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The supplementary material is organized as follows.
Sec. 1 details the point recovery from coordinate permuta-
tions [13] and how we estimate which of the coordinates is
swapped to transform the recovery from coordinate permu-
tations into a recovery from lines. Sec. 2 recalls the descrip-
tor ambiguity in paired-point lines obfuscations [9] and how
neighborhood information is used to assign descriptors to
their original points. Sec. 3 reports results on the indoor 12-
scenes [20] dataset as announced in Section 6. These results
are consistent with the ones on the indoor 7-scenes [17]
dataset. We also report the geometric and perceptual evalu-
ation for all 3D obfuscations, including the random line ob-
fuscation OLC [18] and the PPL+ variant of the pair-point
lifting [9], that are left out of the main paper for the sake of
brevity. Additionally, we also provide visual examples of
the estimated neighborhood graph on two scenes from the
ScanNet++ [22] dataset. Sec. 4 provides additional imple-
mentation details related to the nearest-neighbor learning
and the image inversion from 2D points.

1. Coordinate permutation - Predicting
swapped coordinate

As mentioned in Sec.4 of the paper, the coordinate permuta-
tion obfuscation is equivalent to obfuscating the points with
multiple lines (2 in 2D, 3 in 3D) that are axes-aligned and
pass through the obfuscated point O(x). It should be re-
called that this is done for the computational feasibility of
the proposed approach as explained in the main paper. Be-
fore running the proposed recovery method on these lines,
we discard some of the lines so that for each point, only one
of the two or three lines remains. The remaining line should
follow the direction along which the point has been moved.
Identifying such a line amounts to estimating which of the
coordinates of the obfuscated points have been swapped.

*Equal Contribution.

Figure 1. Illustration of the Coordinate Swap Inversion. The
green points represent the true original points that form a neigh-
borhood. One coordinate of each point is swapped with that of
another point in the image (not shown here for brevity) to result
in the blue/pink points. Note that points shifted along the y-axis
(pink) form a cluster around the same x-value and similarly points
shifted along the x-axis form a cluster around the same y-value.
This idea is used to estimate the swapped coordinates of the mem-
bers of a neighborhood.

We now describe how to identify such a line, i.e., how to
identify the swapped coordinate.

For each point, we predict the swapped coordinate, cor-
respondingly the line along which the original point is esti-
mated to lie, using neighborhood information. Our method,
as illustrated in Fig. 1, is based on the observation that if
one arbitrary coordinate of the points in a neighborhood
is changed, then the obfuscated points (ones with swapped
coordinates) remain close to each other along the remain-
ing dimensions (the coordinates that were not swapped). In
practice, given a set of obfuscated points that are known to
be neighbors, we iterate through each point and compute
its distances to all other points in the neighborhood along
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each axis. We identify the axis which has relatively larger
cumulative distances as the estimated line direction. For ex-
ample, in Fig. 1, the green points show the original points in
a neighborhood, and the set of blue and pink points together
form the set N (O(x)) of obfuscated neighbors. Then, if we
consider the blue point numbered 4, it has small distances
along the y-axis to the blue points 2 and 6 but relatively
larger distances along the x-axis to all points. It is therefore
estimated to have been moved along the x-axis. We make
this approach robust with voting, i.e., we visit the neighbor-
hood of all points and accumulate the estimated direction
for each point over all visits. In the end, we select the direc-
tion with the most votes for each point.

2. Descriptor Assignment for Paired-Point-
Lines

The point-paired 3D line obfuscations, PPL and PPL+ [9],
transform the point cloud into a line cloud by generating
lines joining random pairs of 3D points. This approach
has several advantages one of which is the confusion over
feature descriptors. With the line joining two points, it
also holds two descriptors, each associated with one point.
While the neighborhood-based recovery estimates the posi-
tion of the two original points on the line, the descriptors
still need to be assigned to each of the points to enable the
inversion attack [15]. We provide a more formal definition
of the problem and its solution.

Problem Definition: In the paired-point setting, one line
holds two descriptors and the point recovery relies on two
sets of neighboring lines (one for each obfuscated point).
Each set of neighboring lines is used independently to esti-
mate the position of one obfuscated point. We then want to
associate each estimated point with one of the two descrip-
tors on the line.

Solution: We first note that there is a bijection between
an estimated point and a set of neighboring lines. Assigning
a descriptor to an estimated point is then equivalent to as-
signing a descriptor to a set of neighboring lines. The intu-
ition behind the proposed method is to assign each descrip-
tor to one of the two sets of neighboring lines. To choose
between the possible assignments, we assign the descriptor
to the most ‘similar’ set of neighboring lines, i.e., the set of
lines with the most similar descriptors. We define the dis-
tance between a descriptor and a set of neighboring lines
as the sum of the distances between the descriptor to be as-
signed and the descriptor of each neighboring line. To deal
with the fact that the neighboring lines also hold two de-
scriptors, we chose to only count the distance to the closest
of the two descriptors of a given neighboring line. In prac-
tice, we compute 4 such distances between each of the two
descriptors to be assigned and each of the two sets of neigh-
boring lines. Each descriptor is assigned to one set so that
the cumulative distance of the assignment is minimized.

Note that the derivation only takes as input the lines, the
pair of descriptors on each line, and the neighborhood set.
The position of the points, whether original or estimated, is
never used.

