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1. Introduction
Site-disordered materials are defined by crystal

structures in which at least one crystallographic site
is partially occupied by atoms of different elements.
This category is diverse and encompasses materials
from metal alloys such as CoFe[1], ordered vacancy
compounds such as CuIn3Se5[2], and correlated dis-
order materials such as water ice[3]. Stoichiometric
tuning and doping in materials synthesis also work
by substituting one element for another at specific
crystallographic sites, making many synthetic com-
pounds site-disordered[4]. Point defects are a partic-
ular expression of site disorder. Naturally occurring
minerals are predominantly determined to exhibit
site disorder. As such, site-disordered materials are
ubiquitous in materials science.

Table 1: Prevalence of site-disordered materials
(SDM) in experimental databases.

Ordered SDM Error

ICSD[5] 122517
(53.4%)

106970
(46.6%)

4966
(2.1%)

AMCSD[6] 10655
(50.6%)

9153
(43.5%)

1246
(5.9%)

First-principles simulation methods, especially
density functional theory (DFT), have been in-
strumental in the past few decades in exploring
the link between crystal structure and material
properties. Large DFT computational databases
have been compiled, including Materials Project
(MP)[7] and the Open Quantum Materials Database
(OQMD)[8]. Despite their abundance in real life, site-
disorderedmaterials are conspicuously absent from
these databases. This originates from the inability of
DFT software to treat atomic sites with site disorder.
Numerous strategies exist to bridge this gap be-

tween theory and experiment. Cluster expansion
and special quasirandom structures (SQS)[9, 10] are
used to simulate, as closely as possible, a random
distribution of elements at the disordered sites in
a quasirandom or virtual cell. The coherent poten-
tial approximation (CPA) method [11] is used to sim-
ulate an effective medium potential created by the
mixture of elements in a disordered system. The
applicability of these methods is limited to simple

disordered materials, especially metal alloys, and
SQS tends to be computationally expensive. In 2017,
the software Supercell[12] was the first of its kind
developed that can generate quickly a large num-
ber of virtual supercells for materials that do not
have correlated disorder. More recently, in 2023,
aflow++[13] has emerged, using a batch of virtual su-
percells and DFT to predict the physical properties
of a site-disordered material using Boltzmann aver-
aging.
At this juncture, we are far from solving the prob-

lem of computational expense. The presence of
site disorder turns one simple computational rou-
tine into many heavy routines, depending on the su-
percell size and the size of the batch. In thiswork,we
present the virp code, which employs current neu-
ral network-derivedmethods and sampling theory to
circumvent computational complexity issues in ma-
terials property prediction with site disorder.

2. Substantial section

Fig. 1: Cells used in trial demonstrations

2.1 Permutative fill and enumeration
Database building operations are performed on a

set of trial cells with site disorder. For each trial cell,
a set of up to 700 virtual cells are generated, struc-
turally optimised using CHGNET, and assigned a pre-
dicted band gap using matgl[14]. Each batch opera-
tion can be completed in the space of one week.
When virp treats a site-disordered unit cell, it

first creates a supercell by replicating the unit cell a
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number of times along the crystallographic axes; the
number chosen should be large enough to minimise
periodic boundary effects.
Following the method of the Supercell code, the

instances of each disordered site in the supercell is
randomly assigned an atom (or lack thereof) accord-
ing to the proportional occupancy of the elements
in the site as specified in the crystallographic data.
The continuous cumulative proportions aremapped
onto a discrete array (a “snap”) by rounding. Each
atomic species is guaranteed at least one site, and
the anti-biasing feature maps a cumulative propor-
tion by rounding up or downwith equal probabilities
if it lies exactly in the middle of two integers in the
snap. The total number of distinct virtual cells Nv,
discounting symmetry operations, is thus:

Nv =
∏
s

∑
x

m(s)!∏
i xi!

. (1)

Here, s denotes a crystallographic site, m(s) is
the multiplicity of the site in the supercell, and x =
(x1, x2, . . . , xn) ∈ Nn denotes a snap.

2.2 Boltzmann averaging and sampling
Similar to aflow++, the Boltzmann-averaged ex-

pectation value ⟨P ⟩ of a certain property P from the
calculated or predicted values pi of each virtual cell
(of energy Ei) in the sample set.

⟨P ⟩ =
∑

i pie
−Ei
kBT∑

j e
−Ej
kBT

(2)

The Yamane sampling regime is recommended
for when the target quantity is continuous[15]. De-
spite its population size dependence, the sample size
levels off for larger populations. As such, a sample
size of 400 is sufficient to maintain a margin of er-
ror of under 5% for Boltzmann-averaged quantities.
Contrary to what Ohkotnikov et al.[12] and Oses et
al.[13] may suggest, a complete sampling of the con-
figuration space is not necessary.

Fig. 2: (a) Boltzmann-averaged density of Co0.3Fe0.7
(bcc) based on sampling a population of 1300
virtual cells; (b) Yamane, Cochran, and Krejce-
Morgan sample sizes (p = 0.5) against popula-
tion size. For comparison, the measured density
of Co0.3Fe0.7 is 8.017 g/cm3[16].

2.3 Symmetrical equivalence of virtual cells
Accurate approximation of disordered structure

require large supercells. This also means that the
probability that two generated virtual cells are sym-
metrically equivalent is small, at 0-6%. Redundant
cells can be identified by the CHGNET total ener-
gies of their un-relaxed structures without the need
for symmetry resolution, which is computationally
expensive. This is distinct from the approach of
Supercell, which requires symmetry resolution and
practically limits the size of the supercell one can
choose.

Table 2: Size of configuration space (N) and redun-
dancy in a set of 700 generated virtual structures
from the trial set.

N Repeat (%)

Perovskite 1.9×1015 41 5.9%
Gehlenite 6.4×1027 20 2.9%
Sphalerite 5.8×1028 2 0.29%
Spinel ≫ 10308 6 0.86%
Chalcopyrite 3.2×1016 18 2.6%
bcc 5.0×1032 34 4.9%
HEA ≫ 10308 22 3.1%

2.4 Implementation and code availability
The virp program is available as a package

on the PyPI repository. The source code can
also be accessed on GitHub (https://github.com/
andypaulchen/virp). Results in this abstract are
generated by version v1.2.1.
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