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SUPPLEMENTARY MATERIAL
SPLAT-SLAM: GLOBALLY OPTIMIZED RGB-ONLY
SLAM WITH 3D GAUSSIANS

Anonymous authors
Paper under double-blind review

This supplementary material accompanies the main paper and provides more details on the methodol-
ogy and additional experimental results.

1 METHOD

We describe further details about our method that were left out from the main paper.

Comparison to Existing Works. To further clarify the differences between our method and existing
3DGS SLAM works, we classify each method in tab. 8 based on important characteristics. It shows
that our work is the first to include loop closure, proxy depth, RGB-only and online 3D Gaussian
deformations.

RGB-only Loop
Closure

Proxy
Depth

Online 3DGS
Deformations

GS-SLAM Yan et al. (2023) ✗ ✗ ✓ ✗
Gaussian-SLAM Yugay et al. (2023) ✗ ✗ ✓ ✗
SplaTaM Keetha et al. (2023) ✗ ✗ ✓ ✗
MonoGS Matsuki et al. (2023) ✓ ✗ ✗ ✗
Photo-SLAM Huang et al. (2023) ✓ ✓ ✗ ✗
Splat-SLAM (ours) ✓ ✓ ✓ ✓

Table 8: Method Classification. We show that our method is the first to combine 3D Gaussian
SLAM with loop closure, proxy depth and online 3D Gaussian map deformations in an RGB-only
SLAM system.

Map Initialization. With map initialization, we refer to the process of anchoring new Gaus-
sians during scene exploration. For every new keyframe to be mapped, we adopt the strategy that
MonoGS Matsuki et al. (2023) uses in pure RGBD mode. It works by unprojecting the depth reading
per pixel to 3D and then downsampling this point cloud by a factor θ. New Gaussians are then
assigned their means as the point cloud. The rotations are initialized to identity, the opacity to 0.5
and the scales are initialized related to their distance to the nearest neighbor point in the point cloud.

Keyframe Selection and Local Windowing. As mentioned in the main paper, we adopt the keyframe
selection strategy from MonoGS Matsuki et al. (2023). We describe this strategy in the following.

Keyframes are selected based on the covisibility of the Gaussians. Between two keyframes i and j,
the covisibility is defined using the Intersection over Union (IOU) and Overlap Coefficient (OC):

IOUcov(i, j) =
|Gi

v ∩ Gj
v|

|Gi
v ∪ Gj

v|
, (16)

OCcov(i, j) =
|Gi

v ∩ Gj
v|

min(|Gi
v|, |G

j
v|)

, (17)

where Gi
v are the Gaussians visible in keyframe i, based on the following definition of visibility.

A Gaussian is seen as visible from a camera pose if it is used in the rasterization pipeline when
rendering and if the accumulated transmittance

∏i−1
j=1(1− αj) has not yet reached 0.5.

A keyframe i is added to the keyframe window KFs if, given the last keyframe j, IOUcov(i, j) < kfcov

or if the relative translation tij > kfmD̂i, where D̂i is the median depth of frame i. For Replica,
kfcov = 0.95, kfm = 0.04 and for TUM and ScanNet, kfcov = 0.90, kfm = 0.08. The registered
keyframe j in KFs is removed if OCcov(i, j) < kfc, where keyframe i is the latest added keyframe.
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For all datasets, the cutoff is set to kfc = 0.3. The size of the keyframe window is set to |KFs| = 10
for Replica and |KFs| = 8 for TUM and ScanNet.

Pruning and Densification We also follow Matsuki et al. (2023) when it comes to Gaussian pruning
and densification. Pruning is done based on the visibility: if new Gaussians inserted within the last 3
keyframes are not visible by at least 3 other frames in the keyframe window KFs, they are removed.
Visibility-based pruning is only done when the keyframe window KFs is full. Additionally, every
150 mapping iterations, Gaussians with opacity lower than 0.7 are removed globally. Also Gaussians
which project in 2D with a too large scale are removed. Densification is done as in Kerbl et al. (2023),
also at an interval of every 150 mapping iterations.

Final Refinement. Similar to GlORIE-SLAM Zhang et al. (2024), which performs a final refinement
after the last final global BA at the end of the trajectory, we also perform a few refinement iterations
after the last final global BA. Also MonoGS Matsuki et al. (2023) performs a set of final iterations at
the end of the SLAM trajectory to refine the colors.

