assignment matrices Q, R € II4(u,, ) by applying A; (resp. Az) to X and
Y independently.

(i) If (C, Qdiag(1/Q"1,)(Po«Q))r < (C, (P,-R) diag(1/RT1,)RT) g, set Q)
Q. Otherwise, set Q) «— P,.R.

(iii) Perform local optimization for the generalized K -means problem on the cost C with the
initialization Q(©).

We start with the proof for squared Euclidean and kernel cost functions.

Proof of Theorem 2| (Squared Euclidean and Kernel Costs). Let X = {X;,..., Xk} and Y =
{Y1,..., Yk} be (1 + €) optimal solutions to the K-means problem emitted by .4; for X and
Y respectively. Let X* = {X7,..., X5} and Y* = {Y7",..., Y%} be the optimal solution to (T3).
Then, by the (1 + €) optimality of X and ) and Lemma 3] we have

K K
S S a2 o S i — 2
i1 21| o2

1, € Xk 1,J€Y)
K K
< (146 . lz; — ;13 + ! i = y513)
— * 7 712 * Yi y] 2
2X7| - oV -
k=1 ,JEX} k=1 i,JEYS

< (146 JXYY).

By Lemmal6] and the preceding inequality it then follows that for all ¢ > 0

1
WX, o(X)+T(@ V), P) < A+ 1/6) - My + (1 +e)(1+1/2) - T(X7,I7).
Optimizing the parameter ¢ as in the proof of Theorem [I] and taking the minimum over the two
solutions completes the proof. |

An analogous proof technique to Theorem 2 applies to the metric case with the additional application
of the basic inequality:

This inequality relates the & -medians objective to the intra-cluster cost Y .-, Z;’:l c(x;, x;) used
in Lemma 2] and picks up an additional factor of 2. |

A.2 LOWER BOUNDS FOR THEOREM[I]

In this section, we construct an explicit family of examples that realize the upper bounds in Theorem
[1] for the Euclidean and squared Euclidean cost functions. Both constructions rely on unstable
arrangements of points, where upon slight perturbation, the Monge map changes dramatically.
Making use of this instability, the constructions are set up to have the optimal Monge map be a poor
choice for co-clustering while there is a near-optimal non-Monge map that is substantially better for
co-clustering.
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Figure 3: Geometric constructions providing lower bounds for Theorem [1|in the case of (left)
Euclidean cost (k = 3) and (right) squared Euclidean cost (k = 2). Points in X are colored black and
points in Y are colored white. Points connected by a line segment have identical coordinates and are
separated for ease of visualization.

Euclidean Metric Cost. Fix ¢ > 0. The construction consists of two datasets X and Y each with
2k + 2 points placed near the line segment [0, 2] x {0}. The first two points P = (0, ¢€) and Q = (2,€)
are near the ends of the line segment. The next pair of points My, = Mp = (1, —e) are slightly below
the middle of the segment. Finally, 2k points Li;, = L’y = (0, —%) are at the left end of the segment

and 2k points Ry, = Rl = (2, — %) are at the right end of the segment. Datasets X and Y are then

defined as X = {P, Mp} U {Lx}* | U{RL}F jand Y = {Q, Myw } U {Li}r , U{Ri1E LA
diagram of the construction is provided in Figure[3|for the case of k = 3.

First, observe that under the Euclidean cost metric, the points have a unique Monge map o : X — Y
defined as o(P) = Q,0(Mp) = My ,o(L%) = L, and o(R%) = Ri;,. The preceding Monge
map o has cost 2 since the distance between P and @ is 2 while the distance between the remaining
mapped points is 0. Next, consider an optimal Monge map ¢’ with ¢’ (P) # Q. Since there are k + 1
black points {L%}%_; and P and k points {Li;;}% ., at least one black point {L%}F | or P must
map to My, or { Y, }¥_, via o’. If P is such a point, we must have that P maps to Myy, as otherwise
it would obtain a cost greater than 2. However, this yields a contradiction as Mp must map to a
point of distance at least 1 and the cost of mapping o’ (P) = My is strictly greater than 1. Applying
a similar argument to the point L%, together with the fact that the cost of mapping o’ (P) = L%, is
greater than e proves the optimality and uniqueness of o.

Second, consider an optimal solution X* = {X;, X5}, V* = {¥7, Y5} to the partition reformulation
@]) of the (K = 2) low-rank OT problem where o(X;) = Y;, i = 1,2, and the cluster sizes are
balanced: |X1| = |X2| = |Y1| = |Ya|- We will argue that the cost of such a solution 7 (X*, V*)
is lower bounded by 4552, In contrast, taking the solution X; = {P} U{Lz}f,, X5 = {Mp} U
{RLYE L and Yy = {Mw }U{Li,}E Yo = {Q}U{RY, }F_,, which does not satisfy o(X;) = Y;
we have that the cost

TEE ) =g [ X Sl —vla+ S Y eyl | =2+ 06,

zeX) yeyr reX2 yeYs

Consequently, taking the limits € — 0 and & — oo shows that the constant factor (1 + ~y) stated in
Theorem [I]is tight and arbitrarily close to 2.

Finally, we argue that the cost of any solution X* = {X;, Xy}, V* = {¥1,Ys} with 0(X;) = Y;
has J(X*,Y*) > ‘l,f—jf. Without loss of generality, assume that P € X;. Since o(P) = Q and
o(X1) = Yy, it follows that @ € Y;. Let [ denote the size of the set {i : L; € X1}. We analyze the

two cases Mp € X; and Mp ¢ X; separately.

