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Abstract

The ensemble method is a promising way to mitigate the overestimation issue in
Q-learning, where multiple function approximators are used to estimate the action
values. It is known that the estimation bias hinges heavily on the ensemble size (i.e.,
the number of Q-function approximators used in the target), and that determining
the ‘right’ ensemble size is highly nontrivial, because of the time-varying nature
of the function approximation errors during the learning process. To tackle this
challenge, we first derive an upper bound and a lower bound on the estimation
bias, based on which the ensemble size is adapted to drive the bias to be nearly
zero, thereby coping with the impact of the time-varying approximation errors
accordingly. Motivated by the theoretic findings, we advocate that the ensemble
method can be combined with Model Identification Adaptive Control (MIAC) for
effective ensemble size adaptation. Specifically, we devise Adaptive Ensemble
Q-learning (AdaEQ), a generalized ensemble method with two key steps: (a)
approximation error characterization which serves as the feedback for flexibly
controlling the ensemble size, and (b) ensemble size adaptation tailored towards
minimizing the estimation bias. Extensive experiments are carried out to show that
AdaEQ can improve the learning performance than the existing methods for the
MuJoCo benchmark.

1 Introduction

Thanks to recent advances in function approximation methods using deep neural networks [20],
Q-learning [35] has been widely used to solve reinforcement learning (RL) problems in a variety
of applications, e.g., robotic control [23, 13], path planning [15, 24] and production scheduling
[34, 21]. Despite the great success, it is well recognized that Q-learning may suffer from the notorious
overestimation bias [29, 33, 32, 10, 37], which would significantly impede the learning efficiency.
Recent work [9, 11] indicates that this problem also persists in the actor-critic setting. To address
this issue, the ensemble method [16, 1, 26, 7] has emerged as a promising solution in which multiple
Q-function approximators are used to get better estimation of the action values. Needless to say, the
ensemble size, i.e., the number of Q-function approximators used in the target, has intrinsic impact
on Q-learning. Notably, it is shown in [6, 17] that while a large ensemble size could completely
remove the overestimation bias, it may go to the other extreme and result in underestimation bias and
unstable training, which is clearly not desirable. Therefore, instead of simply increasing the ensemble
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size to mitigate the overestimation issue, a fundamental question to ask is:“ Is it possible to determine
the right ensemble size on the fly so as to minimize the estimation bias?”

Some existing ensemble methods [2, 19, 17] adopt a trial-and-error strategy to search for the en-
semble size, which would be time-consuming and require a lot of human engineering for dif-
ferent RL tasks. The approximation error of the Q-function during the learning process plays
a nontrivial role in the selection of the ensemble size, since it directly impacts the Q-target es-
timation accuracy. This however remains not well understood. In particular, the fact that the
approximation error is time-varying, due to the iterative nature of Q-learning [36, 5], gives rise
to the question that whether a fixed ensemble size should be used in the learning process. To
answer this question, we show in Section 2.2 that using a fixed ensemble size is likely to lead
to either overestimation or underestimation bias, and the bias may shift between overestimation
and underestimation because of the time-varying approximation error, calling for an adaptive
ensemble size so as to drive the bias close to zero based on the underlying learning dynamics.

Ensemble 
Q-learning

Target 
Q-value

Approximation Error 
Quantification

FeedbackEnsemble Size 
Adaptation

Update Q-function Approximators

Figure 1: A sketch of the adaptive en-
semble Q-learning (AdaEQ).

Thus motivated, in this work we study effective ensemble
size adaptation to minimize the estimation bias that hinges
heavily on the time-varying approximation errors during
the learning process. To this end, we first characterize
the relationship among the ensemble size, the function
approximation errors, and the estimation bias, by deriv-
ing an upper bound and a lower bound on the estimation
bias. Our findings reveal that the ensemble size should be
selected adaptively in a way to cope with the impact of
the time-varying approximation errors. Building upon the
theoretic results, we cast the estimation bias minimization as an adaptive control problem where the
approximation error during the learning process is treated as the control object, and the ensemble
size is adapted based on the feedback of the control output, i.e., the value of the approximation error
from the last iteration. The key idea in this approach is inspired from the classic Model Identification
Adaptive Control (MIAC) framework [3, 25], where at each step the current system identification
of the control object is fed back to adjust the controller, and consequently a new control signal is
devised following the updated control law.

One main contribution of this work lies in the development of AdaEQ, a generalized ensemble method
for the ensemble size adaptation, aiming to minimize the estimation bias during the learning process.
Specifically, the approximation error in each iteration is quantified by comparing the difference
between the Q-estimates and the Monte Carlo return using the current learned policy over a testing
trajectory [29, 17]. Inspired by MIAC, the approximation error serves as the feedback to adapt the
ensemble size. Besides, we introduce a ‘tolerance’ parameter in the adaptation mechanism to balance
the control tendency towards positive or negative bias during the learning process. In this way, AdaEQ
can encompass other existing ensemble methods as special cases, including Maxmin [17], by properly
setting this hyperparameter. A salient feature of the feedback-adaptation mechanism is that it can be
used effectively in conjunction with both standard Q-learning [22] and actor-critic methods [28, 11].
Experimental results on the continuous-control MuJoCo benchmark [30] show that AdaEQ is robust
to the initial ensemble size in different environments, and achieves higher average return, thanks to
keeping the estimation bias close to zero, when compared to the state-of-the-art ensemble methods
such as REDQ [6] and Average-DQN [2].

Related Work. Bias-corrected Q-learning [18] introduces the bias correction term to reduce the
overestimation bias. Double Q-learning is proposed in [12, 33] to address the overestimation issue
in vanilla Q-learning, by leveraging two independent Q-function approximators to estimate the
maximum Q-function value in the target. S-DQN and S-DDQN use the softmax operator instead
of the max operator to further reduce the overestimation bias [27]. Self-correcting Q-learning aims
to balance the underestimation in double Q-learning and overestimation in classic Q learning by
introducing a new self-correcting estimator [38]. Weighted Q-learning proposes a new estimator
based on the weighted average of the sample means, and conducts the empirical analysis in the
discrete action space [8]. Weighted Double Q-learning [37] uses the Q-approximator together with
the double Q-approximator to balance the overestimation and underestimation bias. Nevertheless,
acquiring independent approximators is often intractable for large-scale tasks. To resolve this issue,
the Twin-Delayed Deep Deterministic policy gradient algorithm (TD3) [9] and Soft Actor-Critic
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(SAC) [11] have been devised to take the minimum over two approximators in the target network.
Along a different avenue, the ensemble-based methods generalize double Q-learning to correct the
overestimation bias by increasing the number of Q-function approximators. Particularly, Average-
DQN [2] takes the average of multiple approximators in the target to reduce the overestimation
error, and Random Ensemble Mixture (REM) [1] estimates the target value using the random convex
combination of the approximators. It is worth noting that both Average-DQN and REM cannot
completely eliminate the overestimation bias. Most recently, Maxmin Q-learning [17] defines a proxy
Q-function by choosing the minimum Q-value for each action among all approximators. Similar to
Maxmin, Random Ensembled Q-learning (REDQ) [6] formulates the proxy Q-function by choosing
only a subset of the ensemble. Nevertheless, both Maxmin and REDQ use a fixed ensemble size. In
this study, we introduce an adaptation mechanism for the ensemble size to drive the estimation bias
to be close to zero, thereby mitigating the possible overestimation and underestimation issues.