3. Additional Results
As a reminder, the geometric evaluation measures how
close the points recovered from the obfuscations are to the
original points. We measure the accuracy of the recovered
points as the ratio of points which Euclidean distance to the
original ones is below a given threshold in cm in 3D, and in
pixels in 2D. The perceptual evaluation measures how close
the images inverted [15] from the points recovered from the
obfuscations are to the images inverted from the original
points. We report three metrics that measure the similarity
between images: the Structural Similarity Index Measure
(SSIM), the Peak-to-Signal Noise Ratio (PSNR), and the
Learned Perceptual Image Patch Similarity [23] (LPIPS).
Geometric Evaluation of obfuscations in 2D. Tables 1
and 2 show results over the 12-scenes [20] dataset using Su-
perPoint [4] and SIFT [11] as the local features. The results
using SIFT on 12-scenes [20] follow the same trend as the
results for 7-scenes [17] shown in the main paper, with a rel-
ative difference of 1-8% in geometric accuracy. However,
the geometric accuracy of the recovered points is slightly
lower when using Superpoint [4] on 12-scenes [20]. We be-
lieve that this is because the keypoints are more sparsely
distributed on these images: i) the 12-scenes images are
larger (1296x968) than the 7-scenes [17] ones (640x480);
ii) SuperPoint [4] features are typically much sparser than
the SIFT [11] features, leading to a larger distance between
an obfuscated point and the points in the neighborhood.
Since the distance between an obfuscated points and its fur-
thest neighbor is an upper bound on the error of the recov-
ered point [2], a larger mean distance to the neighbors usu-
ally implies a decrease in the geometric accuracy. This sug-
gests that one way to prevent the proposed point recovery
is to use sparse keypoints but this may come at the cost of
lower localization performance. Also, we observe that us-
ing a smaller neighborhood size improves the accuracy for
SuperPoint [4] so sparsifying the points may not be enough
since tuning the parameters of the point recovery can com-
pensate for it. To keep the recovery parameters consistent
with the rest of the paper, we show all results for 2D obfus-
cations using K = 20 as the neighborhood size.
Perceptual Evaluation of obfuscations in 2D. Figures 12
and 13 show qualitative results for images inverted in indoor
scenes when using oracle-provided neighborhoods of dif-
ferent qualities and SIFT [11] features. It is clear that iden-
tifiable scene content is revealed even for neighborhoods
of inlier ratio 0.2 in case of lifting to random lines [19].
With coordinate permutations [13], the scene remains more
private and we observe that the performance bottleneck of



the point recovery lies in the preprocessing step that esti-
mates which coordinate is swapped using the neighborhood
information. Still, neighborhoods with inlier ratios of 0.5
or more are enough for the point recovery to successfully
reveal the content of the scene. Figures 10 and 11 show
similar results for outdoor scenes from the Cambridge [7]
dataset.
Geometric Evaluation of other 3D obfuscations. In the
main paper, we report results only for a subset of 3D geo-
metric obfuscations because of the page limits: the paired-
point lines PPL [9], the Ray clouds [12], the plane obfus-
cation [6] and the point permutation [13]. We complete
these results with the evaluation of the random-line obfusca-
tion [18] and the PPL+ variant of the paired-point lines [9]
on the two indoor datasets, 7-scenes [17] and 12-scenes [20]
and the outdoor dataset Cambridge [7] in Tables 3, 4, 5. The
3D models are generated with Structure-from-Motion [16]
from SIFT [11] features, except for 7-scenes [17] for which
additional comparisons are run with the learning-baed Su-
perPoint [4] features.

As already observed in the main paper, the 3D line ob-
fuscations OLC [18], PPL [9], PPL+ [9] and ray clouds [12]
are the most susceptible to the point recovery, even when the
neighborhood information is not reliable: more than 90% of
the points can be recovered with less than 10cm errors even
when only 50% of the nearest neighbor information is cor-
rect. The image inversion from points recovered with only
10% of inliers in the neighborhood still reveals the content
of the original images, as can be seen in the last row of
the Figures 2, 3, 4, 5. Out of the 3D line obfuscations,
the most recent ray clouds appear to be the most privacy-
preserving with the geometric accuracy dropping more as
the inlier ratio of the neighborhoods decreases but the out-
line of the scene remains recognizable in the inverted im-
ages. The point recovery also works on the plane [6] and
point-permutation [13] obfuscations but requires more reli-
able neighborhood information than for the 3D line obfus-
cations: the recovery is less accurate when the NN inlier
ratio goes between 50% and 30%, which typically prevents
meaningful image inversion.
3D Point-Paired-Line Obfuscations: PPL and
PPL+ [9]. The point-paired line obfuscations, PPL
and PPL+ [9], operate in 3D and transform the point cloud
into a line cloud by generating lines joining random pairs
of 3D points. PPL+ is an extension of PPL that discourages
lines to be formed between two points that lie on the same
plane for two reasons: i) such lines could give hints on
the scene structure, e.g., if the scene is a long corridor; ii)
such lines are more vulnerable to density attacks [2] as the
distribution of line distances used to derive neighbors is
more characteristic around each hidden points.