Case 1 (Mp € X1). Since the set sizes are balanced and Mp € X1, wehavep =k + 1 — (1+2)is
equal to the size of the set {7 : R}; € X;}. Consequently, the cost of the solution is lower bounded
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by:

(k+1)- J(X*, V) > (4+3p+2(p+1) +2(k—p)(k—1)
= —41” — (5 — 4k)l + (5k + 1)

To see this, note that the cost of mapping point P € X to Y7 is at least 3 + 2p as P must map to the
p points Ry, My, and Q. The cost of mapping the [ points L% to Y7 is at least 2(p + 1) and the
cost of mapping Mp to Y; is at least p + 1. Since the size of X5 N {L%}% | is k — [ and the size
of Xo N {RL}F | is k — p, the cost of mapping X to Y> is at least 2(k — p)(k — 1). Adding the
lower bounds gives the first bound and algebraic manipulation the second. Since the lower bound is a
concave quadratic function in /, it is minimized at either [ = 0 or [ = k — 1. Evaluating both yields

* * 4k+2
the lower bound J (X*, Y*) > k—_jl

Case2 (Mg ¢ X). Since the set sizes are balanced and Mp ¢ X1, wehave p =k — [ is equal to
the size of the set {7 : R’ € X1 }. By a similar argument to the previous case, we have that the cost
of the solution is lower bounded by:

(k+1)-JX*5Y)>24+2p+2p+ 1) +2p+2k—1+k—p)+ 4k —1)(k—p)
= —81% 4 8kl + (4k + 2).

Since the lower bound is again a concave quadratic function in [, it is minimized at either | = 0 or

I = k. Evaluating both yields the lower bound [J (X*, V*) > 4kkj12. This completes the proof of the

first part of Proposition [T} |

Squared Euclidean Cost. Fix 1 > ¢ > 0. The construction consists of two datasets X and Y
each with 2k + 2 points placed along the edges of the square [0, 2] x [0, 2]. The first two points
Py =(1+¢,2)and P, = (1 — ¢, 0) are on the top and bottom edges of the square. The second two
points @1 = (0,1) and Q2 = (2,1) are set on the left and right edges of the square. Finally, 2k
points LY, = Ly = (0,2) and Ry, = Ry = (2,0) are placed along the top left and bottom right
corners of the square. The sets X and Y are then defined as X = {P;, P} U {Liz}* | U{RL}F |
and Y = {Q1,Q2} U{Li Y U{Ri, 1% . A diagram of the construction is provided in Figure
for the case when k = 2.

First, we show that under the squared Euclidean cost function there is a unique Monge map o : X —
Y defined as 0(P;) = Q;, 0(L'3) = LY, and o(R%;) = R, up to a relabeling of the corner points
{LE}E U{RL}E . The preceding Monge map has cost equal to 4 + 2¢? — 4e < 4 as €2 < e. Next,
suppose that there is a distinct (up to a relabeling of the corner points) Monge map ¢’ with equal (or
lower) cost. Note that since o’ is an optimal Monge map, then o/ (L%;) # R{,V for any j, as the cost
of mapping point LY, to R{;V is 8. Similarly, L% cannot map to Q1. Therefore, if 0’ # o it must be
the case that o/ (L%;) = Q2 for some i. Then, either o/ (Py) = Q1 or o/(P2) = Q1, but in either case
mapping the remaining point results in a cost of at least 4, a contradiction to the optimality of ¢”.

Second, consider an optimal solution X* = { X7, Xo}, V* = {Y7, Y2} to the partition reformulation
(T3) of the (KX = 2) low-rank OT problem where o(X;) = Y;, ¢ = 1,2, and the cluster sizes are
balanced: |X1| = |X2| = |Y1| = |Y2|. We will argue that the cost of such a solution 7 (X, V*)

is lower bounded by 12542 4 O(e). In contrast, taking the solution X; = {Pi} U{Ly}f_;, X» =

{PYyU{RLYE  and Y1 = {Q2} U{Li, }r | Vs = {Q1} U {RY }E_,, which does not satisfy
o(X;) =Y;, we obtain the cost

J({X1,Y1},{X2, Y2}) =4+ O(e).

Consequently, taking the limits € — 0 and k — oo shows that the constant factor stated in Theorem|T]
is lower bounded by 3 in the worst case.

Finally, we argue that the cost of any solution X* = {X;, Xo}, V* = {V1,Y2} with o(X;) = Y;
has J(X*,Y*) > 1%’_“:{4. Without loss of generality, assume that P; € X;. Since o(P;) = ()1 and
o(X1) = Yy, it follows that Q1 € Y;. Let [ denote the size of the set {i : L, € X;}. We analyze the

two cases P, € X; and P» ¢ X separately.
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Case 1 (P, ¢ X1). In this case, the size of the set {i : R%; € X} is p = k — [ following the fact that
|X1| = k+ 1 and P, ¢ X;. Then, the cost of the solution is lower bounded by:

(k+1)-J(X*,Y*) > @Blp+5)+@lp+p)+2+1+5p)+ Bk —-1)(k—p)+k—1)+
(8(k =1k —p) +5(k —p)) + (2+5(k—1)+k—p)
= —320% + 32kl + 4(1 + 3k).
To derive the previous bound, we explicitly tabulate the cost between all types of points. Specifically,
the cost of mapping {L%; : L'y € X1} to all points in Y; is at least 8/p + 5. The cost of mapping
{R% : R € X1} to all points in Y; is at least 8/p + p. The cost of mapping P in Y; is 2 + [ + 5p.
Proceeding in this way for the points in X5 yields the first inequality. Algebra with the substitution
p = k — [ yields the equality. Since the lower bound is a concave quadratic function in [, it is

either optimized at [ = 0 or [ = k. Evaluating the lower bound at these points yields the inequality
j(X*, y*) > lilj:lill .

Case 2 (P, € X1). In this case, the size of the set {i : R}, € X1} isp =k — [ — 1 following the fact
that | X1| = k + 1 and P» ¢ X;. Then, the cost of the solution is lower bounded by:
(k+1)- J(X*,Y*) > (1 + 5+ 8lp) + (4 + 1+ 5p) + (4 + 51 + p)
+@lp+5p+p)+2-8k—p)l-1)
= —250% + (—25 + 25k)l + 28k — 4.

