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Abstract

Data valuation arises as a non-trivial challenge in real-world use cases such as
collaborative machine learning, federated learning, trusted data sharing, data mar-
ketplaces. The value of data is often associated with the learning performance (e.g.,
validation accuracy) of a model trained on the data, which introduces a close cou-
pling between data valuation and validation. However, a validation set may not
be available in practice and it can be challenging for the data providers to reach
an agreement on the choice of the validation set. Another practical issue is that of
data replication: Given the value of some data points, a dishonest data provider
may replicate these data points to exploit the valuation for a larger reward/payment.
We observe that the diversity of the data points is an inherent property of a dataset
that is independent of validation. We formalize diversity via the volume of the data
matrix (i.e., determinant of its left Gram), which allows us to establish a formal con-
nection between the diversity of data and learning performance without requiring
validation. Furthermore, we propose a robust volume measure with a theoretical
guarantee on the replication robustness by following the intuition that copying the
same data points does not increase the diversity of data. We perform extensive
experiments to demonstrate its consistency in valuation and practical advantages
over existing baselines and show that our method is model- and task-agnostic and
can be flexibly adapted to handle various neural networks.

1 Introduction

Data is increasingly recognized as a valuable resource [19], so we need a principled measure of its
worth. A suitable data valuation has wide-ranging applications such as fairly compensating clinical
trial researchers for their collected data [12, 16, 25], fostering collaborative machine learning and
federated learning among industrial organizations [35, 36, 39], encouraging trusted data sharing and
building data marketplaces [7, 30, 32, 37], among others.

A popular viewpoint is that the value of data should correlate with the learning performance of a model
trained on the data [14, 18], which enforces a close coupling between data valuation and validation.
However, a validation set may not always be available in practice [35]. Also, as different choices
of the validation set can lead to different data valuations, it is challenging for the data providers to
agree on the choice of such a validation set [35]. Since valuation is coupled with validation, if the
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validation set is not sufficiently representative of the distribution of test queries in a learning task, the
resulting valuation may not be as accurate/useful [40]. We adopt a different perspective: The value of
data should be related to its intrinsic properties and valuation can be decoupled from validation by
considering the inherent diversity of the data. Intuitively, a more diverse collection of data points
corresponds to a higher-quality dataset and thus yields a larger value. This perspective circumvents
the above practical limitations and allows our valuation method to be model- and task-agnostic. We
formalize diversity via the volume of the data matrix (i.e., determinant of its left Gram).

Data replication is another practical issue in data valuation due to the digital nature and anonymous
setting of data marketplaces [15]. Supposing a dataset has some value and a data provider instead
offers one containing two copies of every data point in this dataset, is this “new” dataset twice as
valuable as the original one? Intuitively, the answer should be no as replication adds no new data and
so does not increase diversity. We formalize this intuition by constructing a compressed version of
the original data to assign little value to replicated data and still preserve its inherent diversity, hence
guaranteeing replication robustness.

We provide theoretical justifications for formalizing diversity via volume: Firstly, diversity should be
non-negative and monotonic [14, 18, 35, 38] and volume satisfies both properties. Secondly, a greater
diversity should lead to a better learning performance [23]: We formally show that a larger volume
generally leads to a better performance using the ordinary least squares (OLS) framework and our
method can be flexibly adapted to handle more complex machine learning models (i.e., various neural
networks) in our experiments. Specifically, data with a larger volume can lead to a more accurate
pseudo-inverse (i.e., a key component of the least squares solution) and a smaller mean squared error.

To ensure replication robustness, we find that the marginal increase in value from replication must
diminish to zero. Otherwise, a data provider can exploit this valuation by making infinite copies
of the data to achieve infinite value. We thus formalize the notion of replication robustness via
the asymptotic value attainable through replication. Unfortunately, the conventional definition of
volume does not have this property. So, we propose a robust volume (RV) measure by constructing a
compressed version of the original data that groups similar data via discretized cubes of the input
feature space and represents those in each cube via a statistic. The RV measure offers practitioners
the flexibility to trade off between diversity representation and replication robustness via the cube’s
width. We perform extensive experiments on synthetic and real-world datasets to demonstrate that
our method produces consistent valuations with existing methods while making fewer assumptions.

The specific contributions of our work here include:

• Formalizing a measure of data diversity via the volume of data (Sec. 2) and justifying the suitability
of volume for data valuation both theoretically (Sec. 3) and empirically (Sec. 5);

• Formalizing the notion of replication robustness and designing a data valuation method based on
the robust volume (RV) measure with a theoretical guarantee on replication robustness (Sec. 4);

• Performing extensive empirical comparisons with baselines to demonstrate that our method is
consistent in valuation without validation, replication robust, and can be flexibly adapted to handle
complex machine learning models such as various neural networks (Sec. 5).