Our refinement strategy is straight forward. We disable pruning and densification of the Gaussians
and perform a set of optimization iterations β using the same loss function as in the main paper, but
only sampling random single frames per iteration.

Differences to GlORIE-SLAM. We briefly discuss some differences to GlORIE-SLAM Zhang
et al. (2024) not covered in the main paper. GlORIE-SLAM uses an additional point cloud called
Pd consisting of all inlier mullti-view depth maps unprojected into a point cloud. We found that
this is not needed and it saves memory and compute to not use it. GlORIE-SLAM also re-anchors
the neural points at the depth reading. We do not do this as the Gaussians do not necessarily lie on
the surface exactly. Finally, GlORIE-SLAM requires input depth to guide the sampling of points to
render color and depth. If the depth is noisy or if the map is used for tracking (i.e. frame-to-model
tracking), the depth guiding strategy is not favorable as it leads to artifacts when sampling the wrong
points (when noisy depth is encountered) and to a much smaller basin of convergence when tracking
(because the rendering is conditioned on the current view point). With 3D Gaussians, we can avoid
depth guidance during rendering.

2 MORE EXPERIMENTS

To accompany the evaluations provided in the main paper, we provide further experiments in this
section.

Implementation Details. As the point cloud downsampling factor, we use θ = 32 for all frames
but the first frame where θ = 16 is used. We use β = 2000, the number of iterations for the
final refinement optimization, on the Replica dataset and β = 26000 on the TUM-RGBD Sturm
et al. (2012) and ScanNet Dai et al. (2017) datasets (same as MonoGS Matsuki et al. (2023)). We
benchmark the runtime on an AMD Ryzen Threadripper Pro 3945WX 12-Cores with an NVIDIA
GeForce RTX 3090 Ti with 24 GB of memory. For the remaining hyperparameters, we refer to
MonoGS Matsuki et al. (2023) for the Gaussian mapping and GlORIE-SLAM for tracking Zhang
et al. (2024).

A Note on Rendering and Runtime with MonoGS. By default, MonoGS Matsuki et al. (2023) does
not evaluate the rendering error on the mapped keyframes nor implement the exposure compensation
during rendering evaluation. To compare our results fairly to MonoGS, we implement these details
and run the experiments with these settings enabled. Further, we report the runtime for MonoGS
using a single process (same as us) compared to the reported number in the paper, which was using
multiple processes at once.

A Note on Gaussian Deformation with Photo-SLAM. Though not fully clear from reading the
paper, after discussing with the authors of Photo-SLAM Huang et al. (2023), we find that they do,
in fact, not deform the Gaussians as a result of global BA or loop closure. They found this to be
unstable in their experiments. This suggests that our deformation strategy is non-trivial.

Justification of Monocular Depth Estimator. There are already numerous monocular depth
estimators, but most of them are limited by speed, memory or quality. We use Omnidata Eftekhar et al.
(2021) since empirically we found it still provides the best trade-off between output performance and

2
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runtime. We also tested our system with Depth Anything Yang et al. (2024), but found that it was
marginally worse in terms of the final reconstructed mesh accuracy.

2.1 TRACKING ON SCANNET AND TUM-RGBD

We do not put the results on tracking for ScanNet and TUM-RGBD since we use the tracking
framework from GlORIE-SLAM Zhang et al. (2024), but we provide the numbers here. Tab. 9 and
tab. 10 show the tracking accuracy of the estimated trajectory on ScanNet Dai et al. (2017) and
TUM-RGBD Sturm et al. (2012) respectively. Our method shows competitive results in every single
scene and gives the best average value among the RGB and RGB-D methods.