This follows an explicit tabulation of teh cost between all types of points. Since the lower bound is
a concave quadratic function in [, it is either optimized at [ = 0 or [ = k - 1. Evaluating the lower
bound at these points yields the inequality J(X™*, Y*) > Qilﬁ‘l > li’ff This completes the proof
of the second part of Proposition|[I} ]

A.3 PROOF OF CONNECTION BETWEEN LOW-RANK OPTIMAL TRANSPORT AND K -MEANS

We provide a brief proof of the connection between low-rank optimal transport and K -means stated
in the main text. The statement and proof are attached below

Remark 1. Suppose p;X = |Ck| ZZECX . Tis uy = |Ck| decyk yj where |Cx 1| = |Cy k| = |Ck|-

Then, for the squared Euclidean cost @]) is equal to a pair of K-means distortions on X,Y and a

term quantified the separation between assigned means ukX , u{

Z Z Dl —yil3

ZGXkJGYk

K

Z( S - X B S My — 13 + (Gl —uzn%)
i€Cx K JE€CY K

Proof. Starting from the definition of the partition form of the low-rank cost C%, we have

K K

1

Zﬁ Yo Ml —yilE =D Y lwlE+ Y llyll 2 1Cul (i i)
k= i€Xy, JEY k=1 iGCX‘k jGnyk

By adding and subtracting |Cy ||| X ||3 and |Cy ||| e} ||3, we find the right hand side is equal to

K

S( X el - leallisf I3+ 3 Ml - culli 12

k=1 ’L‘ECX,k jGCy)k,

(Gl (13 = 2 i il ) + uﬂ%))

: K
We conclude by observing 21, S,cc 7113 — Gl I3 = S0, Sicen s — i I3 resp.
for Y) and identifying ||peiX |3 — 2 - (X, ) ) + ||} ||3 as a difference between means. This results

22



Under review as a conference paper at ICLR 2026

in the following form for the right hand side:

K
Z( LD ||yjuz|§+|ck|||u§u§|§),

k=1 iECX,k jEnyk

and completes the proof. ]

A.4 GENERALIZED K-MEANS ALGORITHMS

A.4.1 MIRROR DESCENT (GKMS)

Here we present an algorithm for generalized K-means — which we call (GKMS) — that solves
generalized K -means locally using mirror-descent. GKMS consists of a sequence of mirror-descent
steps with the neg-entropy mirror map 1)(¢) = — Y, g;; log ¢;; with KL as the proximal function. This
results in a sequence of exponentiated gradient steps with Sinkhorn projections onto a single marginal
Sinkhorn|(1966). Notably, Lloyd’s algorithm for K -means, which is the most popular local heuristic
for minimizing the K -means objective, alternates between an update to means { Nk}kK:1 C R%and
hard-cluster assignments Z € {0, 1}"*% This algorithm only optimizes cluster assignments for a
fixed cost C, lacking an explicit notion of points or centers in R%. Moreover, it permits dense initial
conditions Q) and represents Q € RTK . As the loss lacks entropic regularization, in theory the
sequence ( Q(")),Cf:l converges in {5 to sparse solutions, but requires a final rounding step to ensure
it lies in the set of hard couplings.

We state the generalized K -means problem with its constraints explicitly as:

min <CT, Q diag(l/QTln)QT>F

QER"XK
st. Qlg =u,, Q> 0,xxk.

To derive the associated KKT conditions, one introduces the associated dual variables A € R™ and a
non-negative matrix 2 € RZ’FXK . From this, we derive a lower bound to the primal by constructing
the Lagrangian L as

L(Q, 2, A) = (C!,Qdiag(1/Q1,)Q ), + (A, Qlx —u,) —tr2'Q

Denote D! = diag(1/Q"1,,). For arbitrary directions V- € R™*X one has the direction derivative
in Q for F is

D(C',QD'Q"), [V]=(Cl,vD'Q") .+ (C",QD'V") +(C',QDdiag(1/Q"1,)[VIQ"),,
by symmetry in Q, this is

_ 1 .
=(CM +CLADTVT) 4 S ((CT+CMT), QD diag(1/Q1,)[VIQT)
_ 1 - _ _
=(SQD V) - 3 (1,diag"'(Q'D'SQD V),
So that for S = (1/2)(CT T + CT) the symmetrization of C' we find
VqlL=SQD ' - %1n diag” " (Q'D7'SQD ) — A1} — Q

Thus, one may summarize the KKT conditions for generalized K-means by

1
SQD™' — S1,diag” (QDTISQD™) — Al — @ =0,

1
Q]-K = *]-na
n

QZOHXKa
QQQZOHXK~

Next, let us suppose we consider a mirror-descent on the generalized K-means loss with respect

to the mirror-map given by the neg-entropy ¢ = —H (p), and associated divergence D, (p | ¢) =
KL(p || 9).
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Proposition 2. Suppose (i) >0 is a positive sequence of step-sizes for a mirror-descent with respect
to the KL divergence on the variable Q in (7). That is, using the update rule

. 1
Q* ) 2 argmin (Q, VqF |qw)r + —KL(QQ™), (29)
Qen(unv') ,7]6

where we define the generalized K-means loss function as
F(Q) = (C",Qdiag(1/Q"1,)Q") ..
Then the updates are of exponentiated-gradient form with one-sided Sinkhorn projections,
QY « p, (Q“f) © exp (—nVaF lqw) ) : (30)
where P, . (X) = diag(u,/X1x)X.