2 Problem Setting and Notations

Consider two data submatrices XS and XS′ to be valued that contain s and s′ rows of d-dimensional
input feature vectors, respectively. Let PS := [X>S 0]> ∈ Rn×d be the zero-padded version of
XS ∈ Rs×d. We concatenate the data submatrices along the rows to form the full data matrix
X ∈ Rn×d, i.e., X := [X>S X>S′ ]

> and n = s + s′. We denote the corresponding observed
labels/responses as y := [y>S y>S′ ]

> ∈ Rn×1. The least squares solution from OLS is w := X+y =

argminβ ‖y −Xβ‖2 where X+ := (X>X)−1X> is the pseudo-inverse of X. Similarly, we denote
X+
S as the pseudo-inverse of XS and wS := X+

SyS . To ease notations, let V := Vol(X) and VS :=
Vol(XS) where Vol() is defined below. Let |A| denote the determinant of a square matrix A. The
left Gram matrix of X is G := X>X ∈ Rd×d, so for data submatrix XS , GS := X>SXS ∈ Rd×d.

Definition 1 (Volume). For a full-rank X ∈ Rn×d with n ≥ d, Vol(X) :=
√
|(X>X)| =

√
|G|.

We adopt the above definition of volume for several reasons: (a) Often, the input feature space of the
data is pre-determined and fixed due to the data collection process. But, new data can stream in and
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so, n can grow indefinitely while d remains fixed [9, 10]. (b) By leveraging the formal connection
between volume and learning performance (Sec. 3), we can design a validation free volume-based
data valuation to assign a larger value to data leading to a better learning performance. (c) This
affords an intuitive interpretation between volume and diversity: Adding a data point to a dataset can
increase the diversity/volume depending on the data points already in the dataset (Lemma 1).

We restrict our discussion to full-rank matrices X, XS , and XS′ since otherwise we can adopt the
Gram-Schmidt process to remove the linearly dependent columns [9, 10]. In practice, we perform
pre-processing such as principal component analysis to reduce the dimension of the input feature
space to ensure that this assumption is satisfied. This assumption is to ensure that there are no
redundant features, namely, features that can be exactly reconstructed using other features. For
instance, if a dataset already contains monthly salaries, then an annual salary would be redundant.

3 Larger Volume Entails Better Learning Performance

The value of a data (sub)matrix depends on the learning performance trained on it [14, 18] which,
we will show, depends on its volume. Simply put, the larger the volume, the better the learning
performance. In this section, we will formalize this claim through the ordinary least squares (OLS)
framework. In particular, we will investigate two metrics for learning performance: (a) the quality
of the pseudo-inverse represented by biasS :=

∥∥P+
S −X+

∥∥ because estimating X+ accurately is
important to achieving small mean squared error (MSE) [9] and where P+

S := (X>SXS)−1P>S , and
(b) the MSE denoted as L(wS) := ‖y −XwS‖2.

3.1 Larger Volume Entails Smaller Bias

In regression problems, the closed-form optimal solution is constructed via X+ computed using X.
So, the bias of P+

S from X+ indirectly determines the value of XS [9], i.e., a smaller bias means a
larger value. We show in Proposition 1 below that ‘a larger volume means a smaller bias’ always
holds for d = 1. For d > 1, it requires additional assumptions which are mostly satisfied via empirical
verification (Fig. 1).
Proposition 1 (Volume vs. Bias for d = 1). For non-zero XS ,XS′ of X ∈ Rn×1, VS ≥ VS′ ⇐⇒
biasS − biasS′ ≤ 0.

The above result can be generalized to M > 2 non-zero data submatrices: Let X :=
[X>S1

X>S2
· · · X>SM

]> and w.l.o.g., suppose that VS1
≥ VS2

≥ . . . ≥ VSM
. Then, biasS1

≤
biasS2

≤ . . . ≤ biasSM
. For d > 1, counterexamples exist (see Fig. 1), so we instead compare biasS

and biasS′ in the next result:
Proposition 2 (Volume vs. Bias in General). For full-rank XS ,XS′ of X ∈ Rn×d,

bias2
S − bias2

S′ =
1

V 4
S

∥∥QSX
>
S

∥∥2 − 1

V 4
S′

∥∥QS′X
>
S′

∥∥2
+ 2

〈
1

V 2
QX>,

1

V 2
S′
QS′P

>
S′ −

1

V 2
S

QSP
>
S

〉
where Q :=

∑k
l=1(λlσl)