In our experiments, we observe that the performance of
the proposed point recovery is equivalent between PPL and

PPL+ as shown by the close geometric accuracies in Ta-
bles 3, 4, 5. These results are consistent with the original
PPL paper [9] where both PPL and PPL+ are recovered with
similar errors by the density-based recovery [2]. One advan-
tage of PPL over PPL+, though, is its faster runtime: PPL+
keeps drawing point-paired lines as long as the plane condi-
tion is not satisfied or until a certain number of iterations is
reached. When PPL can terminate in a matter of minutes on
a small indoor point cloud typical of 12 scenes [20], PPL+
can take several hours.
Perceptual Evaluation of other 3D obfuscations. In the
main paper, we reported only SSIM for the sake of clarity
since the three metrics exhibit the same trend over all ob-
fuscations and inlier ratios. For the sake of completeness,
we additionally report the SSIM and PSNR values for all
3D obfuscations on 7-scenes [17] (Table 6), 12-scenes [20]
(Table 7), and Cambridge [7] (Table 8). To keep the table
readable, we report values only for PPL [9] as the PPL+ [9]
perceptual metrics are either equal or within 0.01 difference,
which is negligible.

Similarly to the geometric evaluation, the recovery from
the line obfuscations OLC [18], PPL [9] and ray clouds [12]
is stable across the inlier ratio of the neighborhood informa-
tion whereas the recovery from the plane [6] and the point
permutation [13] is more sensitive to incorrect neighbors
between 50% and 30% inlier ratios.
Comparison to other 3D line recoveries. We compare
the proposed point recovery to the existing density-based
recoveries in [2] and [9] that operate on 3D lines only (Ta-
ble 9). These methods estimate the neighborhood of a given
3D line based on the density of all lines in the cloud and the
original point is approximated with the position of highest
density along the line. We observe that our method largely
outperforms those baselines even with as little as 20% in-
lier ratio in the neighborhood information necessary for our
recovery.

However, we note that the results for [9] computed with
the author’s public release seem subpar to the results re-
ported in the paper so this comparison should be taken as
an indicative result only. We believe that this discrepancy
in the results is not due to a technical issue in the method
or the code of [9] but rather the difference in input data: the
point clouds we generated and the points clouds of [9] are
most likely different because of variations in the Structure-
from-Motion [16], e.g., because of differences in the param-
eters or the randomness of the robust geometric estimation.
To reduce the potential discrepancy in the input data and for
this experiment only, we use the point clouds used in [2] to
run this evaluation instead of the point clouds we generated
for the rest of the paper. However, discrepancies between
the input data used in [2] and [9] remain and this is why
these results should be taken as indicative results only.
Influence of the features on the point recovery in 3D. We



SuperPoint [4] SIFT [11]

CP [13] Lines [19] CP [13] Lines [19]

In. 5px 10px 25px 5px 10px 25px 5px 10px 25px 5px 10px 25px

1.0 12.9 24.43 52.8 13.5 26.4 56.6 42.7 67.2 89 41.3 66.8 89.6
0.75 14.5 27.4 56.5 15.8 30.7 62.42 43.8 69.1 89.7 42.9 69.6 91.5
0.50 14.4 26.4 52.4 18.5 35.6 69.1 40 64 82.1 43.7 71.7 93.3
0.30 8.68 15.98 30.72 19.7 38.0 71.6 20.1 33.1 43.9 41.5 69.8 91.9
0.20 4.93 9.1 17.7 17.5 33.8 63.0 9.0 14.9 21.8 34.2 58.6 79.0
0.10 2.35 4.39 9.06 9.09 17.4 32.7 3.2 5.5 9.7 15 25.5 37.7

Table 1. Geometric accuracy of the point recovery from 2D obfuscations on the 12-scenes [20] dataset using two different features :
SuperPoint [4] and SIFT [11]. The geometric accuracy, i.e., the fraction of recovered points with an error lower than a given threshold,
is lower in general as compared to results over 7Scenes [17] because of the larger image sizes in the 12-scenes [20] dataset - 1296x968
as compared to 640x480. Further, SuperPoint [4] features are typically much sparser than SIFT features, increasing the average distance
to neighbors. The average number of SuperPoint [4] features per image in our experiment was around 312 as compared to 1412 for
SIFT [11]. This suggests that one way to prevent the proposed point recovery is to use sparse keypoints but this may come at the cost of a
lower localization performance.

SuperPoint [4] SIFT [11]

CP [13] Lines [19] CP [13] Lines [19]

In. SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑

Baseline 0.55 0.48 15.5 0.55 0.48 15.5 0.60 0.55 14.6 0.60 0.55 14.6

1.0 0.42 0.6 13.5 0.42 0.59 13.8 0.52 0.63 14 0.51 0.64 14.1
0.75 0.41 0.60 13.4 0.42 0.59 13.9 0.51 0.64 13.9 0.51 0.64 14.1
0.50 0.39 0.61 12.9 0.43 0.58 14.1 0.49 0.66 13.3 0.52 0.63 14.3
0.30 0.37 0.63 12.2 0.43 0.58 14.0 0.43 0.70 12.0 0.52 0.64 14.2
0.20 0.37 0.64 11.9 0.41 0.6 13.7 0.41 0.72 11.5 0.49 0.65 13.6
0.10 0.36 0.65 11.6 0.35 0.63 12.8 0.41 0.73 11.2 0.41 0.70 11.9

Table 2. Perceptual accuracy of the point recovery from 2D obfuscations on the 12-scenes [20] dataset using SuperPoint [4] and
SIFT [11]. Baseline refers to the similarity score between the real image and the image inverted from the original points. The results
follow the same trends as that for 7-scenes [17] shown in the main paper.

assess whether the performance of the point recovery de-
pends on the type of features extracted from the images and
used for the Structure-from-Motion [16] that generates the
3D point cloud. We compare the hand-crafted SIFT [11]
and the deep-learning-based SuperPoint [4] and report the
geometric accuracy on 7-scenes [17] in Tab. 3. The per-
formance of the point recovery is consistent between the
3D models generated from SuperPoint [4] and SIFT [11]
with variations in geometric accuracy in the order of a few
percent. This shows that the method is insensitive to the
features used to generate the 3D model, which is not that
surprising given that the optimization in the point recovery
relies on the geometry only.