Method 0000 0059 0106 0169 0181 0207 Avg.-6 0054 0233 Avg.-8

RGB-D Input
NICE-SLAM Zhu et al. (2022) 12.0 14.0 7.9 10.9 13.4 6.2 10.7 20.9 9.0 11.8
Co-SLAM Wang et al. (2023) 7.1 11.1 9.4 5.9 11.8 7.1 8.7 - - -
ESLAM Mahdi Johari et al. (2022) 7.3 8.5 7.5 6.5 9.0 5.7 7.4 36.3 4.3 10.6
MonoGSMatsuki et al. (2023) 16.1 6.4 8.1 8.7 26.4 9.2 12.5 20.6 13.1 13.6

RGB Input
MonoGSMatsuki et al. (2023) 149.2 96.8 155.5 140.3 92.6 101.9 122.7 206.4 89.1 129.0
GO-SLAM Zhang et al. (2023b) 5.9 8.3 8.1 8.4 8.3 6.9 7.7 13.3 5.3 8.1
HI-SLAMZhang et al. (2023a) 6.4 7.2 6.5 8.5 7.6 8.4 7.4 - - -
Q-SLAM∗Peng et al. (2024) 5.8 8.5 8.4 8.7 8.8 - - 12.6 5.3 -
GlORIE-SLAM∗ Zhang et al. (2024) 5.5 9.1 7.0 8.2 8.3 7.5 7.6 9.4 5.1 7.5
Ours 5.5 9.1 7.0 8.2 8.3 7.5 7.6 9.4 5.1 7.5

Table 9: Tracking Accuracy ATE RMSE [cm] ↓ on ScanNet Dai et al. (2017). Our method equals
to GlORIE-SLAM Zhang et al. (2024), giving the average lowest trajectory error. Results for the
RGB-D methods are from Liso et al. (2024). Note that all methods with a ∗ are concurrent works.

Method f1/desk f2/xyz f3/off Avg.-3 f1/desk2 f1/room Avg.-5

RGB-D Input
SplaTAM Keetha et al. (2023) 3.4 1.2 5.2 3.3 6.5 11.1 5.5
GS-SLAM∗ Yan et al. (2023) 1.5 1.6 1.7 1.6 - - -
GO-SLAM Zhang et al. (2023b) 1.5 0.6 1.3 1.1 - 4.7 -
MonoGS Matsuki et al. (2023) 1.4 1.4 1.5 1.5 5.1 6.3 3.1

RGB Input
MonoGS Matsuki et al. (2023) 3.8 5.2 2.9 4.0 75.7 76.6 32.8
Photo-SLAM Huang et al. (2023) 1.5 1.0 1.3 1.3 - - -
DIM-SLAM Li et al. (2023) 2.0 0.6 2.3 1.6 - - -
GO-SLAM Zhang et al. (2023b) 1.6 0.6 1.5 1.2 2.8 5.2 2.3
MoD-SLAM∗ Zhou et al. (2024) 1.5 0.7 1.1 1.1 - - -
Q-SLAM∗ Peng et al. (2024) 1.3 0.9 - - 2.3 4.9 -
GlORIE-SLAM∗ Zhang et al. (2024) 1.6 0.2 1.4 1.1 2.8 4.2 2.1
Ours 1.6 0.2 1.4 1.1 2.8 4.2 2.1

Table 10: Tracking Accuracy ATE RMSE [cm] ↓ on TUM-RGBD Sturm et al. (2012). Our
method equals to GlORIE-SLAM Zhang et al. (2024), giving the average lowest trajectory error.
Note that all methods with a ∗ are concurrent works.

2.2 FULL EVALUATIONS DATA

In tab. 11, tab. 12 and tab. 13, we provide the full per scene results on all commonly reported metrics
on Replica Straub et al. (2019), TUM-RGBD Sturm et al. (2012) and ScanNet Dai et al. (2017).

The reconstruction results are only measured on Replica since the other two datasets are real world
datasets which lack quality ground truth meshes.

We show the trajectory accuracy measurement of both keyframes and the full trajectory, which is
obtained by first linear interpolation between keyframes and using optical flow to refine. The accuracy
of these two trajectories are similar. In the main paper, the data we report is always measured on the
full trajectory.

2.3 INFLUENCE OF MONOCULAR DEPTH

While we show that the monocular depth improves the geometric estimation capability of our
framework, it may still be erroneous. To better understand the accuracy of the monocular depth, we
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Metric R-0 R-1 R-2 O-0 O-1 O-2 O-3 O-4 Avg.