−1
∏k
j=1,j 6=l(G − λjI), {λl}kl=1 denotes the k unique eigen-

values of the left Gram matrix G of X, QS ,QS′ are similarly defined w.r.t. GS ,GS′ ,
PS and PS′ are, respectively, zero-padded versions of XS and XS′ , and σl :=∑k
g=1(−1)g+1λk−gl [

∑
H⊆{1,...,k}\{l},|H|=g−1(

∏
h∈{1,...,k}\H λ

−1
h )].

The proof of Proposition 1 (Appendix A.1) relies on a key observation that for d = 1, the left Gram
matrix is a number and the rest of the proof follows. However, it cannot be generalized to that for
d > 1, so we resort to a different proof technique. The proof of Proposition 2 requires Lemma 2 in
Appendix A.1 which establishes a formal connection between volume and G−1 using the Sylvester’s
formula. To obtain VS ≥ VS′ =⇒ biasS ≤ biasS′ , there are two cases requiring different additional
assumptions: (A) VS � VS′ , and (B)

∥∥QSX
>
S

∥∥ ≈ ∥∥QS′X
>
S′

∥∥ and V � max(VS , VS′). Case A
is intuitive: VS � VS′ means XS is much “larger” in volume than XS′ , so biasS is smaller. Case
B is when XS and XS′ are similar (e.g., when they are sampled from the same data distribution).
The intuition is that the first difference term will be relatively large in magnitude (so, its sign will
dominate the overall expression), while the second inner product term will be relatively small in
magnitude. This is because the first difference term involves 1/V 4

S and 1/V 4
S′ but the second inner
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product term involves 1/(V 2×V 2
S ) and 1/(V 2×V 2

S′), and we show V � max(VS , VS′) (Lemma 3
in Appendix A.1). Subsequently,

∥∥QSX
>
S

∥∥ ≈ ∥∥QS′X
>
S′

∥∥ and VS ≥ VS′ suggest that the first
difference term (and thus the overall expression) is likely negative. We empirically verify in Fig. 1
that VS ≥ VS′ =⇒ biasS ≤ biasS′ holds for more than 80% of times.

3.2 Larger Volume Entails Smaller MSE

In Proposition 3 (see proof in Appendix A.2) below, we will show a similar result (to Proposition 1)
theoretically analyzing the connection between volume and MSE when d = 1, which may be
surprising since Vol() (Definition 1) does not consider y at all and can yet determine which data
submatrix offers better predictions on the rest of the (unobserved) data. Unfortunately, such a result
does not directly generalize to d > 1 or beyond two submatrices. Nevertheless, we will analyze the
effect of volume on the learning performance (i.e., MSE) in general.

Proposition 3 (Volume vs. MSE for d = 1). For non-zero XS ,XS′ of X ∈ Rn×1, VS ≥ VS′ ⇐⇒
L(wS)− L(wS′) ≤ 0.

Unfortunately, the above result does not generalize to d > 1. For full-rank XS ,XS′ of X ∈ Rn×d,
we have derived in Appendix A.2 that

L(wS)− L(wS′) = 〈wS −wS′ , (X
>
SXS + X>S′XS′)(wS + wS′)− 2X>y〉 (1)

and also shown in Appendix A.2 that since L(wS)− L(wS′) explicitly depends on y (1) and Vol()
does not include y at all, it is possible to adversarially construct y s.t. L(wS) − L(wS′) > 0 or
L(wS)− L(wS′) < 0 for some fixed XS ,XS′ .

The adversarial cases notwithstanding, volume is regarded as a good surrogate measure of the
quality of data applied to active learning and matrix subsampling with theoretical performance
guarantees [11, 28]. Similarly, we can adopt the perspective that Vol() is a measure of the diversity in
the input features [23], which provides an intuitive interpretation for Proposition 3: A more diverse
dataset with a larger volume gives a better learning performance (i.e., smaller MSE). We will show in
Sec. 5.2 that not requiring labels/responses can be an advantage in practice if the labels/responses are
noisy/corrupted or there is a distributional difference between the validation and test sets.