Qualitative Results. Further examples of images inverted
from the points recovered from various obfuscations are
shown in Figures 2, 3, 4, 5 on 7scenes [17], and in Fig-
ures 6, 7, 8, 9 on Cambridge [7].

Detected content. In addition to the previous percep-
tual evaluation, we measure the recovered information at
the finer level of objects and adopt the SegLoc’s evalua-
tion [14]. An off-the-shelf object detector, YoloV7 [21],
runs on both the images inverted from the original points
and the recovered points. The discrepancy between the two
sets of detections is a relevant proxy to measure how much
content is recovered. We report the standard detection met-
ric in Table 11 where the detections on the real images are
used as ground-truth and the detections on the images in-
verted from the original points clouds are the baseline. For
the sake of clarity, we only report here the recall of the
detection for it indicates the amount of objects discovered
by the attack, which is more relevant than the precision at
which the object is discovered. These values are indicative
only as when we appraise the inverted images visually, it
often occurs that the inverted images is decipherable by the



OLC [18] PPL [9] PPL+ [9] Rays [12] Plane [6] CP [13]
SI

FT
[1

1]

In. 10cm 25cm 10cm 25cm 10cm 25cm 10cm 25cm 10cm 25cm 10cm 25cm

1.0 96.1 98.6 94.6 97.3 94.8 97.4 94.6 97.9 93.4 97.5 88.2 94.5
0.75 96.0 98.2 94.7 97.1 94.9 97.3 93.3 96.8 93.0 97.0 89.1 95.8
0.50 96.2 98.2 95.0 97.2 95.1 97.3 91.9 95.7 82.8 88.7 67.7 75.0
0.30 96.4 98.2 94.8 97.1 94.9 97.2 86.2 90.5 42.1 60.4 40.9 46.2
0.20 96.3 98.2 94.0 96.8 94.1 96.9 78.7 83.6 20.9 39.6 31.1 35.1
0.10 92.5 96.1 78.2 84.5 78.3 84.7 49.9 57.1 7.5 20.7 22.8 26.2

OLC [18] PPL [9] Rays [12] Plane [6] CP [13]

Su
pe

rP
oi

nt
[4

]

In. 10cm 25cm 10cm 25cm 10cm 25cm 10cm 25cm 10cm 25cm

1.0 98.3 99.7 96.9 99.0 94.7 98.2 95.6 99.0 89.8 96.1
0.75 98.2 99.6 97.2 99.0 93.3 97.2 95.1 98.8 90.4 97.6
0.50 98.5 99.6 97.3 99.1 91.9 96.2 82.3 90.5 66.5 74.8
0.30 98.6 99.6 96.6 98.8 85.8 91.1 40.8 63.4 39.8 45.8
0.20 98.5 99.6 94.8 97.8 77.7 83.8 21.8 44.1 30.4 35.3
0.10 93.5 97.0 72.7 80.5 47.3 55.9 9.6 28.3 21.7 26.0

Table 3. Geometric accuracies ↑ of the 3D point recovery on the indoor 7-scenes [17] with SIFT [11] and SuperPoint [4]. The
point clouds are generated with Structure-from-Motion [16]. The performance of the point recovery is consistent between the 3D models
generated from SuperPoint and SIFT [11] with variations in geometric accuracy in the order of a few percent, up to 8% with the worst
inlier ratio of 0.1. This shows that the method is insensitive to the features used to generate the 3D model, which is not that surprising
given that the optimization in the point recovery relies on the geometry only. The line obfuscations OLC [18], PPL [9], PPL+ [9] and
Ray clouds [12] are the most susceptible to the recovery, even when the neighborhood information is not reliable. The point recovery also
works on the plane [6] and point-permutation [13] obfuscations but requires more reliable neighborhood information than for the previous
obfuscation.

OLC [18] PPL [9] PPL+ [9] Rays [12] Plane [6] CP [13]

In. 10cm 25cm 10cm 25cm 10cm 25cm 10cm 25cm 10cm 25cm 10cm 25cm

1.0 99.2 99.8 98.8 99.6 98.4 99.1 97.7 99.2 99.0 99.7 92.3 96.2
0.75 99.3 99.8 98.8 99.6 98.9 99.6 95.0 97.7 97.4 98.2 94.2 98.9
0.50 99.3 99.8 98.6 99.6 98.8 99.6 93.3 97.3 79.3 84.2 72.7 79.7
0.30 99.4 99.8 97.8 99.5 98.2 99.5 91.5 96.5 38.5 54.0 39.6 44.2
0.20 99.3 99.8 96.0 98.7 96.8 99.0 88.4 94.0 20.0 36.1 27.6 31.0
0.10 98.6 99.7 85.6 90.8 87.5 92.1 71.1 78.4 8.0 20.2 18.5 21.8

Table 4. Geometric accuracies ↑ of the 3D point recovery on the indoor 12-scenes [20] with SIFT [11]. The conclusions are consistent
with the results on the other indoor dataset 7-scenes [17] reported in Table 3: the line obfuscations OLC [18], PPL [9], PPL+ [9] and
Ray clouds [12] are the most susceptible to the recovery, even when the neighborhood information is not reliable (e.g.10%), whereas the
plane [6] and point-permutation [13] are not recovered reliably as soon as the inlier ratio in the neighborhood information drops.

human eye but the detection fails to identify the objects be-
cause of the domain shift and the noise of the image. Hence,
the detection performance tends to over-estimate the privacy
of the evaluated representations.