2 Impact of Ensemble Size on Estimation Bias

2.1 Ensemble Q-learning

As is standard, we consider a Markov decision process (MDP) defined by the tuple 〈S,A, P, r, γ〉,
where S and A denote the state space and the action space, respectively. P (s′|s, a) : S ×A× S →
[0, 1] denotes the probability transition function from current state s to the next state s′ by taking
action a ∈ A, and r(s, a) : S ×A → R is the corresponding reward. γ ∈ (0, 1] is the discount factor.
At each step t, the agent observes the state st, takes an action at following a policy π : S → A,
receives the reward rt, and evolves to a new state st+1. The objective is to find an optimal policy π∗
to maximize the discounted return R =

∑∞
t=0 γ

trt.

By definition, Q-function is the expected return when choosing action a in state s and following with
the policy π: Qπ = E[

∑∞
t=0 γ

trt(st, at)|s0 = s, a0 = a]. Q-learning is an off-policy value-based
method that aims at learning the optimal Q-function Q∗ : S ×A → R, where the optimal Q-function
is a fixed point of the Bellman optimality equation [4]:

T Q∗(s, a) = r(s, a) + γEs′∼P (s′|s,a) [maxa′∈AQ
∗(s′, a′)] . (1)

Given a transition sample (s, a, r, s′), the Bellman operator can be employed to update the Q-function
as follows:

Q(s, a)← (1− α)Q(s, a) + αy, y := r + γmaxa′∈AQ(s′, a′). (2)
where α is the step size and y is the target. Under some conditions, Q-learning can converge to the
optimal fixed-point solution asymptotically [31]. In deep Q-learning, the Q-function is approximated
by a neural network, and it has been shown [33] that the approximation error, amplified by the max
operator in the target, results in the overestimation phenomena. One promising approach to address
this issue is the ensemble Q-learning method, which is the main subject of this study.

The Ensemble Method. Specifically, the ensemble method maintains N separate approximators
Q1, Q2, · · · , QN of the Q-function, based on which a subset of these approximators is used to
devise a proxy Q-function. For example, in Average-DQN [2], the proxy Q-function is obtained by
computing the average value over all N approximators to reduce the overestimation bias:

Qave(·) = 1
N

∑N
i=1Q

i(·).
However, the average operation cannot completely eliminate the overestimation bias, since the
average of the overestimation bias is still positive. To tackle this challenge, Maxmin [17] and REDQ
[6] take the ‘min’ operation over a subsetM ( size M ) of the ensemble:

Qproxy(·) = mini∈MQi(·). (3)
The target value in the ensemble-based Q-learning is then computed as y = r +maxa′∈AQ

proxy. It
is worth noting that in the existing studies, the in-target ensemble size M , pre-determined for a given
environment, remain fixed in the learning process.

2.2 An Illustrative Example

It is known that the determination of the optimal ensemble size is highly nontrivial, and a poor choice
of the ensemble size would degrade the performance of ensemble Q-learning significantly [17]. As
mentioned earlier, it is unclear a priori if a fixed ensemble size should be used in the learning process.
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(a) Function approxima-
tion.

(b) Five function approxi-
mators.

(c) Ensemble via ‘min’ op-
erator. (d) Estimation error.

Figure 2: Illustration of estimation bias in the ensemble method. (a) Each approximator is fitted to the
noisy values (green dots) at the sampled states independently. (b) Five Q-function approximators are
obtained for both actions (green lines and blue lines). (c) Apply the min operator over M (M = 3)
randomly selected approximators to obtain a proxy approximator for each action. (d) The estimation
error is obtained by comparing the underlying true value (purple line in (a)) and the target value using
the proxy approximator.

(a) Estimation bias vs. τ . (b) Estimation bias vs. numbers of actions.

Figure 3: Illustration of overestimation and underestimation phenomena for different ensemble sizes.

In what follows, we use an example to illustrate the potential pitfalls in the ensemble methods by
examining the sensitivity of the estimation bias to the ensemble size [6, 17].

Along the same line as in [33], we consider an example with a real-valued continuous state space.
In this example, there are two discrete actions available at each state and the optimal action values
depend only on the state, i.e., in each state both actions result in the same optimal value Q∗(s, ·),
which is assumed to be Q∗(s, ·) = sin(s). Figure 2 demonstrates how the ensemble method is carried
out in four stages:

(I) For each Q-function approximator Qi, i = 1, 2, · · · , 5, we first generate 10 noisy action-value
samples independently (green dots in Figure 2(a)). Let ei(s, a) denote the approximation error of Qi:

Qi(s, a) = Q∗(s, a) + ei(s, a), with ei(s, a) ∼ U(−τi, τi), (4)
where τi ∼ U(0, τ) models the approximation error distribution for the i-th approximator. Note that
the assumption on the uniform error distribution is commonly used to indicate that both positive and
negative approximation error are possible in Q-function approximators [29][17][6].

(II) Next, Figure 2(b) illustrates the ensemble (N = 5) of approximators for two actions, where each
approximator is a 6-degree polynomial that fits the noisy values at sampled states.

(III) Following the same ensemble approach in [6][17], we randomly choose M approximators from
the ensemble and take the minimum over them to obtain a proxy approximator for each action,
resulting in the dashed lines in Figure 2(c).

(IV) Finally, the maximum action value of the proxy approximator is used as the target to update
the current approximators. To evaluate the target value estimation error, Figure 2(d) depicts the
difference between the obtained target value and the underlying true value when using different
ensemble size M . As in [33], we utilize the average estimation error (i.e., estimation bias) to quantify
the performance of current approximators. For example, when the ensemble size M = 2, the red line
is above zero for most states, implying the overestimation tendency in the target. Clearly, Figure 2(d)
indicates that the estimation bias is highly dependent on the ensemble size, and even a change of M
can lead the shift from overestimation to underestimation. Since the Q-function approximation error
of each approximator changes over time in the training process [5] (examples for this phenomenon
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can be found in Appendix B.3), we next analyze the impact of the ensemble size on the estimation
bias under different approximation error distributions. As shown in Figure 3(a), with a fixed ensemble
size M , the estimation bias may shift between positive and negative and be ‘dramatically’ large
for some error distributions. In light of this observation, departing from using a fixed size, we
advocate to adapt the in-target ensemble size, e.g., set M = 4 when the noise parameter τ > 1.5 and
M = 3 otherwise. The estimation bias resulted by this adaptation mechanism is much closer to zero.
Besides, Figure 3(b) characterizes the estimation bias under different action spaces, which is also
important considering that different tasks normally have different action spaces and the number of
available actions may vary in different states even for the same task. The adaptive ensemble approach
is clearly more robust in our setting. In a nutshell, both Figure 3(a) and 3(b) suggest that a fixed
ensemble size would not work well to minimize the estimation bias during learning for different tasks.
This phenomenon has also been observed in the empirical results [17]. In stark contrast, adaptively
changing the ensemble size based on the approximation error indeed can help to reduce the estimation
bias in different settings.