Reconstruction

Render Depth L1 ↓ 2.90 2.16 2.18 2.44 1.97 2.46 2.62 2.53 2.41
Accuracy ↓ 1.99 1.91 2.06 3.96 2.03 3.45 2.15 1.89 2.43
Completion ↓ 3.78 3.38 3.34 2.75 3.33 4.36 3.96 4.25 3.64
Comp. Rat. ↑ 85.47 86.88 86.12 87.32 85.17 81.37 82.25 82.95 84.69

Rendering Keyframes
PSNR ↑ 32.25 34.31 35.95 40.81 40.64 35.19 35.03 37.40 36.45
SSIM ↑ 0.91 0.93 0.95 0.98 0.97 0.96 0.95 0.98 0.95
LPIPS ↓ 0.10 0.09 0.06 0.05 0.05 0.07 0.06 0.04 0.06

Tracking

Keyframes
Trajectory

ATE
RMSE ↓ 0.29 0.38 0.24 0.27 0.35 0.34 0.42 0.43 0.34

Full
Trajectory

ATE
RMSE ↓ 0.29 0.33 0.25 0.29 0.35 0.34 0.42 0.43 0.34

Number of
Gaussians 1000x 116 116 91 76 66 134 114 106 102

Table 11: Full Evaluation on Replica Straub et al. (2019). We show the ATE RMSE [cm] evaluation
on the keyframes as well as on the full trajectory.

Metric f1/desk f1/desk2 f1/room f2/xyz f3/office Avg.

Rendering Keyframes
PSNR ↑ 25.61 23.98 24.06 29.53 26.05 25.85
SSIM ↑ 0.84 0.81 0.80 0.90 0.84 0.84
LPIPS ↓ 0.18 0.23 0.24 0.08 0.20 0.19

Depth
Rendering Keyframes Depth

L1↓ [cm] 8.05 15.70 15.05 14.53 25.59 15.78

Tracking

Key Frames
Trajectory

ATE
RMSE ↓ 1.92 3.05 4.43 0.23 1.41 2.21

Full
Trajectory

ATE
RMSE ↓ 1.65 2.79 4.16 0.22 1.44 2.05

Number of
Gaussians 1000x 88 78 211 173 114 133

Table 12: Full Evaluation on TUM-RGBD Sturm et al. (2012).
Metric 0000 0054 0059 0106 0169 0181 0207 0233 Avg.

Rendering Keyframes
PSNR↑ 28.68 30.21 27.69 27.70 31.14 31.15 30.49 27.48 29.32
SSIM ↑ 0.83 0.85 0.87 0.86 0.87 0.84 0.84 0.78 0.84
LPIPS ↓ 0.19 0.22 0.15 0.18 0.15 0.23 0.19 0.22 0.19

Depth
Rendering Keyframes Depth

L1↓ [cm] 8.24 18.24 13.39 23.5 11.49 18.35 13.78 10.19 11.37

Tracking

Key Frames
Trajectory

ATE
RMSE ↓ 5.66 9.17 9.48 7.03 8.72 8.42 7.47 4.97 7.61

Full
Trajectory

ATE
RMSE ↓ 5.57 9.50 9.11 7.09 8.26 8.39 7.53 5.17 7.58

Number of
Gaussians 1000x 144 157 84 108 52 127 121 191 123

Table 13: Full Evaluation on ScanNet Dai et al. (2017).
replace it with the ground truth sensor depth instead. This experiment acts as the upper bound of our
method if the monocular depth is perfect. The experiments are done on Replica Straub et al. (2019)
and are shown in tab. 14. Compared with the standard setting with the monocular depth, the ground
truth depth setting gives improvements on both reconstruction and rendering quality, which reveals
that our method still has potential to achieve better mapping results once better monocular depth is
available. Since our method does not require further training or fine-tuning for the monocular depth,
it is quite easy to just replace the current off-the-shelf monocular depth estimator with a better one.

2.4 IMPACT OF DEFORMATION

During runtime, we deform the 3D Gaussian map to account for adjustments to poses and depth that
have already been integrated into the existing map. An alternative to performing the deformation
is to solely rely on optimization to resolve the new map. We conduct two experiments to show the
benefit of performing the deformation, especially when it comes to rendering accuracy. In tab. 15,
we vary the number of final refinement iterations and evaluate the rendering depth L1 and PSNR
on the Replica office 0 scene. We find that utilizing online 3D Gaussian deformations yields
better rendering and depth L1 accuracy regardless of the number of iterations. In tab. 16 we conduct
the same experiment, but over a set of scenes on ScanNet. We find that on average, by enabling the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Metric R-0 R-1 R-2 O-0 O-1 O-2 O-3 O-4 Avg.