4. Implementation Details

Geometric Recovery and Runtime. The point recovery
runs within a reasonable amount of time: the minimiza-

tion is implemented using the open-source Ceres [1] op-
timization library and runs in parallel on a single CPU.
The runtime is a function of the number of points in the
point cloud or the image, the inlier ratio, the neighborhood
size, and the maximum number of RANSAC [5] iterations:
the more points and the larger the neighborhood, the more
time the computation takes. In parallel, the higher the in-
lier ratio, the lower the runtime as the optimal number of



OLC [18] PPL [9] PPL+ [9] Rays [12] Plane [6] Perm. [13]

In. 25cm 50cm 25cm 50cm 25cm 50cm 25cm 50cm 25cm 50cm 25cm 50cm

1.0 74.4 87.6 69.2 83.2 69.5 83.3 72.1 83.6 65.2 81.1 65.3 81.0
0.75 71.6 84.7 66.9 80.4 67.7 80.8 72.9 83.1 56.2 67.7 66.3 82.0
0.50 71.6 83.4 67.2 79.3 67.7 79.6 74.4 84.1 33.2 38.5 61.4 72.5
0.30 72.5 83.2 68.2 78.8 68.5 79.0 75.5 84.8 15.0 17.1 35.4 40.6
0.20 73.5 83.1 69.0 78.4 69.2 78.6 75.0 84.2 8.1 9.4 24.1 27.2
0.10 72.7 80.2 69.1 76.2 69.3 76.4 63.8 72.7 2.9 3.8 16.5 18.2

Table 5. Geometric accuracies ↑ of the 3D point recovery on the outdoor Cambridge [7] dataset with SIFT [11]. The same trend is
observed outdoors as it is indoors, i.e., the line obfuscations OLC [18], PPL [9], PPL+ [9] and Ray clouds [12] are the most susceptible to
the recovery, even when the neighborhood information is not reliable (e.g.10%), whereas the plane [6] and point-permutation [13] are not
recovered reliably when the inlier ratio drops too low. Although the geometric accuracy values are lower than for indoor and measured at
higher error thresholds, the images inverted from the recovered points remain meaningful as shown in Figures 6, 7, 8, 9.

LPIPS↓ Baseline: 0.52 SSIM↑ Baseline: 0.58 PSNR↑ Baseline: 16.01

In. OLC PPL Ray Plane CP OLC PPL Ray Plane CP OLC PPL Ray Plane CP

1.0 0.53 0.53 0.53 0.55 0.55 0.58 0.57 0.57 0.55 0.56 15.9 15.8 15.8 15.5 15.6
0.75 0.53 0.54 0.54 0.56 0.55 0.57 0.57 0.57 0.54 0.55 15.9 15.7 15.8 15.3 15.5
0.50 0.53 0.55 0.54 0.60 0.59 0.57 0.56 0.56 0.49 0.51 15.8 15.6 15.7 14.4 14.7
0.30 0.54 0.55 0.55 0.64 0.63 0.57 0.55 0.56 0.44 0.45 15.8 15.4 15.5 13.0 13.1
0.20 0.54 0.56 0.56 0.66 0.65 0.57 0.54 0.54 0.43 0.43 15.8 15.2 15.3 12.1 12.6
0.10 0.54 0.59 0.60 0.68 0.66 0.56 0.51 0.50 0.42 0.41 15.7 14.4 14.3 11.5 12.2

Table 6. Perceptual metrics of the 3D point recovery on the indoor 7-scenes [17] with SIFT [11]: the metrics assess how close the
image inverted [15] from the points recovered from the obfuscations is to the image inverted [15] from the original points. As for the
geometric evaluation, the recovery from the line obfuscations OLC [18], PPL [9] and Ray cloud [12] is stable across the inlier ratio of the
neighborhood information whereas the recovery from the plane [6] and the point permutation [13] is more sensitive to incorrect neighbors.

RANSAC [5] iterations is inversely proportional to the in-
lier ratio. For example, the biggest point cloud in the exper-
iments has 700K points (12-scenes-office1-gates-381 [20]).
In a setup with 100 neighbors and an upper bound on the
number of RANSAC [5] iterations set to 10K, the runtime
varies between 1 minute 30 s when there are no outliers in
the neighborhood up to 4 minutes for inlier ratios between
75% and 20%, on a single AMD EPYC CPU with 64 cores.
Table 10 gives more runtime examples as a function of the
point cloud size and inlier ratios.

Point Initialization. We observe that the point recovery is
insensitive to the point initialization and use the following
heuristics in the paper.

For 3D lines [9, 12, 18] and 3D lines made from 3D per-
mutation [13], the 3D points to recover are initialized as
the projection of a 3D point ”anchor” onto the lines. The
3D anchor is defined as follows: the 3D lines are projected
onto a plane. We sample a set of intersections between the
resulting 2D lines and compute their 2D centroid, which we
use as the anchor. In the paper, we use the plane z = 0

so the centroid has the form (x, y, 0) and randomly sample
10K intersection points. Note that the choice for the plane
z = 0 does not necessarily correspond to the ground-plane
as the coordinate frames of the scenes are chosen arbitrarily
by the authors of the datasets.