3 Adaptive Ensemble Q-learning (AdaEQ)

Motivated by the illustrative example above, we next devise a generalized ensemble method with
ensemble size adaptation to drive the estimation bias to be close to zero, by taking into consideration
the time-varying feature of the approximation error during the learning process. Formally, we consider
an ensemble of N Q-function approximators, i.e., {Qi}Ni=1, with each approximator initialized
independently and randomly. We use the minimum of a subsetM of the N approximators in the
Q-learning target as in (3), where the size of subset |M| =M ≤ N .

3.1 Lower Bound and Upper Bound on Estimation Bias

We first answer the following key question:“How does the approximation error, together with the
ensemble size, impact the estimation bias?". To this end, based on [29], we characterize the intrinsic
relationship among the ensemble size M , the Q-function approximation error and the estimation
bias, and derive an upper bound and a lower bound on the bias in the tabular case. Without loss of
generality, we assume that for each state s, there are A available actions.

Let ei(s, a) , Qi(s, a)−Qπ(s, a) be the approximation error for the i-th Q-function approximator,
where Qπ(s, a) is the ground-truth of the Q-value for the current policy π. By using (3) to compute
the target Q-value, we define the estimation error in the Bellman equation for transition (s, a, r, s′) as
ZM :

ZM ,r + γmaxa′∈Amini∈MQi(s′, a′)− (r +maxa′∈AQ
π(s′, a′)) .

Here a positive E[ZM ] implies overestimation bias while a negative E[ZM ] implies underestimation
bias. Note that we use the subscription M to emphasize that the estimation bias is intimately related
to M .

The case with two distributions for Q-function approximation errors. For ease of exposition, we
first consider the case when the approximation errors follow one of the two uniform distributions,
as illustrated in Figure 4(a). Specifically, assume that for i ∈ K ⊂ M with |K| = K, ei(s, a) ∼
U(−τ1, τ1) , and for i ∈M \ K, ei(s, a) ∼ U(−τ2, τ2). Without loss of generality, we assume that
τ1 > τ2 > 0. It is worth noting that in [29][17][6], the approximation error for all approximators is
assumed to follow the same uniform distribution, i.e., τ1 = τ2, which is clearly more restrictive than
the case here with two error distributions. For instance, when only one approximator is chosen to be
updated at each step [17], the approximation error distribution of this approximator would change
over time and hence differ from the others. We have the following results on the upper bound and
lower bound of the estimation bias E[ZM ].

Theorem 1. For the case with two distributions for Q-function approximation errors, the estimation
bias E[ZM ] satisfies that

E[ZM ] ≥ γ (τ1(1− fAK − 2fAM ) + τ2(1− fAM )) ; (5)

E[ZM ] ≤ γ
(
τ1 + τ2(1− 2fA(M−K) − (1− βK)A)

)
, (6)

where βK = ( 1
2 −

τ2
2τ1

)K , fAK = 1
KB( 1

K , A + 1) =
Γ(A+1)Γ(1+ 1

K )

Γ(A+ 1
K+1)

= A(A−1)···1
(A+ 1

K )(A+ 1
K−1)···(1+ 1

K )

with B(·, ·) being the Beta function.
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(a) Q-function approximation er-
ror distributions.

(b) Lower bound and upper bound
on Estimation bias.

(c) Impact of approximation error
on the estimation bias: overesti-
mation vs. underestimation.

Figure 4: Illustration of upper bounds and lower bounds on estimation bias in Theorem 1. (a) The
case where the approximation errors of the Q-approximators can be categorized into two uniform
distributions. (b) The lower bound and the upper bound corresponding to (5) and (6), for given
τ1, τ2, A: The blue point represents the ‘critical’ point where decreasing the ensemble size may
lead overestimation (the lower bound is positive); and the red point denotes the ‘critical’ point
where increasing ensemble size may lead underestimation (the upper bound is negative). (c) Due to
time-varying feature of the approximation errors, the blue curve and the red curve depict the ‘critical’
points for the lower bound and the upper bound, respectively.

The proof of Theorem 1 is relegated to the Appendix A.1. Theorem 1 reveals that the estimation bias
depends on the ensemble size as well as the approximation error distributions. To get a more concrete
sense of Theorem 1, we consider an example where τ1 = 0.5 and τ2 = 0.4, as depicted in Figure
4(b), and characterize the relationship between the estimation bias and the ensemble size M . Notably,
the estimation bias turns negative when the ensemble size M > Mu = 9 (red point: the value of
M where the upper bound is 0) and becomes positive when M < Ml = 4 (blue point: the value of
M where the lower bound is 0). In Figure 4(c), we fix τ2 = 0.4 and show how those two critical
points (Mu and Ml) change along with τ1. Here the red shaded area indicates underestimation bias
when M > Mu, and the blue shaded area indicates overestimation bias when M < Ml. Clearly, in
order to avoid the positive bias (blue shaded area), it is desirable to increase the ensemble size when
the approximation error is large, e.g., τ1 > 0.6. On the other hand, decreasing the ensemble size is
more preferred to avoid underestimation (red shaded area) when the approximation error is small,
e.g., τ1 < 0.6.

The general case with heterogeneous distributions for Q-function approximation errors. Next,
we consider a general case, in which the approximation errors for different approximators {Qi} are
independently but non-identically distributed. Specifically, we assume that the approximation error
ei(s, a) for Qi(s, a), i = 1, 2, · · · ,M , follows the uniform distribution U(−τi, τi), where τi > 0.
We use a multitude of tools to devise the upper bound and lower bound on the estimation bias E[ZM ].
As expected, this general case is technically more challenging and the bounds would be not as sharp
as in the special case with two distributions.

Theorem 2. For the general case with heterogeneous error distributions, the estimation bias E[ZM ]
satisfies that

E[ZM ] ≥γ
(
τmin − τmax(fA(M−1) + 2fAM )

)
; (7)

E[ZM ] ≤γ (2τmin − τmax (fAM − 2gAM )) , (8)
where τmin = mini τi and τmax = maxi τi. gAM = 1

M I0.5(
1
M , A + 1) with I0.5(·, ·) being the

regularized incomplete Beta function.