Proof. From the first-order stationary condition, we have that
Q
Q"
Q= Q(k) ® exp (’yk. (fVQ}' lg=q® +)\11T( + Q))
For notational simplicity, denote K* = e VaFlo® @ ¢ From the constraint, we deduce
Q1 = diag(e™?) {Q(k) o K9 ] 1 = u,
1

QW © K1k = diag(e " Mu,, = — e 1A
n

1
VoF [qeqw —Alg —Q+ 71og [ } =0, K
k

So that we find the exponential of the dual variable to be
A = (1/n)1, @ (Q“") ® K*? 1K) =u, © (Q“” ® K* 1K>

Thus, in the identification of Q € II,,, . we may evaluate the value of e”=* for dual variable A € R"
and find the following update

Q= Q(k) ® exp (’yk (*VQ]'— |Q:Q(k) Jr)\l[T( + Q))
= diag(e”™M)Q™ ® exp (vk (-VQF lg=qw + )

— diag (un / (Q(k) © K 1K)) (Q(k) © KQ)

Supposing Qg?) > 0 and supposing Vg F is bounded, it directly follows that the entries of Q are
positive and thus from the complementary slackness condition, £2;;Q;; = 0, we find that the dual

multiplier £2;; = 0. It follows that ng) > () for all iterations k, and likewise Qif) = 0, so that
K9 = ¢ VaFla® @ om0 = ¢=%VaFla®  Thys, for

K(k) _ Q(k) ® e—’)’ka]'—lq(k) (31)

we conclude that the update is given by
Q-+ = diag (u /K(k)1K> K® (32)
|

Since the mirror-descent is a case of the classical exponentiated gradient and Bregman-projection
on the KL-proximal function Peyré et al|(2019), one can also derive this by the stationary condition
for the kernel

1
0=VqF |lg—qw + g K © Q™
k
1
— 7 log K © Q(k) = VQ}— |Q:Q(k)
k
With an update for the positive kernel K given by K := Q") © exp (—7,VqF(Q*)), The

associated Bregman projection with respect to the KL-divergence [Peyré et al.| (2019) is therefore
minqer,, . KL(Q || K), which coincides with the projection in (32).

To address convergence, let us recall the definition of relative smoothness.
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Definition 3 (Relative smoothness). Let L > 0 and let f € C*(R™,R). Additionally, for reference-
Sfunction w let D, be its associated distance generating (prox) function. f is then L-smooth relative

to w if:
fy) < f(2) +(Vf(2),x —y) + LDu(y, x)

In general, if an objective f is L-relatively smooth to v, the descent lemma applied to mirror-descent
guarantees that for v, < 1/L one decreases the loss. In particular, one has

P < fah) + (T (), 25— ab) + LDy (e, ) (33)

Where, since we have

"= argmin(V f (z*), ) + %Dw(:c,xk)
x k
(VF(ah), 2 + %Dm’f“,x’w < (Vf(2*), 2% + %Dw(iﬁk’xk) = (Vf(z*),2%)
k k

The property of L-smoothness and taking -y, < 1/L implies descent, as

FH) < () 4 (V) o) + LDy ah) — (ViR o) + (L - 1) Dy (1, a%)
Yk Yk
< F() + (VF "), 2% — (T f(), ) + (L - 1) Dy, 2)
Yk

= f@*) + <L - vlk) Dy (a1 2%)

Where Dy, (z*+1,2%) > 0 and v, < 1/L implies a decrease. Thus, we next aim to show that the
proposed mirror-descent, under light regularity conditions, is L-smooth and thus guarantees local
descent for appropriate choice of step-size 7.

Proposition 3. Suppose that for the neg-entropy mirror-map, (Q) = 3_,; Qi; log Qij, one consid-
ers the loss F := <S, QDleT>Ff0r Q in the set l(u,,,-) and D~' = diag(1/Q " 1,,). Moreover,
suppose the following floor conditions hold: Q;; > € > 0, (QTln)k >3 > 0. Then, F is L-smooth
relative to ):

L
Ive™ = va'llr < (LA + A(;/ﬁ) IVt — vy ® g, (34)
S S
£y i— (1502 YT 1Sl) .

Proof. Following [Scetbon et al.[(2021) or|Halmos et al.[(2024), by either strictly enforcing a lower-
bound on the entries of g or adding an entropic regularization (e.g. a KL-divergence to a fixed
marginal, such as u.,., with a sufficiently high penalty 7), one may assume floors of the form

Qi; > €>0, (QTln)k >0>0
. _ 1

Hdlag(QTln) 1Hop < 3

Additionally, note that Q;;, € [0,1/n] and ||Q[|% = >_.1. Q3 < >, Qi = 1. Now, starting from

1
Vo=V +Vg  =8QD™! — 1,diag™(Q'D7'SQD™)
We see
[Vqu+ = Vaulr < [SQ*Diy, - SQMDL|r

Term 1

1, (diag™ (Q*) "D, SQMIDL,) — diag QW TD'SQMDY) ||

v
2

Term 2
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From the first term, one finds
1SQ*ID L, —SsQWD | p < [IS]£Q*TVDLL, - QWD k

< ISl (||Q<k+l>||F||Dk+1 =D e+ D RIQETY - QM) )

As one has HDk+1 D, |F = ||D,;1D,;l1(Dk+1 —Dy)|lr < 62| Dgs1 — D/ and since
QMY — QW) T, [l < Vnl|Q* ) — QW[ (36)
One collects a bound on the first term of the form
S S
< (” 6||F \/> H ”F) HQ(k+1) (k)HF — LA||Q(I€+1) o Q(k)”F (37)

For the second, observe that
|1, diag™" X||% = tr(1,diag 'X) " (1,,diag ™' X)
= n||diag™' X3 < n|X][%
So that |1, diag™" X||» < v/n||X| . Thus, we find the second term is bounded by

\f - - -
HQ(k-H) TD 1 SQ (k+1) D 1 _ Q(k),TDklsQ(k)DkIHF

\f 1 o (k+1,A) 1o (kA
= ]lQE DL v - D v Y|

Vn _ k+1,A4 kA N _ _
< IR VFIDL Ve ™ = v e + 25 Vg 1#1Q% ) DL, - QW D

Now, since we have already quantified the difference Hng LA _ ng ) ||F with smoothness

constant L 4 in (37), and also quantified H(Q(k“)f'—D,;_i1 — Q®):TD; ||, we simply invoke both
bounds from above to conclude the bound on the second term as
LA nl [||S S
fl\ (k1) _ QW) + gg <|| 5HF \f(lsl2 IIF> QU+ — QW

LAT\/HHQ(HD _ Q(k)HF

|7

2 e =

Thus, we find the objective to be L-smooth with constant given in terms of L 4 (37)

L n
< L Q¥ — QW] L:(LA+ Af)

_ (LA\f + LA\[) QU+

Lastly, for the entropy mirror-map 1) observe that for V() = log x one has for £ € [e, 1] by the

mean value theorem that log’ (¢)|u — v| = ¢ 71|u — v| = | log u — log v|, so that following |Scetbon
et al] (2021)) one concludes relative smoothness in ¢/ via the upper bound
< L ||Vt — vyp®)| p |

Corollary 1 (Guaranteed Descent). By Proposition[3|one can ensure that F is smooth relative to
the entropy mirror-map 1 with constant L given in Proposition I 3l For v, < 1/L, this guarantees
descent on the objective and ensures the initialization guarantees of Theorem 2| are upper bounds on
the final solution cost.