The initialization in 2D follows the same steps except
that the 2D lines already intersect so there is no need to
project them onto a plane.

For planes, we also project a 3D ”anchor” point onto
each plane but the anchor point is built differently: it is de-
fined as the 3D point which coordinates are the average of
the planes’ offsets associated with that axis, i.e., the x co-
ordinate is the average of offsets c of all planes of the form
x = c.
NN Learning. The recovery of the points hidden by ob-
fuscated representations assumes that the original points’
neighborhood information is available, i.e., one knows
which obfuscations hide points that are close to each other.
The main experiments are run using an oracle that produces
neighborhoods with various levels of inlier ratios to allow



LPIPS↓ Baseline: 0.52 SSIM↑ Baseline: 0.58 PSNR↑ Baseline: 16.01

In. OLC PPL Ray Plane CP OLC PPL Ray Plane CP OLC PPL Ray Plane CP

1.0 0.56 0.57 0.57 0.58 0.58 0.49 0.49 0.48 0.48 0.47 14.6 14.5 14.3 14.3 14.3
0.75 0.57 0.57 0.58 0.60 0.58 0.49 0.48 0.48 0.44 0.47 14.6 14.5 14.3 13.9 14.2
0.50 0.57 0.58 0.58 0.64 0.61 0.49 0.48 0.47 0.40 0.43 14.5 14.4 14.3 12.9 13.3
0.30 0.57 0.58 0.58 0.66 0.65 0.49 0.47 0.47 0.36 0.38 14.5 14.3 14.2 11.8 12.1
0.20 0.57 0.59 0.58 0.67 0.66 0.49 0.47 0.47 0.35 0.36 14.5 14.2 14.2 11.3 11.6
0.10 0.57 0.60 0.60 0.69 0.67 0.49 0.45 0.45 0.34 0.34 14.5 13.8 13.8 10.8 11.2

Table 7. Perceptual metrics of the 3D point recovery on the indoor 12-scenes [20] with SIFT [11]: the metrics assess how close the
image inverted [15] from the points recovered from the obfuscations is to the image inverted [15] from the original points. As for the
geometric evaluation, the recovery from the line obfuscations OLC [18], PPL [9] and Ray cloud [12] is stable across the inlier ratio of the
neighborhood information whereas the recovery from the plane [6] and the point permutation [13] is more sensitive to incorrect neighbors.

LPIPS↓ Baseline: 0.52 SSIM↑ Baseline: 0.58 PSNR↑ Baseline: 16.01

In. OLC PPL Ray Plane CP OLC PPL Ray Plane CP OLC PPL Ray Plane CP

1.0 0.64 0.64 0.63 0.64 0.64 0.37 0.36 0.37 0.36 0.36 12.8 12.7 12.8 12.7 12.7
0.75 0.64 0.64 0.63 0.66 0.64 0.36 0.36 0.37 0.34 0.36 12.7 12.6 12.8 12.2 12.7
0.50 0.64 0.64 0.63 0.67 0.66 0.36 0.36 0.37 0.32 0.34 12.6 12.6 12.8 11.6 12.2
0.30 0.64 0.64 0.63 0.69 0.69 0.36 0.36 0.37 0.31 0.29 12.6 12.5 12.8 10.9 11.2
0.20 0.64 0.65 0.64 0.70 0.70 0.36 0.36 0.37 0.31 0.27 12.5 12.5 12.7 10.5 10.8
0.10 0.65 0.65 0.65 0.71 0.70 0.34 0.35 0.35 0.30 0.26 12.3 12.4 12.4 10.3 10.6

Table 8. Perceptual metrics of the 3D point recovery on the outdoor Cambridge [7] with SIFT [11]: the metrics assess how close the
image inverted [15] from the points recovered from the obfuscations is to the image inverted [15] from the original points. Similarly to the
geometric evaluation, the recovery from the line obfuscations OLC [18], PPL [9], and Ray clouds [12] is stable across the inlier ratio of the
neighborhood information whereas the recovery from the plane [6] and the point permutation [13] is more sensitive to incorrect neighbors.

Recovery OLC 3D lines PPL 3D lines
5 / 10 / 25 cm 5 / 10 / 25 cm

OLC Rec. [2] 67.5 / 75.8 / 84.0 −
PPL Rec. [9] − 34.85 / 48.71 / 63.16
Ours 50% In. 94.6 / 99.3 / 99.9 89.7 / 98.2 / 99.5
Ours 20% In. 91.7 / 99.1 / 99.8 82.1 / 93.9 / 97.4

Table 9. Comparison against 3D line recovery baselines. Ge-
ometric accuracy ↑ of the recovery from 3D obfuscations against
baseline methods [2, 9] on 12-scenes. The recoveries are run on
the same 12scenes [20] point clouds as in [2], which differ from
the point clouds used in the rest of the paper that we generated
ourselves with COLMAP [16] or from the points clouds from [9].

for the evaluation of the robustness of the recovery against
inaccurate neighborhood information. In parallel, we show
that the descriptors preserved by the geometric obfuscation
hold enough information to infer the neighborhood neces-
sary for the recovery. To do so, we train a transformer-based
network to learn a similarity score between all pairs of de-
scriptors that is inversely proportional to the distance be-

Num. Pts In 1.0 In 0.50 In 0.30 In 0.20 In 0.10
700K 0:41 0:51 1:30 4:00 18:00
300K 0:19 0:24 0:45 1:20 9:00
100K 0:08 0:10 0:19 0:46 3:40

Table 10. Indicative runtime as a function of the number of 3D
points (Num.Pts) and inlier ratios (In.) for the recovery from the
PPL [9] obfuscation with 50 neighbors. The 3D points cloud is
generated from SfM [16] on SIFT [11] features. X:Y indicates
that the runtime takes X minutes and Y seconds. The theoretical
number of RANSAC [5] in the optimization is inversely propor-
tional to the inlier ratio, hence the longer runtimes as the inlier
ratio decreases. Still, the runtime remains small enough that the
point recovery is practical for an attacker. The recovery runs on a
single AMD EPYC CPU with 64 cores.

tween the original points. A simple nearest-neighbor search
using the learned similarity lets us infer nearest-neighbor
points.