Observe from Theorem 2 that the lower bound in (7) is positive when τmin(1 − 2fAM ) >
τmaxfA(M−1), indicating the existence of the overestimation issue. On thew contrary, the upper
bound in (8) is negative when 2τmin < τmax (1 + fAM − 2gAM ), pointing to the underestimation
issue. In general, when τmin is large enough, decreasing ensemble size M is likely to cause overesti-
mation, e.g., E[ZM ] ≥ 0 when M < 2. On the other hand, when τmax is small enough, increasing
ensemble size M is likely to cause underestimation, e.g., E[ZM ] ≤ 0 when M is sufficiently large.

Determination of parameter c. As illustrated in Figure 4(c), for given approximation error charac-
terization, a threshold c can be chosen such that increasing the ensemble size would help to correct the
overestimation bias when τmax > c, and decreasing the ensemble size is more conductive to mitigate

6



the underestimation bias when τmax < c. Specifically, parameter c is determined in two steps. Step
1: To estimate approximation error distribution parameters τmin and τmax by running an ensemble
based algorithm (e.g., Algorithm 1) for a few epochs with a fixed ensemble size. In particular, a
testing trajectory is generated from a random initial state using the current policy to compute the
(discounted) MC return Qπ and the estimated Q-function value Qi, i = 1, 2, · · · , N . We next fit a
uniform distribution model U(−τi, τi) of the approximation error (Qi −Qπ) for each Q-function
approximator Qi. Then, τmin and τmax can be obtained by choosing the minimum and maximum
values among τi, i = 1, 2, · · · , N . Step 2: To obtain the upper bound and the lower bound in Theorem
2 by using {τmin, τmax, A, γ}. We investigate the relationship between ensemble size M and the
estimation bias by studying the bounds and identifying the ‘critical’ points as illustrated in Figure
4(b). Observe that a ‘proper’ ensemble size should be chosen between the ‘critical’ points, so as to
reduce the overestimation and underestimation bias as much as possible. Since the approximation
error is time-varying during the learning process, these two ‘critical’ points vary along with {τmax}
and {τmin} (as shown in Figure 4(c)). Intuitively, it is desirable to drive the system to avoid both the
red region (underestimation) and the blue region (overestimation). It can be clearly observed that
there is a wide range of choice for parameter c (e.g., [0.5, 0.7] in Figure 4(c)) for the algorithm to
stay in the white region, indicating that even though the pre-determined c above is not optimized, it
can still serve the purpose well.

The proof of Theorem 2 and numerical illustration can be found in the Appendix A.3. Summarizing,
both Theorem 1 and Theorem 2 indicate that the approximation error characterization plays a critical
role in controlling the estimation bias. In fact, both the lower bound and the upper bound in Theorem
2 depends on τmin and τmax, which are time-varying due to the iterative nature of the learning process,
indicating that it is sensible to use an adaptive ensemble size to drive the estimation bias to be close
to zero, as much as possible.

3.2 Practical Implementation

Based on the theoretic findings above, we next propose AdaEQ that adapts the ensemble size based
on the approximation error feedback on the fly, so as to drive the estimation bias close to zero.
Particularly, as summarized in Algorithm 1, AdaEQ introduces two important steps at each iteration
t, i.e., approximation error characterization (line 3) and ensemble size adaptation (line 4), which can
be combined with the framework of either Q-learning or actor-critic methods.

Characterization of the time-varying approximation error. As outlined in Algorithm 1, the first
key step is to quantify the time-varying approximation error at each iteration t (for ease of exposition,
we omit the subscript t when it is clear from the context). Along the same line as in [9, 33, 6], we run
a testing trajectory of length H , T = (s0, a0, s1, a1, · · · , sH , aH), from a random initial state using
the current policy π, and compute the discounted Monte Carlo return Qπ(s, a) and the estimated
Q-function value Qi(s, a), i = 1, · · · , N for each visited state-action pair (s, a). The empirical
standard derivation of Qi(s, a)−Qπ(s, a) can be then obtained to quantify the approximation error
of each approximator Qi. Then, we take the average of the empirical standard derivation over all
approximators to characterize the approximation error at the current iteration t, i.e.,

τ̃t =
1
N

∑N
i=1 std(Qi(s, a)−Qπ(s, a)), (s, a) ∈ T . (9)

Error-feedback based ensemble size adaptation. Based on the theoretic results and Figure 4(c),
we update the ensemble size M at each iteration t based on the approximation error (9), using the
following piecewise function:

Mt =


rand(Mt−1 + 1, N) τ̃t−1 > c, Mt−1 + 1 ≤ N
rand(2,Mt−1 − 1) τ̃t−1 < c, Mt−1 − 1 ≥ 2

Mt−1 otherwise,
(10)

where rand(·, ·) is a uniform random function and c is a pre-determined parameter to capture the
‘tolerance’ of the estimation bias during the adaptation process. Recall that parameter c can be
determined by using the upper bound and the lower bound in Theorem 2 (Theorem 1). Particularly, a
larger c implies that more tolerance of the underestimation bias is allowed when adapting the ensemble
size Mt. A smaller c, on the other hand, admits more tolerance of the overestimation. In this way,
AdaEQ can be viewed as a generalization of Maxmin and REDQ with ensemble size adaptation. In
particular, when c = 0 and Mt+1 ≤ N , the adaptation mechanism would increase the ensemble size
until it is equal to N . Consequently, AdaEQ degenerates to Maxmin [17] where M = N , leading
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Algorithm 1 Adaptive Ensemble Q-learning (AdaEQ)

1: Empty replay buffer D, step size α, number of the approximators N , initial in-target ensemble
size M0 ≤ N , initial state s. Initialize N approximators with different training samples.

2: for Iteration t = 1, 2, 3, · · · do
3: Identify approximation error parameter τ̃t using (9)
4: Update ensemble size Mt according to (10)
5: Sample a setM of Mt different indices from {1, 2, · · · , N}
6: Obtain the proxy approximator Qproxy(s, a)← mini∈MQi(s, a), ∀a ∈ A
7: Choose action a from current state s using policy derived from Qproxy (e.g., ε-greedy)
8: Take action a, observe r and next state s′
9: Update replay buffer D ← D ∪ {s, a, r, s′}

10: for i = 1, 2, · · · , N do
11: Sample a random mini-batch B from D
12: Compute the target: y(s, a, r, s′)← r + γmaxa′∈AQ

proxy(s′, a′), (s, a, r, s′) ∈ B
13: Update Q-function Qi: Qi(s, a)← (1− α)Qi(s, a) + αy(s, a, r, s′), (s, a, r, s′) ∈ B
14: end for
15: s← s′

16: end for

to possible underestimation bias. Meantime, when c is set sufficiently large, the ensemble size M
would decrease until reaching the minimal value 2 during the learning process, where the estimation
bias would be positive according to Theorem 2. In this case, AdaEQ is degenerated to REDQ [6]
with ensemble size M = 2. We show the convergence analysis of AdaEQ in Appendix A.5.