A.4.2 SEMIDEFINITE PROGRAMMING

Here we present an algorithm for generalized K -means via semidefinite programming. The basic idea
is that the semidefinite programming approaches for K -means (Peng and Xial 2005} Peng and Weil
2007;|Zhuang et al., 2022} |2023) apply immediately to the generalized -means problem. First, by
analyzing the argument in (Peng and Xial 2005} Peng and Wei|,|2007)) for constructing an equivalent
form of K -means, one observes that the generalized K -means problem (8] is equivalent to:

3;%{<P,C>F tr(P)=K, Plg=1,, P?=P, P= PT}. (38)
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Replacing the non-convex constraint P? = P with its relaxation P = 0, yields the semidefinite
relaxation of generalized K -means problem (g,

Iglil(l){<P,C>F tr(P) = K, Plg = 1, PEO}. (39)
The only difference between the reformulation of generalized K -means (38)) and the reformulation of
K-means studied in (Peng and Xial 2005} |Peng and Weil, |2007) is the structure of the cost matrix
C. The advantages of the semidefinite programming approach compared to GKMS is that it provides
higher quality solutions, does not depend on the initialization parameters, and provides a lower bound
on the optimal cost. The disadvantage is the computational cost required to solve large semidefinite
programming problems. Mildly alleviating the computational burden, we apply recent approaches
from [Zhuang et al.|(2023) for solving the semidefinite programming problem (39).

A.5 EXACT REDUCTIONS OF GENERALIZED K-MEANS BY CLASS OF CosT C

A.5.1 NEARLY NEGATIVE SEMIDEFINITE COSTS

When C is negative semidefinite, the generalized K -means problem exactly coincides with
the K-means problem. In these cases, approximation algorithms for K -means, such as established
(1 + €) approximations Kumar et al.|(2004) and poly-time log K approximations (e.g. k—means++
Arthur and Vassilvitskii| (2007)), directly transfer to the low-rank OT setting. However, by definition,
such costs express symmetric distances between a dataset and itself and are not relevant to optimal
transport between distinct measures.

Interestingly, direct reduction of generalized K -means to to K -means holds for a more general class
of asymmetric distances which may express costs between distinct datasets. In Proposition 5] we
show such a strong condition: it is sufficient for the symmetrization of any cost C, SymC, to be
conditionally negative semi-definite.

Proposition 4. Suppose we are given a cost matrix C € R"*"™ where the symmetrization of C,
Sym(C) := C" + C is conditionally negative-semidefinite so that SymC = 0 on 1:-. Denote the

double-centering J =1 — 11,17 and p.s.d. kernel K := —(1/2) J SymC J = 0. Then Probleml?]
reduces to kernel k-means |Dhillon et al.|(2004a) on K
min diag(1 T.C)p = max trD/2Q'K D '/? 40
Qertn o) (Qdiag(1/9)Q ,C)r qelax Q KQ (40)
geA,

D := diag(g) denotes the diagonal matrix of cluster sizes and Q the matrix of assignments.

Cost matrices induced by kernels, such as the squared Euclidean distance, are classically characterized
by being conditionally negative semidefinite [Schoenberg|(1938); Rao|(1984). For a satisfying cost C,
Proposition implies that[7]is equivalent to K -means with Gram matrix K = —(1/2) J SymC J. This
is a stronger statement than requiring C < 0. Observe that the Monge-conjugated matrix, SymC*
turns an asymmetric cost into a symmetric bilinear form on (i, j). Moreover, as SymC plays the role
of a distance matrix in the conversion to K, we offer it an appropriate name

Definition 4 (Monge Cross-Distance Matrix). Let Ct = CP . for P, the optimal Monge permuta-
tion. Denote its symmetrization by Sym(C') = CP). + P,-CT. In the 1;- subspace, each element
may be expressed as the cross-difference

M, = (z; — z;, T(2;) — T(x;)) (41)
Thus, we refer to M as the Cross-Distance Matrix induced by the Monge map.

Proposition [5]implies that the reduction to /-means holds if and only if the bilinear forms of the
Monge gram matrix admit an inner product in a Hilbert space /. In other words, if there exists a
function v so (z, T'(y)) := (¢ (z), 1 (y)). For clustering on any symmetric cost C, one has that the
Monge map is the identity 7' = I, so that (z; — ;, T'(z;) — T'(x;)) immediately reduces to a EDM
lz; — ;]|3. Notably, this also holds for a more general class of distributions without identity Monge
maps — multivariate Gaussians in Bures-Wasserstein space BW(]Rd) Chewi et al.| (2024). These
automatica112y admit CND cost matrices following Monge-conjugation for the squared Euclidean
distance ||-||3.
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Remark 2. (z,T(y)) := (¢¥(z),¥(y)) holds universally for transport maps between any two
multivariate Gaussians [Peyré et al| (2019). Let py = N(p1,31) and pa = N (e, Xs). The
transport map T such that Typ1 = po is given by the affine transformation T'(x) = Ax + b with

A=3x71? (2}/2222}/2) Y2 = 0and b = py — Apy. Thus, forp == VA
(w; — x5, Az + b — (Azj + b)) = [VA(z: — ;)3

In general, the conjugated cost M' shifts C to be nearer to a clustering distance matrix after
symmetrization: the diagonal entries are zero M;r ; = 0, for squared Euclidean cost|Brenier|(1991)
the entries (z; — 2, T(x;) — T(x;)) > 0, and M reduces to a matrix of kernel-distances on z; — z;
whenever Sym(C') is CND. Moreover, for squared Euclidean cost one has T' = V¢ for a convex

potential ¢ € cvx(Rd) Brenier| (1991). Thus, to second-order, all entries may be expressed on 171; as
PSD forms (z; — xj, T(z;) — T'(x;)) ~ (x; — x;, V3p(z;)(x; — x;)) for VZp(z;) = 0.