Recon-
struction

Render Depth L1 ↓ 2.38 1.31 1.73 1.15 1.60 1.29 5.71 1.93 2.14
Accuracy ↓ 1.29 0.91 1.05 1.22 0.83 0.96 1.24 1.07 1.07
Completion ↓ 3.43 2.83 2.66 1.50 2.46 3.57 3.46 3.61 2.94
Comp. Rat. ↑ 86.61 88.69 88.70 93.44 89.09 85.20 84.60 85.32 87.71

Rendering
PSNR ↑ 35.66 37.65 38.87 43.95 43.28 37.93 37.41 39.88 39.33
SSIM ↑ 0.96 0.96 0.97 0.99 0.98 0.96 0.96 0.98 0.97
LPIPS ↓ 0.04 0.05 0.03 0.02 0.02 0.06 0.04 0.03 0.04

Tracking ATE
RMSE ↓ 0.29 0.38 0.24 0.28 0.39 0.35 0.45 0.40 0.35

Table 14: Full Evaluations on Replica Straub et al. (2019) with ground truth depth. Both
reconstruction and rendering results improve significantly with the ground truth depth, suggesting
that our method is bounded by the quality of current day monocular depth estimation. Since we do
not require any extra training or fine-tuning of the monocular depth estimator, it is easy to plug in a
better estimator once available. Tracking performance does not change much.

deformation, we achieve higher rendering accuracy and lower depth L1 error. The improvement is,
however, more significant when it comes to the rendering accuracy.

Nbr of Final Iterations β Metric 0K 0.5K 1K 2K

Reconstruction W/O Deform
W Deform

Render Depth L1 ↓ 8.84 3.49 2.64 2.6
Render Depth L1 ↓ 6.55 2.37 2.34 2.40

Rendering W/O Deform
W Deform

PSNR ↑ 22.86 34.30 37.66 37.86
PSNR ↑ 30.50 39.87 40.59 41.20

Table 15: Gaussian Deformation Ablation on Replica Straub et al. (2019) office 0.

Metric 0000 0054 0059 0106 0169 0181 0207 Avg.

Rendering W/O Deform
W Deform

PSNR↑ 25.15 28.39 27.77 25.25 29.41 30.38 29.30 27.95
PSNR↑ 28.68 30.21 27.69 27.70 31.14 31.15 30.49 29.58

Depth
Rendering

W/O Deform
W Deform L1↓ [cm] 7.86 22.81 10.51 24.19 11.54 18.48 13.66 15.58

8.24 18.24 13.39 23.5 11.49 18.35 13.78 15.28

Table 16: Gaussian Deformation Ablation on ScanNet Dai et al. (2017).
2.5 FINAL REFINEMENT ITERATIONS

After the final global BA step, we perform a final refinement, similar to MonoGSMatsuki et al. (2023),
but include the geometric depth loss as well and do not only refine with a color loss. We ablate the
influence on the results by varying the number of iterations of the final refinement in tab. 17. We
find that the rendering accuracy increases monotonically with the number of iterations while the
geometric accuracy decreases with more than 2K iterations. We believe this to be a result of fitting
to the noisy monocular depth. We choose to use 2K iterations since this provides the best trade-off
between rendering and geometric accuracy. 2K iterations takes around 15 seconds on our benchmark
hardware which consists of an AMD Ryzen Threadripper Pro 3945WX 12-Cores with an NVIDIA
GeForce RTX 3090 Ti with 24 GB of memory.

Nbr of Final Iterations β Metric 2K 5K 10K 26K

Reconstruction

Render Depth L1 ↓ 2.36 2.45 2.51 2.59
Accuracy ↓ 2.46 2.66 2.84 3.02
Completion ↓ 3.60 3.61 3.59 3.60
Comp. Rat. ↑ 84.87 84.71 84.80 84.77

Rendering Keyframes PSNR ↑ 36.77 37.80 38.41 38.95

Table 17: Final Refinement Iterations Ablation on Replica Straub et al. (2019). The results are
averaged over the 8 scenes.