Remark. We use random sampling in Eqn. (10) for two reasons. Firstly, the characterization of the
approximation error in Eqn. (9) is noisy in nature. In particular, Monte Carlo returns with finite-length
testing trajectory may introduce empirical errors when estimating the underlying ground true value of
Qπ . This noisy estimation is often the case when the policy is not deterministic, or the environment
is not deterministic. Thus, we use random sampling to ‘capture’ the impact of this noisy estimation.
Secondly, in general it is infeasible to characterize the exact relationship between estimation bias ZM
and ensemble size M . Without any further prior information except from the bounds we obtained in
Theorem 1 and Theorem 2 about the approximation error, the random sampling can be viewed as the
‘exploration’ in AdaEQ.

4 Experimental Results

In this section, we evaluate the effectiveness of AdaEQ by answering the following questions: 1) Can
AdaEQ minimize the estimation bias and further improve the performance in comparison to existing
ensemble methods? 2) How does AdaEQ perform given different initial ensemble sizes? 3) How
does the ‘tolerance’ parameter c affect the performance?

To make a fair comparison, we follow the setup of [6] and use the same code base to compare the
performance of AdaEQ with REDQ [6] and Average-DQN (AVG) [2], on three MuJoCo continuous
control tasks: Hopper, Ant and Walker2d. The same hyperparameters are used for all the algorithms.
Specifically, we consider N = 10 Q-function approximators in total. The ensemble size M = N =
10 for AVG, while the initial M for AdaEQ is set as 4. The ensemble size for REDQ is set as M = 2,
which is the fine-tuned result from [6]. For all the experiments, we set the ‘tolerance’ parameter c
in (10) as 0.3 and the length of the testing trajectories as H = 500. The ensemble size is updated
according to (10) every 10 epochs in AdaEQ. The discount factor is 0.99. Implementation details and
hyperparamter settings are fully described in Appendix B.1.

Evaluation of estimation bias. To investigate the impact of the adaptation mechanism in AdaEQ,
we begin by examining how the estimation bias changes in the training process. After each epoch, we
run an evaluation episode of length H = 500, starting from an initial state sampled from the replay
buffer. We calculate the estimation error based on the difference between the Monte Carlo return
value and the Q-estimates as in [33, 6, 14]. For each experiment, the shaded area represents a standard
deviation of the average evaluation over 3 training seeds. As shown in the first row of Figure 5,
AdaEQ can reduce the estimation bias to nearly zero in all three benchmark environments, in contrast
to REDQ and AVG. The AVG approach tends to result in positive bias in all three environments
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Figure 5: Comparison in terms of the estimation bias (first row) and average return (second row) in
three MuJoCo tasks. Solid lines are the mean values and the shaded areas are the standard derivations
across three random seeds. We use the undiscounted sum of all the reward in the testing episode to
evaluate the performance of the current policy after each epoch. The estimation error is evaluated
by comparing the difference between the Monte Carlo return and the average Q-value for each
state-action pair visited during the testing episode. We take the average of those error values as
estimation bias. For AdaEQ, we use the same hyperparameter c for ensemble size adaptation.

(a) Hopper-v2 task. Aver-
age returns over different
initial ensemble size M =
2, 3, 5.

(b) Hopper-v2 task. Esti-
mation bias over different
initial ensemble size M =
2, 3, 5.

(c) Ant task. Average
returns over different ini-
tial ensemble size M =
3, 5, 7.

(d) Ant task. Estima-
tion bias over different ini-
tial ensemble size M =
3, 5, 7.

Figure 6: Impacts of the initial ensemble size M on the performance of AdaEQ in Hopper-v2 and
Ant task. The solid lines are the mean values and the shaded areas are the standard derivations across
three ensemble size settings.

during the learning procedure, which is consistent with the results obtained in [6]. Notably, it can be
clearly observed from Hopper and Walker2d tasks that the estimation bias for AdaEQ is driven to be
close to zero, thanks to the dynamic ensemble size adjustment during the learning process. Meantime,
in the Ant task, even though the fine-tuned REDQ can mitigate the overestimation bias, it tends to
have underestimation bias, whereas AdaEQ is able to keep the bias closer to zero (gray dashed line)
even under a ‘non-optimal’ choice of the initial ensemble size.

Performance on MuJoCo benchmark. We evaluate the policy return after each epoch by calculating
the undiscounted sum of rewards when running the current learnt policy [6, 14]. The second row of
Figure 5 demonstrates the average return during the learning process for AdaEQ, AVG and REDQ,
respectively. Especially, we choose the fine-tune ensemble size for REDQ [6]. As observed in
Figure 5, AdaEQ can efficiently learn a better policy and achieve higher average return in all three
challenging MuJoCo tasks, without searching the optimal parameters beforehand for each of them.
Meantime, AdaEQ only incurs slightly more computation time than REDQ in most MuJoCo tasks.
Due to space limitation, we have relegated the wall-clock training time comparison to Table 2 in
Appendix B.2.

Robustness to the initial ensemble size. Next, we investigate the performance of AdaEQ under
different settings of the initial ensemble size in the Hopper-v2 and Ant environment, i.e.,M = (2, 3, 5)
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(a) Hopper-v2 task. Aver-
age returns over different
parameter c in AdaEQ.

(b) Hopper-v2 task. Esti-
mation bias over different
parameter c in AdaEQ.

(c) Ant task. Average re-
turns over different param-
eter c in AdaEQ.

(d) Ant task. Estimation
bias over different parame-
ter c in AdaEQ.

Figure 7: Impacts of parameter c on the performance of AdaEQ in Hopper-v2 and Ant task. The
initial ensemble size is set to be M = 4. The mean value and the standard derivation are evaluated
across three training seeds.

and M = (3, 5, 7). As shown in Figure 6, AdaEQ consistently outperforms the others in terms of
the average performance over different setups, which implies the benefit of adjusting the in-target
ensemble size based on the error feedback. It can be seen from the shaded area that the performance
of AVG and REDQ, may vary significantly when the ensemble size changes.

Robustness to parameter c in a wide range. As illustrated in Figure 7, we conduct the ablation
study by setting c = 0.001, 0.3, 0.5, 0.7, 1.5 on the Hopper-v2 and Ant tasks. Clearly, AdaEQ works
better for c ∈ [0.3, 0.7]. The experiment results corroborate our analysis in Section 3.1 that our
algorithm is not sensitive to parameter c in a wide range. As mentioned in Section 3.2, when parameter
c is close to zero, AdaEQ degenerates to Maxmin, which is known to suffer from underestimation
bias when the ensemble size is large [6]. Further, as illustrated in Figure 7(b), when c is large, e.g.,
c = 1.5, the ensemble size would gradually decrease to the minimum and hence would not be able to
throttle the overestimation tendency during the learning process.