While K-means reduces to a special case of low-rank optimal transport where Q = R, as has
been previously shown |Scetbon and Cuturi|(2022)), the other direction is significantly less obvious:
it often appears that one can only gain by taking Q # R and optimizing over a larger space of
solutions when C is an asymmetric cost with respect to a pair of distinct datasets X,Y. We note
that when the conditions of Proposition 5| hold, generalized k-means exactly reduces to K -means, so
that step (ii) inherits its existing algorithmic guarantees. In particular, suppose C € R™*" satisfies
Propositionand one may also solve K-means to (1 + €) using algorithm .A. For the Gram-matrix
K = —(1/2)J SymC J one may yield the eigen-decomposition K = UAUT and compute point
7 = UAY/2. Then, given a solution to K-means on Z, Q := A(Z), one automatically inherits
(1 + €)-approximation of generalized K -means by the exact reduction. We detail the algorithm for
this special case in Algorithm [3|below.

Algorithm 3.

(i) Symmetrize the Monge-conjugated cost Sym(C) = CP). + P,.C"

(ii) Grammize as G = —(1/2) J Sym(C).J for double-centering J = 1, — 11,1
(iii) Yield Z from eigen-decomposition of G = ZZ "

(iv) Run K-Means on Z to yield Q

(v) Output the pair (Q,P[. Q).

Thus, for this class of cost, Algorithm [I] guarantees optimal solutions to generalized K-means by
reduction to optimal solvers for K -means.

Observe two valuable invariants of the optimization problem (7): first we have an affine invariance,
naturally characterized by the optimal transport constraints; second, the symmetry of the coupling op-
timized introduces an invariance to asymmetric components of the cost itself, so that the optimization
({7 is equivalent to one on the symmetrization of the cost.

Lemma 7 (Invariances of Generalized K-Means.). Suppose we are given a cost matrix C € R™*",
Then the generalized K-means problem

min (Qdiag(1/9)Q" ,C)p (42)
Qelly (un, g),
gEAK

Exhibits the following invariances:

1. Invariance to asymmetric components

argmin  (Qdiag(1/g)Q",C)r = argmin (Qdiag(1/9)Q",S)r (43)
Q€lle (un, g), Qelle (un, g),
gEAK geEAK

Where C = A + S for its symmetric component S = (1/2)(C + C") € S" and its
skew-symmetric component A := (1/2)(C —CT) € A™.
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2. Invariance to affine offsets 1, + 1,h" and shifts y1,, 1,

qertin (Qdiag(1/g)QT A+ f1y +1ah T 49101, )r (44)
e(Un,g),
gelAxk

= min  (Qdiag(1/g)Q" ,A)r + f u, +u h+7y (45)
QGH.E(ng)-,
g K

Proof. Observe that symmetry of the matrix Q diag(1/g)Q " implies the objective (@2) is equivalent
to the objective on C "

(Qdiag(1/9)Q" , C)r = tr Qdiag(1/9)Q" C = (Qdiag(1/9)Q",C") (46)
This directly implies (1). For (2), if C = A + XY ". Then, we have that
(Qdiag(1/9)Q" . C)r = (Qdiag(1/9)Q ", A) + tr X" Qdiag(1/g)Q" Y
Thus, the constraints on Q imply for each case of (@4) that
701, Qdiag(1/Q" 1,)Q" 1, =91, Q1, =7
tr f ' Qdiag(1/9)Q" 1, = f' Qdiag(1/g)g = f ' Qdiag(1/g)g = f'Qlx = f u,
(Q1,)" diag(1/9)Q" h = (diag(1/9)9)' Q" h = (Qlx) h=u,h
|

Proposition 5 (Reduction to K-Means for costs with conditionally negative semi-definite sym-
metrization.). Suppose we are given a cost matrix C € R™"*", Then generalized K-means reduces
to K-means if Sym C = (1/2) (CT + C) is conditionally negative-semidefinite (CND) so that
SymC < 0on1}+ ={¢:(£1,) =0}

Proof. Owing to invariance of the objective to Skew(C) we may replace the minimization in @2}
with a minimization over the symmetric component of C, (1/2)(C+ CT) = S:

argmin  (Q diag(l/g)QT ,C)p = argmin (Q diag(l/g)Q—r ,S)F 47)
Qeno(un79)7 QGHa(un»Q)v
geEAK gEAK

Observe that the solution of the objective is invariant to outer products between constant f, h € R™
with the one vector 1,, i.e. components of the form f1,) + 1,hT. Denote the double-centering
J =1, — (1/n)1,1]. If S is conditionally negative semidefinite (CND), then applying this affine
invariance implies the objective is equivalent to

min  (Qdiag(1/9)Q" ,JSJ)p (48)
QeH.e(Km g),
g K

Thus, for JS.J < 0 we exhibit a positive semidefinite kernel matrix K = —(1/2) JS.J > 0 and have

Qenm(igl : (Qdiag(1/9)Q" ,C)r = —2 (Qdiag(1/9)Q" ,K)r (49)
g.EA;(’g '

= max trD'/?Q'KQD'/? (50)
Qe{0,1}nxK

Where D £ diag(g) denotes the conventional diagonal matrix of cluster sizes and Q the matrix of
assignments. Thus, if S = SymC is conditionally negative semidefinite, up to constants Problem
reduces to kernel k-means (Dhillon et al., 2004b). |
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B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

For the synthetic experiments we inferred the Monge map P~ by applying the Sinkhorn algorithm
implemented in ot t-jax with the entropy regularization parameter ¢ = 10~° and a maximum
iteration count of 10,000. For the real data experiments, we inferred the Monge map P,+ using
HiRef (Halmos et al., [2025b), and used a low-rank version of GKMS which uses a factorization
of the cost C = AB' for scaling. The remaining implementation details are consistent across the
synthetic and real data experiments.