The network is made of 6 self-attention blocks with
4 heads. Prior to being fed to the attention blocks, the



3D 2D

Object Baseline PPL Plane Perm. Baseline Line Perm.

TV 19.5 11.4 / 15.3 5.6 / 13.5 7.1 / 13.6 16.0 7.0 / 5.8 2.4 / 5.0
Backpack 21.1 11.7 / 17.5 3.6 / 5.1 8.8 / 8.0 14.6 1.5 / 0.7 0 / 1.4
Plant 23.0 10.5 / 25.4 5.7 / 25.4 5.7 / 22.9 34.4 17.2 / 13.1 9.8 / 16.4

Table 11. Private content detected on the images inverted from the recovered point. The original points are derived from SIFT [11].
The detection [21] on the original images serves as ground-truth and the baseline indicates the performance of the detection on the images
inverted from the original points. We report the detection recall ↑ on points recovered from neighborhood information at inlier ratios
(0.50 / 1.0). Even though the recall of the images inverted from obfuscations is lower than the baseline, we observe that this evaluation
under-estimate the amount of private content that is revealed. This is because the off-the-shelf detector is typically subpar on the inverted
images: it fails to detect objects that the human eye can still perceive, which is usually because of the distribution shift in the image pixels
or because of the noise in the image.

input descriptor is first projected onto a 256-dimension
space with an MLP. The SIFT-variant of the network is
trained on SIFT [11] features extracted from 97K images
sampled from all the scenes of the ScanNet dataset [3].
The SuperPoint-variant of the network is trained on Super-
point [11] features extracted from 309K images sampled
from 184 scenes of the ScanNet dataset [3]. The network
is trained with a batch size of 16 for 10 epochs, with the
Adam [8] optimizer with an initial learning rate of 5 · 10−4

with a learning rate decay of 10% starting the 3rd epoch and
stopping once the learning rate reaches 10−5.

Image inversion from Points. We used different inversion
networks on the 2D and 3D structures to generate the im-
ages from the recovered points. In 3D, we use the off-the-
shelf inversion network provided by Pittaluga et al. [15].
In 2D, we train a new model with the CoarseNet and Re-
fineNet models of [15] in conjunction. The input to the
network is a set of keypoints with associated descriptors
only. A loss function that fuses the L1 pixel loss and the
LPIPS [23] perceptual loss is used, with 0.2 and 0.8 as their
corresponding weights. We train two different variants for
indoor and outdoor scenes. The indoor model is trained on
200 scenes from the ScanNet [3] dataset and the outdoor
variant is trained on 150 scenes of Megadepth [10]. Note
that we do not use any of these two datasets for any evalua-
tion.

Visualizing Estimated Neighbors. As an additional way
to to evaluate the quality of the estimated neighborhood, we
draw the neighborhood graph on top of the images in Fig-
ures 14 and 15. SuperPoint [4] keypoints form the nodes of
the graph and the graph has an edge between each point and
its top-5 nearest neighbors estimated by our neighborhood
estimation network (Sec. 5 of the main paper). We use two
scenes taken from the ScanNet++ [22] dataset showing a
bedroom and an office. The accuracy of our proposed point
position estimation depends on the distance of the nearest
neighbors used – the error in estimation increases if points