5 Conclusion

Determining the right ensemble size is highly nontrivial for the ensemble Q-learning to correct the
overestimation without introducing significant underestimation bias. In this paper, we devise AdaEQ,
a generalized ensemble Q-learning method for the ensemble size adaptation, aiming to minimize the
estimation bias during the learning process. More specifically, by establishing the upper bound and
the lower bound of the estimation bias, we first characterize the impact of both the ensemble size and
the time-varying approximation error on the estimation bias. Building upon the theoretic results, we
treat the estimation bias minimization as an adaptive control problem, and take the approximation
error as feedback to adjust the ensemble size adaptively during the learning process. Our experiments
show that AdaEQ consistently and effectively outperforms the existing ensemble methods, such as
REDQ and AVG in MuJoCo tasks, corroborating the benefit of using AdaEQ to drive the estimation
bias close to zero.

There are many important avenues for future work. In terms of the bounds of the estimation bias, our
analysis builds upon the standard independent assumption as in previous works. It’s worth noting
that in practice, the errors are generally correlated [29] and the theoretical analysis for this case
remains not well understood. Additionally, in this work, we use a heuristic tolerance parameter in the
adaptation mechanism to strike the balance in controlling the positive bias and negative bias. It is of
great interest to develop a systematic approach to optimize this tolerance parameter.
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Appendix

A Proofs

A.1 The Proof of Theorem 1

We first restate the following results from order statistics [17].

Lemma 1. Let X1, X2, · · · , XM be M i.i.d random variables from an absolutely continuous dis-
tribution with probability density function (PDF) f(x) and cumulative distribution function (CDF)
F (x). Denote µ = E[Xi] and σ2 = V ar[Xi] < +∞. Let X1:M ≤ X2:M ≤ · · · ≤ XM :M be the
order statistics obtained by reordering these random variables in increasing order of magnitude.
Denote the PDF and CDF of X1:M = mini∈MXi as f1:M (x) and F1:M (x). Denote fM :M (x) and
FM :M (x) to be the PDF and CDF of XM :M = maxi∈MXi . Then we have

(i) f1:M (x) =Mf(x)(1− F (x))M−1, F1:M (x) = 1− (1− F (x))M .

(ii) fM :M (x) =Mf(x)(F (x))M−1, FM :M (x) = (F (x))M .

Now we prove Theorem 1.

Theorem 1. For the case with two distributions for Q-function approximation errors, the estimation
bias E[ZM ] satisfies that

E[ZM ] ≥ γ (τ1(1− fAK − 2fAM ) + τ2(1− fAM )) ; (5)

E[ZM ] ≤ γ
(
τ1 + τ2(1− 2fA(M−K) − (1− βK)A)

)
, (6)

where βK = ( 1
2 −

τ2
2τ1

)K , fAK = 1
KB( 1

K , A + 1) =
Γ(A+1)Γ(1+ 1

K )

Γ(A+ 1
K+1)

= A(A−1)···1
(A+ 1

K )(A+ 1
K−1)···(1+ 1

K )

with B(·, ·) being the Beta function.

Proof. Assume that for i ∈ K ⊂ M, ei(s, a) ∼ U(−τ1, τ1) with PDF f1(x) and CDF F2(x), and
for i ∈M \K, ei(s, a) ∼ U(−τ2, τ2) with PDF f2(x) and CDF F2(x). Without loss of generality,
we assume that τ1 > τ2 > 0.

From Lemma 1, it is clear that

F1:M (x) =P(X1:M ≤ x) =


1− (1− F1(x))

K x < −τ2
1− (1− F1(x))

K(1− F2(x))
M−K x ∈ [−τ2, τ2]

1 x > τ2

,

f1:M (x) =
dF1:M (x)

dx
,

(11)

where F1(x) =
1
2 + x

2τ1
, f1(x) =

1
2τ1
, x ∈ [−τ1, τ1] and F2(x) =

1
2 + x

2τ2
, f2(x) =

1
2τ2
, x ∈

[−τ2, τ2]. Denote F1:K(x) = 1− (1−F1(x))
K and f1:K(x) = Kf1(x)(1−F1(x))

K−1. Then, the
estimation bias can be obtained as

E[ZM ] = γ E[max
a′

min
i∈M

ei(s, a)]

=γ

∫ τ1

−τ1
Axf1:M (x)F1:M (x)A−1dx

=γ(

∫ −τ2
−τ1︸ ︷︷ ︸

1

+

∫ τ2

−τ2︸︷︷︸
2

+

∫ τ1

τ2︸︷︷︸
3

)dx. (12)

We first consider term 1 in (12), where

1 =

∫ −τ2
−τ1

Axf1:K(x)F1:K(x)A−1dx

=(

∫ τ1

−τ1
−
∫ τ2

−τ2
−
∫ τ1

τ2

)Axf1:K(x)F1:K(x)A−1dx.
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It follows that 1 can be bounded above as follows:

1 ≤(
∫ τ1

−τ1
−
∫ τ2

−τ2
)Axf1:K(x)F1:K(x)A−1dx

=

∫ τ1

−τ1
AxKf1(x)(1− F1(x))

K−1
(
1− (1− F1(x))

K
)A−1

dx

−
∫ τ2

−τ2
AxKf1(x)(1− F1(x))

K−1
(
1− (1− F1(x))

K
)A−1

dx

=τ1[1− 2fAK ]− τ2
(
1− (

1

2
− τ2

2τ1
)K
)A
− τ2

(
1− (

1

2
+

τ2
2τ1

)K
)A

+ 2τ1

∫ 1
2 +

τ2
2τ1

1
2−

τ2
2τ1

(1− yK)Ady︸ ︷︷ ︸
≤fAK

≤τ1 − τ2
(
1− (

1

2
− τ2

2τ1
)K
)A
− τ2

(
1− (

1

2
+

τ2
2τ1

)K
)A

,

where fAK = 1
KB( 1

K , A+ 1) =
Γ(A+1)Γ(1+ 1

K )

Γ(A+ 1
K+1)

= A(A−1)···1
(A+ 1

K )(A+ 1
K−1)···(1+ 1

K )
with B(·, ·) being beta

function and y := 1
2 −

x
2τ1

.

We can also have the following lower bound on 1 :

1 =τ1(1− 2fAK)− τ2
(
1− (

1

2
− τ2

2τ1
)K
)A
− τ2

(
1− (

1

2
+

τ2
2τ1

)K
)A

+ 2τ1

∫ 1
2 +

τ2
2τ1

1
2−

τ2
2τ1

(1− yK)Ady

+ τ2

(
1− (

1

2
− τ2

2τ1
)K
)A

+ 2τ1

∫ 1
2−

τ2
2τ1

0

(1− yK)Ady

=τ1(1− 2fAK)− τ2
(
1− (

1

2
+

τ2
2τ1

)K
)A

+ 2τ1

∫ 1
2 +

τ2
2τ1

0

(1− yK)Ady

≥τ1(1− 2fAK)− τ2
(
1− (

1

2
+

τ2
2τ1

)K
)A

+ τ1fAK

=τ1(1− fAK)− τ2
(
1− (

1

2
+

τ2
2τ1

)K
)A

.