For the GKMS algorithm, we used a JAX implementation of the GKMS algorithm with step size
v, = 2 for a fixed number 250 of iterations. To construct an initial solution, we first applied the
K-means algorithm implemented in scikit-learn on X and Y to obtain clustering matrices
Qx and Qy. Then, using the Monge registered initialization procedure in Algorithm [2} we took
the best of the two solutions Q x and P,«Qy as Q. Next, we performed a centering step by setting
Q© = AQ + (1 — \)Q’ where Q' is a random matrix in II(u,,, -) generated from the initialization
procedure in|Scetbon et al.|(2021) with A = % Finally, we ran GKMS on the registered cost matrix

C = CP_. with Q® as the initial solution.

For the synthetic stochastic block model (SBM) example we applied the semidefinite programming
formulation of the generalized /X -means problem described in Appendix [A.4.2] with the solver from
Zhuang et al.| (2023) to initialize Q) prior to running GKMS.

B.2 SYNTHETIC EXPERIMENTS

We constructed three synthetic datasets to evaluate existing low-rank OT methods. Each dataset was
constructed with n = m = 5000 datapoints, resulting in a cost matrix C &€ R?000x5000,

2-Moons and 8-Gaussians (2M-8G). In this experiment [Tong et al.| (2023), we generated two
datasets X,Y C R? representing two spirals (X) and 8 isotropic Gaussians (Y). In particular,
we used the function generate_moons from the package torchdyn.datasets to generate
the two interleaving moons as the first dataset. These are defined as semi-circles with angles
61 ~ Unif(0,7), 65 ~ Unif(0,7) and (rcosfy rsinf;) — cand (rcosfy —rsinby) + c for
constant offset c. We add isotropic Gaussian noise with variance 0.5. As in(Tong et al.|(2023)), one
scales all points with Y = aY +bfora = 3,b = (—=1 —1) to overlap visually with the 8 Gaussians.
For given variance 0 = 1.0, we generated k € [8] isotropic Gaussian clusters N (s, 0°I5) with
means on the unit circle S2, given by

(
(
(
A (0,-1),
()
(72
(
(

The 2-moons constitutes a simple non-linear manifold and the 8-Gaussians constitutes a simple
dataset with cluster structure.

Shifted Gaussians (SG). To construct the SG synthetic datasets we placed K = 250 Gaussian
distributions with means g1, ..., € R at the basis vectors eq,...,ex € RY. Similarly,
we constructed another set of means p,..., ) by perturbing the means pu, = p,; + €; with

e; ~ N(0, L}LIK). Then, we randomly sampled groups of size my, ..., my with Zszl my = n by
randomly sampling a partition of n of size K. Then, for both datasets X and Y, we assigned cluster
1 to the first m; points, cluster 2 to the next my points, ..., and cluster K to the final m g points. For
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points in cluster k in dataset X, we sample my, points from N (g, \%I K )- Similarly, for points in

cluster k in dataset Y, we sample my, points from N (p}., %I K)-

To construct the cost matrix, we take C;; = ||z; — y;||3. We construct three instances using different
noise values o2 € {0.1,0.2,0.3}.

Stochastic Block Model (SBM). To construct the SBM instance, we generated a graph G = (V, E)
from a stochastic block model using within cluster probability p = 0.5 and between cluster probability
q = 0.25 over K = 100 clusters of fixed size m = 50. Edge weights w. were generated by randomly
sampling weights from Unif(1.0,2.0). The cost matrix C,; = d (4, j) was taken as the shortest path
distance between vertices ¢ and j in G with the weight function w.

B.3 CIFARI10

We follow the protocol of |[Zhuang et al.| (2023) in this experiment by comparing all low-rank OT
methods on the CIFAR-10 dataset, containing 60,000 images of size 32 x 32 x 3 across 10 classes.
We use a ResNet (resnet18-f37072fd.pth) to embed the images to dimension d = 512 |He et al.|(2016)
and apply a PCA to d = 50, following the procedure of Zhuang et al.| (2023). We then perform a
stratified 50/50 split of the images into two datasets of 30,000 images with class-label distributions
matched. We use a fixed seed for this, as well as for the low-rank OT solvers following the ot t-—jax
implementation of [Scetbon et al.|(2021)). For low-rank OT, we set the rank to K = 10 to match the
number of class labels. To run TC we solve for the coupling P+ with Hierarchical Refinement due
to the size of the dataset|Halmos et al.| (2025b), and solve generalized K -means with mirror-descent.
In this experiment, we specialize to the squared-Euclidean cost |- — -||3.

For our evaluation metrics, we first compute the primal OT cost of each low-rank coupling as our
primary benchmark. We also evaluate AMI and ARI to the ground-truth marginal clusterings, given
by annotated class labels. We compute our predicted labels via the argmax assignment of labels
as (i) = argmax, Q; , and ' (j) = argmax, R; .. Lastly, we assess co-clustering performance
by using the class-transfer accuracy (CTA). Given a proposed coupling P, define the class-to-class
density matrix for two ground-truth classes k, k" (distinguished from the predicted classes of the
arg-max of the low-rank factors) to be

Ok =Y Pijlice, Ljec,
ij
The class-transfer accuracy is then defined to be
_ trp
> Pk

in other words, the fraction of mass transferred between ground-truth classes (i.e. the diagonal of p)
over the total mass transferred between all class pairs.