that are far apart are considered as neighbors. We there-
fore color the edges green if the distance between the corre-
sponding nodes is less than a threshold and red otherwise.
We use ϵ = 0.1 ∗ min(h,w) as the threshold where h,w
are the height and width of the image. It is worth noting
that in regions of images with more texture, such as texts,
paintings, and other distinct objects, the keypoint density
is high and the quality of estimated neighbors is also high.
These are regions typically containing private user content.
In texture-less parts of the scene, such as floors, walls and
ceilings, the keypoints are sparse and their local regions are
visually less distinct, making neighborhood estimation dif-
ficult, as illustrated by several red edges. However, often
such regions do not contain information that is private to the
user. Measures such as SSIM and PSNR treat all parts of the
image equally, whereas from a privacy point of view, recov-
ering certain parts of the image with good detail is enough to
deem the method as not privacy-preserving. More nuanced
methods to measure the privacy aspect of inverted images
are therefore needed.
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Figure 2. Additional Qualitative Results - 7-scenes [17]-Chess. Images inverted [15] from the original points (‘Baseline’) and the
points recovered from the 3D obfuscations from neighborhood information with various levels of inlier ratios (In.). Line obfuscations
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Figure 3. Additional Qualitative Results - 7-scenes [17]-Redkitchen. Images inverted [15] from the original points (‘Baseline’) and
the points recovered from the 3D obfuscations from neighborhood information with various levels of inlier ratios (In.). Line obfuscations
(OLC) [18, 19], Point-Pair-Lines PPL and PPL+ [9] and ray clouds [12] are the most vulnerable to neighborhood-based attacks while
Planes [6] and Permutations [13] are more privacy preserving. The 3D points cloud is generated from SfM [16] on SIFT [11] features.
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Figure 4. Additional Qualitative Results - 7-scenes [17]-Office. Images inverted [15] from the original points (‘Baseline’) and the
points recovered from the 3D obfuscations from neighborhood information with various levels of inlier ratios (In.). Line obfuscations
(OLC) [18, 19], Point-Pair-Lines PPL and PPL+ [9], and ray clouds [12] are the most vulnerable to neighborhood-based attacks while
Planes [6] and Permutations [13] are more privacy preserving. The 3D points cloud is generated from SfM [16] on SIFT [11] features.
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Figure 5. Additional Qualitative Results - 7-scenes [17] dataset, scene Fire. Images inverted [15] from the original points (‘Baseline’)
and the points recovered from the 3D obfuscations from neighborhood information with various levels of inlier ratios (In.). Line obfusca-
tions (OLC) [18, 19], Point-Pair-Lines PPL and PPL+ [9], and ray clouds [12] are the most vulnerable to neighborhood-based attacks while
Planes [6] and Permutations [13] are more privacy preserving. The 3D points cloud is generated from SfM [16] on SIFT [11] features.
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Figure 6. Additional Qualitative Results - Cambridge [7] dataset, scene Shop Facade. Images inverted [15] from the original points
(‘Baseline’) and the points recovered from the 3D obfuscations from neighborhood information with various levels of inlier ratios (In.).
Line obfuscations (OLC) [18, 19], Point-Pair-Lines PPL and PPL+ [9] and ray clouds [12] are the most vulnerable to neighborhood-based
attacks while Planes [6] and Permutations [13] are more privacy preserving. The 3D points cloud is generated from SfM [16] on SIFT [11]
features.
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Figure 7. Additional Qualitative Results - Cambridge [7] dataset, scene King’s College. Images inverted [15] from the original points
(‘Baseline’) and the points recovered from the 3D obfuscations from neighborhood information with various levels of inlier ratios (In.).
Line obfuscations (OLC) [18, 19], Point-Pair-Lines PPL and PPL+ [9], and ray clouds [12] are the most vulnerable to neighborhood-based
attacks while Planes [6] and Permutations [13] are more privacy preserving. The 3D points cloud is generated from SfM [16] on SIFT [11]
features.
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Figure 8. Additional Qualitative Results - Cambridge [7] dataset, scene Old Hospital. Images inverted [15] from the original points
(‘Baseline’) and the points recovered from the 3D obfuscations from neighborhood information with various levels of inlier ratios (In.).
Line obfuscations (OLC) [18, 19], Point-Pair-Lines PPL and PPL+ [9], and ray clouds [12] are the most vulnerable to neighborhood-based
attacks while Planes [6] and Permutations [13] are more privacy preserving. The 3D points cloud is generated from SfM [16] on SIFT [11]
features.
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Figure 9. Additional Qualitative Results - Cambridge [7] dataset, scene St. Mary’s Church. Images inverted [15] from the original
points (‘Baseline’) and the points recovered from the 3D obfuscations from neighborhood information with various levels of inlier ratios
(In.). Line obfuscations (OLC) [18, 19], Point-Pair-Lines PPL and PPL+ [9], and ray clouds [12] are the most vulnerable to neighborhood-
based attacks while Planes [6] and Permutations [13] are more privacy preserving. The 3D points cloud is generated from SfM [16] on
SIFT [11] features. The 3D points cloud is generated from SfM [16] on SIFT [11] features.



Figure 10. Additional Qualitative Results - Cambridge [17] dataset, scene King’s College. Images inverted from the original 2D
SIFT [11] keypoints and the points recovered from the 2D obfuscations using neighborhood information with various levels of inlier ratios
(In.).



Figure 11. Additional Qualitative Results - Cambridge [7] dataset, scene Shop Facade. Images inverted from the original 2D SIFT [11]
keypoints and the points recovered from the 2D obfuscations using neighborhood information with various levels of inlier ratios (In.).



Figure 12. Additional Qualitative Results - 12scenes [20] dataset, scene Office1-manolis. Images inverted from the SIFT [11] descriptors
and original 2D keypoints and the points recovered from the 2D obfuscations using neighborhood information with various levels of inlier
ratios (In.).



Figure 13. Additional Qualitative Results - 12scenes [20] dataset, scene Apt2-bed. Images inverted from the SIFT [11] descriptors
and original 2D keypoints and the points recovered from the 2D obfuscations using neighborhood information with various levels of inlier
ratios (In.).
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Figure 14. Neighborhood estimated from SuperPoint [4] descriptors: Images from scene 0a76e0647 from the ScanNet++ [22] showing
detected SuperPoint [4] keypoints and the neighborhood graph estimated using our network described in Sec. 5 of the main paper. Top-5
neighbors for each point have been plotted with edges colored green if the points are closer than a threshold and red otherwise.
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Figure 15. Neighborhood estimated from SuperPoint [4] descriptors: Images from scene 036bce3393 from the ScanNet++ [22]
showing detected SuperPoint [4] keypoints and the neighborhood graph estimated using our network described in Sec. 5 of the main paper.
Top-5 neighbors for each point have been plotted with edges colored green if the points are closer than a threshold and red otherwise.
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