For the term 2 in (12), it follows that

2 =

∫ τ2

−τ2
Axf1:M (x)F1:M (x)A−1dx

=

∫ τ2

−τ2
xd

[
1− (

1

2
− x

2τ1
)K(

1

2
− x

2τ2
)M−K

]A
dx

=τ2 + τ2

(
1− (

1

2
+

τ2
2τ1

)K
)A
−
∫ τ2

−τ2

[
1− (

1

2
− x

2τ1
)K(

1

2
− x

2τ2
)M−K

]A
dx︸ ︷︷ ︸

(∗)

,

where (∗) satisfies that

(∗) >
∫ τ2

−τ2

[
1− (

1

2
− x

2τ2
)M−K

]A
dx = 2τ2fA(M−K),

(∗) =
∫ 0

−τ2
+

∫ τ2

0

<

∫ 0

−τ2
[1− (

1

2
− x

2τ2
)M ]Adx+

∫ τ2

0

[1− (
1

2
− x

2τ1
)M ]Adx

<τ2fAM + 2τ1fAM .

From the definition of F1:M (x), we have that term 3 in (12) equals to zero.
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Summarizing, we obtain the following upper bound and lower bound on the estimation bias E[ZM ],
for the case with two distributions for Q-function approximation errors:

E[ZM ] ≥γ (τ1(1− fAK − 2fAM ) + τ2(1− 2fAM ))

E[ZM ] ≤γ
(
τ1 + τ2[1− 2fA(M−K)]− τ2(1− βK)A

)
where βK = ( 1

2 −
τ2
2τ1

)K .

A.2 Parameter Setting in Numerical Illustration of Figure 4

In Figure 4(a), the approximation error parameter τ1 = 0.5, τ2 = 0.4 and the number of actions is
set as A = 30. The number of approximators for which the approximation errors follow the first
distribution is K = 2. In Figure 4(c), we fix τ2 = 0.4, A = 30, K = 2 and τ1 ranges from 0.5 to 0.8.
The changes of the ‘critical’ points (red dot and blue dot) are depicted in Figure 4(c).

A.3 The Proof of Theorem 2

Theorem 2. For the general case with heterogeneous error distributions, the estimation bias E[ZM ]
satisfies that

E[ZM ] ≥γ
(
τmin − τmax(fA(M−1) + 2fAM )

)
; (7)

E[ZM ] ≤γ (2τmin − τmax (fAM − 2gAM )) , (8)
where τmin = mini τi and τmax = maxi τi. gAM = 1

M I0.5(
1
M , A + 1) with I0.5(·, ·) being the

regularized incomplete Beta function.

Proof. Assume that the approximation error ei(s, a) for each Q approximator follows uniform
distribution U(−τi, τi) with PDF fi(x) and CDF Fi(x). The PDF and CDF for each approximation
error distribution is as follows,

fi(x) =

{
1

2τi
, x ∈ [−τi, τi]

0, otherwise
, Fi(x) =


0, x < −τi
x+τi
2τi

, x ∈ [−τi, τi]
1, x > τi

From Lemma 1, it can be seen that

F1:M (x) =P(X1:M ≤ x) = 1−
M∏
i=1

(1− Fi(x)),

f1:M (x) =

M∑
i=1

fi(x)∏
j 6=i

(1− Fj(x))

 .

Assume that at state s′, there are A actions applicable. Then the estimation bias ZM is
E[ZM ] =γEτ1,··· ,τM [max

a′
min
i∈M

ei(s, a)]

=γ

[∫ τmax

−τmax

Axf1:M (s)F1:M (x)A−1dx

]
.

Considering the integration terms, we conclude that∫ τmax

−τmax

Axf1:M (s)F1:M (x)A−1dx

=

∫ τmax

−τmax

xd(F1:M (x)A)

=x(F1:M (x)A)
∣∣τmax

−τmax
−
∫ τmax

−τmax

F1:M (x)Adx

=τmax −
∫ τmax

−τmax

(
1−

M∏
i=1

(1− Fi(x))

)A
dx
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=τmax −
∫ τmax

−τmax

(1− (1− F1(x))(1− F2(x)) · · · (1− FM (x)))
A
dx︸ ︷︷ ︸

1

,

where τmin = mini τi and τmax = maxi τi. Denote fAM = 1
MB( 1

M , A + 1) =
Γ(A+1)Γ(1+ 1

M )

Γ(A+ 1
M +1)

=

A(A−1)···1
(A+ 1

M )(A+ 1
M−1)···(1+ 1

M )
with B(·, ·) being beta function.

It first can be seen that 1 satisfies that

1 ≤
∫ 0

−τmin

(
1− (

1

2
− 1

2τmax
x)M

)A
dx+

∫ τmin

0

(
1− (

1

2
− 1

2τmin
x)M

)A
dx

+

∫ τmax

τmin

dx+

∫ −τmin

−τmax

(1− (
1

2
− x

2τmax
)M−1)Adx

=2τmax

∫ 1
2 +

τmin
2τmax

1
2

(1− yM )Ady + 2τmin

∫ 1
2

0

(1− yM )Ady

+ τmax − τmin + 2τmax

∫ 1

1
2 +

τmin
2τmax

(1− yM−1)Ady (y :=
1

2
− x

2τmax
)

≤2τmax

∫ 1

0

(1− yM )Ady + τmax − τmin + τmaxfA(M−1)

≤2τmaxfAM + τmax − τmin + τmaxfA(M−1).

And the lower bound on 1 can be obtained as

1 ≥
∫ 0

−τmin

(
1− (

1

2
− 1

2τmin
x)M

)A
dx+

∫ τmin

0

(
1− (

1

2
− 1

2τmax
x)M

)A
dx

+ τmax − τmin +

∫ −τmin

−τmax

(1− (
1

2
− x

2τmax
))Adx

=2τmin

∫ 1

1
2

(1− yM )Ady + 2τmax

∫ 1
2

1
2−

1
2

τmin
τmax

(1− yM )Ady + τmax − τmin +
τmax(1− τmin/τmax)

A+1

2A(A+ 1)

≥τmin
2

M
I0.5(

1

M
,A+ 1) + 2τmax

(∫ 1

0

−
∫ 1

1
2

)
(1− yM )Ady + τmax − τmin +

τmax(1− τmin/τmax)
A+1

2A(A+ 1)

≥2τmingAM + 2τmaxfAM − 2τmaxgAM + τmax − τmin +
τmax(1− τmin/τmax)

A+1

2A(A+ 1)
,

where gAM = 1
M I0.5(

1
M , A+ 1) with I0.5(·, ·) being the regularized incomplete Beta function. The

last inequality is true due to the following result:∫ 1

1
2

(1− yM )Ady =
1

M

∫ 1

( 1
2 )
M
t

1
M−1(1− t)Adt

≥ 1

M

∫ 1

1
2

t
1
M−1(1− t)Adt

=
1

M
I0.5(

1

M
,A+ 1) (t := yM )

:=gAM .