CTA(P) 51)

B.4 SINGLE-CELL TRANSCRIPTOMICS OF MOUSE EMBRYOGENESIS

We validate TC against LOT |Scetbon et al.| (2021) and FRLC |[Halmos et al.| (2024) on a recent,
massive-scale dataset of single-cell mouse embryogenesis measured across 45 timepoint bins with
combinatorial indexing (sci-RNA-seq3) Qiu et al.| (2024)). In aggregate, this dataset contains 12.4
million nuclei across timepoints and various replicates. As our experiment, we align the first
replicate across 7 timepoints (E8.5, E8.75, E9.0, E9.25, E9.5, E9.75, E10.0) for a total of 6 adjacent
timepoint pairs. For each timepoint pair, we use scanpy to read the h5ad file and follow standard
normalization procedures: sc.pp.normalize_total to normalize counts, sc.pp.loglp
to add pseudocounts for stability, and run sc.tl.pca to perform a PCA projection of the raw
expression data to the first d = 50 principle components (using SVD solver "randomized"). As we
use [Halmos et al.| (2025b)) as the full-rank OT solver, subsampling each dataset slightly to ensure
that n has many divisors for hierarchical partitioning. Similarly to the CIFAR evaluation, we ensure
that the two datasets have a balanced proportion of classes — which, in this case, represent cell-types
annotated from cell_idinthe df_cell.csv metadata provided in|Qiu et al.| (2024). We set the
rank K to be the minimum of the number of cell-types present at timepoint 1 and timepoint 2. We
run LOT, FRLC, and TC on this data with the squared Euclidean cost. In both cases, we input the data
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Table 2: Single-cell transcriptomics alignment on consecutive mouse embryo timepoints. We report
OT cost (lower is better), AMI/ARI for each split (A/B), and class-transfer accuracy (CTA; higher is
better).

Timepoints Method Rank OT Cost] AMI(A/B)T ARI(A/B)T CTA1T Runtime (s)
ES.5 s F8.75 TC 43 0.506 0.639/0.617 0.329/0.307 0.722 63.38
(lé 819 cel.ls) FRLC 43 0.553 0.556/0.531 0.217/0.199  0.525 16.45
’ LOT 43 0.520 0.605/0.592 0.283/0.272 0.611 8.77
E8.75 — E9.0 TC 53 0.384 0.597/0.598 0.231/0.230 0.545 177.12
(3(') 240 cellé) FRLC 53 0.405 0.534/0.541 0.174/0.178  0.492 16.92
’ LOT 53 0.390 0.559/0.567 0.193/0.197 0.487 10.88
E9.0 — E9.25 TC 57 0.452 0.563/0.554 0.190/0.187 0.500 286.95
(45' 360 cel.ls) FRLC 57 0.481 0.524/0.515 0.158/0.155 0471 19.31
’ LOT 57 - —/- -/- - -
E925 5 F9 5 TC 67 0.411 0.562/0.567 0.191/0.194 0.565 470.61
(75' 600 cellé) FRLC 67 0.431 0.484/0.488 0.129/0.130 0.441 33.91
’ LOT 67 - -/- -/- - -
E95 —s E9.75 TC 80 0.389 0.554/0.551 0.172/0.169 0.564 806.81
(13’1 040 ceils) FRLC 80 0.399 0.491/0.487 0.116/0.115 0.447 58.58
’ LOT 80 - —/- -/- - -
TC 77 0.361 0.559/0.560 0.180/0.181 0.475 741.91
](31922)59% Eél(l)s()) FRLC 77 0.379 0.502/0.502 0.130/0.130 0.437 52.02
’ LOT 77 - -/- -/- - -

as point clouds X, Y as opposed to instantiating the cost C explicitly and specialize to the squared

Euclidean cost.
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Figure 4: Comparison of low-rank OT methods on the stochastic block model dataset. (Left) Relative
cost of the rank K € {10,...,100} transport plan inferred by LOT and FRLC compared to the cost
of the transport plan inferred by TC. (Right) Co-clustering accuracy (AMI/ARI) of TC, LOT, and
FRLC at rank K = 100. The stochastic block model dataset consists of 100 clusters of size 50.
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Figure 5: Comparison of low-rank OT methods on the shifted Gaussians dataset. (Top) Relative cost
of the rank K € {50, 75, ...,250} transport plan inferred by LOT, FRLC, and LatentOT compared
to the cost of the transport plan inferred by TC across noise levels o2 € {0.1,0.2,0.3}. (Bottom)
Co-clustering accuracy (AMI/ARI) of TC, LOT, FRLC, and LatentOT at rank K = 250 across
noise levels 0 € {0.1,0.2,0.3}. The shifted Gaussians dataset consists of 250 clusters of unequal
size.

33



Under review as a conference paper at ICLR 2026

2 Moons, 8 Gaussians (02 = 0.1) 2 Moons, 8 Gaussians (0> = 0.25) 2 Moons, 8 Gaussians (0> = 0.5)
L6 Algorithm —e—e—s—s—=—= | | | /_*_._-—-—a——a ] 125f 1
14— TC 1
—e— LOT Look |
1.12 —— FRLC o
—e— LatentOT L15F
g MO 1 LSk |
<
£ 108 110k
8 1.06 - 4 1.10 J
LO44——— T 05| et e
1.05 3l
1.02 4
1.00 L L L L L L L L L ] 1.00 L L L L L L L L L 1.00 L L L L L L L L L
50 75 100 125 150 175 200 225 250 50 75 100 125 150 175 200 225 250 50 75 100 125 150 175 200 225 250
Rank Rank Rank

Figure 6: Relative cost of the rank K € {50, 75, ...,250} transport plan inferred by LOT, FRLC,

and LatentOT compared to the cost of the transport plan inferred by TC across noise levels
02 € {0.1,0.2,0.3} for the 2-Moons and 8-Gaussians (Tong et al., 2023) dataset.
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Figure 7: Runtime of TC, LOT, FRLC, and LatentOT versus the rank K € {50,75, ..., 250} for
the 2-Moons and 8-Gaussians 2023)) dataset and the Shifted Gaussians dataset across all
noise levels.
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Figure 8: (Left) An example co-clustering of the two-moons 8-Gaussians dataset (2023)
with Algorithm[3] (Right) A comparision between the raw cost matrix C (top), and the transport
conjugated cost Mt (bottom).
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