2.6 IMPACT OF DOWNSAMPLING FACTOR

During mapping, the point cloud formed from unprojecting the depth input is downsampled to avoid
adding redundant Gaussians to the scene representation. We investigate the impact of using stronger
versus weaker downsampling in tab. 18 where we also compare to the sensitivity of MonoGSMatsuki
et al. (2023) with respect to the same parameter. Tab. 18 shows that both systems are not very sensitive
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to the model compression as a result of a larger downsampling factor θ. When both systems use the
same number of Gaussians on average (θ = 32 for MonoGS and θ = 64 for our method), we find
that our method performs significantly better in terms of depth rerendering and photometric accuracy.
For all results in the main paper, we use θ = 32.

Downsampling Factor θ Metric 16 32 64

Reconstruction Ours
MonoGS Matsuki et al. (2023) Render Depth L1 ↓

2.38 2.40 2.46

33.43 28.47 28.09

Rendering Ours
MonoGS Matsuki et al. (2023) PSNR ↑

36.63 36.45 36.31

31.17 30.87 29.64

Number of
Gaussians

Ours
MonoGS Matsuki et al. (2023) 1000x↓

141 102 83

97 83 73

Table 18: Downsampling Factor θ Ablation on Replica Straub et al. (2019). The results are
averaged over the 8 scenes.

2.7 RUNTIME EVALUATION

To be consistent with the keyframe selection hyperparameters of MonoGS Matsuki et al. (2023), we
report on the same parameters as MonoGS uses by default. In practice, this means that few keyframes
from the tracking system (determined via mean optical flow thresholding) are actually filtered out
and not mapped. In tab. 19, we show that by altering the hyperparamters, we can speed up the system
during runtime, while still rendering and reconstructing the scene well. Note that we evaluate the
rendering performance on the same set of views for all runs. We benchmark the runtime on an AMD
Ryzen Threadripper Pro 3945WX 12-Cores with an NVIDIA GeForce RTX 3090 Ti with 24 GB
of memory. We note that we currently do not leverage multiprocessing to the amount possible in
practice i.e. currently we first do tracking and then mapping i.e. there is no simultaneous tracking and
mapping. This is, however, straightforward to include, which should further speed up the runtime.

kfcov, kfm 0.95, 0.04 0.90, 0.08 0.85, 0.08 0.80, 0.12 0.70, 0.16 0.60, 0.20 0.50, 0.30

Reconstruction

Render Depth L1 ↓ 2.90 2.94 2.97 3.08 3.37 3.53 4.78
Accuracy ↓ 1.99 1.94 2.06 2.04 2.54 3.20 6.20
Completion ↓ 3.78 3.76 3.79 3.77 3.86 3.93 5.23
Comp. Rat. ↑ 85.47 85.58 85.39 85.53 85.03 84.33 80.38

Rendering PSNR ↑ 32.25 31.65 31.31 30.59 30.12 29.25 27.59

Runtime FPS ↑ 1.24 1.45 1.62 2.02 2.50 3.03 3.67

Table 19: Keyframe Hyperparameter Search on Replica Straub et al. (2019) room 0. By
changing the keyframe selection hyperparameters, we can speed up our runtime without impacting
reconstruction and rendering too much. We evaluate the rendering performance on the same set of
frames for all runs. In comparison, with the default kfcov = 0.95, kfm = 0.04, MonoGS Matsuki et al.
(2023) yields PSNR: 26.12 and render depth L1: 17.38 cm.

2.8 ADDITIONAL QUALITATIVE RECONSTRUCTIONS

In fig. 6 we show additional qualitative results from the Replica dataset on normal shaded meshes.
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GlORIE-SLAM∗ MonoGS Splat-SLAM (Ours) Ground Truth
Zhang et al. (2024) Matsuki et al. (2023)

Figure 6: Reconstruction Results on Replica Straub et al. (2019). Our method improves upon
the geometric accuracy compared to existing works, when observing the normal shaded meshes. In
particular, GlORIE-SLAM suffers from floating point artifacts. MonoGS suffers badly from a lack of
proxy depth, despite multiview optimization.
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