Consequently, we have that 1 satisfies

1 ≥τmax − τmin +
τmax(1− τmin/τmax)

A+1

2A(A+ 1)
+ 2τmingAM + 2τmaxfAM − 2τmaxgAM

≥τmax − τmin +
τmax − (A+ 1)τmin

2A(A+ 1)
+ τmaxfAM − 2τmaxgAM + 2τmingAM
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(a) Approximation error distribu-
tions settings. (b) τmin = 0.07, τmax = 0.1.

(c) Impact of approximation er-
ror on the estimation bias when
τmax = 0.1: overestimation
vs. underestimation.

(d) τmin = 1, τmax = 1.

(e) Impact of approximation er-
ror on the estimation bias when
τmax = 1: overestimation vs. un-
derestimation.

Figure 8: Illustration of upper bounds and lower bounds on estimation bias in Theorem 2. (a) The case
where the approximation errors of the Q-approximators are heterogeneous. (b),(d) The lower bound
and the upper bound for given τ1, τ2, A. (c),(e) Due to time-varying feature of the approximation
errors, the blue curve and the red curve depict the ‘critical’ points for the lower bound and the upper
bound, respectively.

≥τmax(1 +
1

2A(A+ 1)
+ fAM − 2gAM )− τmin(1 +

1

2A
)

≥τmax(1 + fAM − 2gAM )− 3

2
τmin

≥τmax(1 + fAM − 2gAM )− 2τmin,

Summarizing, we obtain the following upper bound and lower bound on the estimation bias E[ZM ],
in the general case with heterogeneous distributions for Q-function approximation errors:

E[ZM ] ≥γ
(
τmin − τmax(fA(M−1) + 2fAM )

)
;

E[ZM ] ≤γ (2τmin − τmax (fAM − 2gAM )) .

A.4 Numerical Illustration of Theorem 2

For a better understanding of Theorem 2, we next provide an example in Figure 8 following the same
line as in Section 3.1. Figure 8(b) shows the case when τmax is small, i.e., τmax = 0.1. Consistent
with our analysis in Section 3.1, increasing the ensemble size M > 10 (red point) will lead to
underestimation bias (upper bound is negative). It can be seen clearly in Figure 8(c) that, when τmin

is small, the underestimation is the major issue when increasing the ensemble. On the other hand,
Figure 8(d) demonstrates the case when τmin is large, i.e., τmin = τmax = 1. In this case, decreasing
the ensemble size is ‘likely’ to cause overestimation. Similarly, we can observe from Figure 8(e) that
when increasing τmin, the ensemble size M should be increased to avoid the overestimation (the blue
shaded area). In this example, we set the number of actions as A = 75.

A.5 Convergence Analysis of AdaEQ

Assume that at iteration t, the ensemble size is Mt ≤ N , where N is the number of approximators in
the ensemble method. It is straightforward to verify that the stochastic approximation noise term has
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Table 1: A comparison of hyperparameter settings among AdaEQ, REDQ [6] and AVG [2] imple-
mentation.

Hyperparameter AdaEQ (Our Method) REDQ AVG

Learning Rate 3 · 10−4 3 · 10−4 3 · 10−4

Discount Factor (γ) 0.99 0.99 0.99
Optimizer Adam Adam Adam
Target Smoothing Coefficient (ρ) 5 · 10−3 5 · 10−3 5 · 10−3

Batch Size 256 256 256
Replay Buffer Size 106 106 106

Non-linearity ReLU ReLU ReLU
Number of Hidden Layers 2 2 2
Number of Hidden Unites per Layer 256 256 256
Number of Approximators (N ) 10 10 10
Testing Trajectory Length H 500 500 500

Initial Ensemble Size (M0) 4 2 10
Ensemble Size Adaptation True False False
Adaptation Frequency Every 10 epochs - -
‘Tolerance’ Parameter c 0.3 - -

the contraction property as stated in [6] Appendix A.4 and [17] Appendix B. It follows that AdaEQ
converges to the optimal Q-function with probability 1.

B Experiments

B.1 Hyperparameters and Implementation Details

In the empirical implementation, our code for AdaEQ is partly based on REDQ authors’ open source
code (https://github.com/watchernyu/REDQ) [6] and we use the identical hyperparameter
setting, for the sake of fair comparison. For all three methods compared in our experiments, the
first 5000 data points are obtained by randomly sampling from the action space without updating
the Q-networks. For REDQ, we use the fine-tuned ensemble size M = 2 for all the MuJoCo
benchmark tests. The results are similar with the reported results in the original paper. The detailed
hyperparameter setting is summarized in Table 1.

B.2 Additional Empirical Results on MuJoCo Benchmark

Training Time Comparison. In Table 2, we compare the average wall-clock training time over three
training seeds. All the tasks are trained on the same 2080Ti GPU. It can be seen that the ensemble
size adaptation mechanism does not significantly increase the training time for most tasks.

Table 2: A comparison of training time among AdaEQ, REDQ [6] and AVG [2] implementation.
Environment Hopper-v2 125K Walker2d 300K Ant 300 K Humanoid 250K

AdaEQ 62509.38 120598.13 130673.32 148786.28
REDQ 61565.28 118604.28 122954.04 104462.43
AVG 172115.94 151058.98 129526.58 124834.21
AdaEQ/REDQ 1.01× 1.02× 1.06× 1.42×

B.3 Illustrative Examples for Time-Varying Approximation Errors

We present in Figure 9 an example to illustrate the time-varying nature of approximation errors
during the training process. Following the setting in Section 2.2, we use 3 different approximators to
approximate the true action-value. Each approximator is a 6-degree polynomial that fits the samples.
The initial approximation errors used to generate samples are set to follow uniform distribution with
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parameter τ = 0.3, 0.5, 0.7, respectively. At each iteration, we first generate new samples from the
approximator obtained in the last iteration and then update the approximator using these samples.
The mean and standard derivation of the approximation error over different states are depicted in
Figure 9(a) and 9(b). Clearly, the approximation error is time-varying and can change dramatically
during the training process.

(a) (b)

Figure 9: Illustration of the time-varying approximation error during the training process. (a) Mean
approximation error over states. (b) Standard derivation of the approximation error over states.

B.4 Performance Comparison with TD3 and SAC

Table 3: A Comparison of Average Return among AdaEQ (proposed method), REDQ [6], AVG [2],
SAC [11] and TD3 [9]

Environment Hopper-v2 125K Walker2d 300K Ant 300K Humanoid 250K

AdaEQ 3372 4012 5241 4982
REDQ 3117 3871 5013 4521
AVG 1982 2736 2997 2015
SAC 2404 2556 2485 1523
TD3 982 3624 2048 -
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