We conclude Sec. 3 by empirically verifying whether the additional assumptions described in the
last paragraph of Sec. 3.1 are satisfied by checking the percentage of times that VS ≥ VS′ =⇒
biasS − biasS′ ≤ 0 holds. To elaborate, we randomly and identically sample equal-sized XS ,XS′

over 500 independent trials and compute the percentage of times that a larger volume leads to better
learning performance (vertical axis) against the size of XS ,XS′ (horizontal axis). We consider
sampling XS ,XS′ from either a uniform or normal distribution of varying dimensions: In Fig. 1,
for example, ‘N d = 1’ denotes XS ,XS′ being sampled from 1-dimensional standard normal
distribution. For MSE, the response y of a data point x is calculated from y = sin(〈w∗,x〉) where
the true parameters w∗ are randomly sampled from U(0, 2)d. Fig. 1 (left) shows that a larger volume
leads to a smaller bias for more than 80% of times, thus verifying that the additional assumptions in
Sec. 3.1 are satisfied. Fig. 1 (right) shows that a larger volume leads to a smaller MSE for more than
50% of times for d ≤ 10, which is consistent with the above implications from (1).

Figure 1: Volume vs. bias (left) and volume vs. MSE (right) for both identically sampled, equal-sized
datasets XS ,XS′ from either a uniform U(0, 1)d or normal N (0, 1)d distribution. The vertical axis
shows the percentage of times over 500 independent trials that the dataset with a larger volume leads
to a better learning performance (i.e., smaller bias or MSE).
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4 Robustifying Volume-based Data Valuation

As a larger volume can entail a better learning performance (Sec. 3), we consider a volume-based
data valuation method. Unfortunately, volume (Definition 1) is not robust to replication via direct
data copying. Hence, we will introduce a modified volume measure that can trade off a more refined
representation of diversity for greater robustness to replication.

4.1 First Attempt of Volume-based Data Valuation

Directly using Vol(X) as a valuation of X satisfies both non-negativity and monotonicity which
follow directly from Definition 1 and the matrix determinant lemma, respectively:

Proposition 4 (Non-negativity and Monotonicity of Vol()). For full-rank X ∈ Rn×d, Vol(X) ≥ 0
and Vol([X> x>]>) ≥ Vol(X) where x ∈ R1×d is a new data point.

The properties of Vol() in Proposition 4 imply that a bigger-sized X (i.e., more data) should yield
a larger value [14, 18, 35]. However, Vol() is unbounded and has a multiplicative scaling factor
w.r.t. replication. The implication is that a data provider can arbitrarily “inflate” the volume or value
of data by replicating the data infinitely, as shown in the following result (see proof in Appendix A.3):

Lemma 1 (Unbounded Multiplicative Scaling of Vol(X) from Replication). For full-rank X ∈
Rn×d, let xq ∈ R1×d be a data point replicated for m ≥ 1 times and Xrep := [X> x>q . . . x>q ]> ∈
R(n+m)×d. Then, Vol(Xrep) = Vol(X)× (1 +m× xq(X

>X)−1x>q )1/2.

Replication robustness defined via inflation. We define a measure of inflation as the ratio
ν(replicate(X, c))/ν(X) where ν() is a data valuation function (e.g., Vol()) mapping a data matrix
to a real value, the function replicate(X; c) directly copies the data in X and appends them back to
X to output Xrep ∈ R(nc)×d, and the replication factor c denotes the amount of replication. One
way of replication is to copy the entire X for c times. Another way is to copy some data submatrix
for a certain number of times s.t. Xrep ∈ R(nc)×d. We consider the second way because replicating
different data increases the value differently (Lemma 1). We define below a measure of replication
robustness to formalize the intuition that greater robustness should guarantee smaller inflation:

Definition 2 (Replication Robustness of Data Valuation ν()). Define replication robustness of ν()
as γν := ν(X)/(supc≥1 ν(Xrep)) where Xrep := replicate(X, c) ∈ R(nc)×d.

The theoretically optimal robustness is γν = 1, which implies no additional gain from replicating
data, hence discouraging replication completely. In contrast, the worst-case robustness is γν = 0,
which is the case for any ν() that strictly monotonically increases with replication and, in particular,
γVol = 0 by applying Lemma 1. As a result, a replication robust data valuation function must have a
diminishing marginal value from replication: The additional gain from having more copies of the same
data converges asymptotically to 0 w.r.t. c. This aligns with what we observe in practice: Repeatedly
adding the same data to a training set does not improve the learning performance indefinitely.

4.2 Replication Robust Volume (RV)-Based Data Valuation

We will propose an RV measure by constructing a compressed version of original data matrix X that
groups similar data points via discretized cubes of the input feature space and represents those in each
cube via a statistic. The RV measure offers practitioners the flexibility to trade off a more refined
diversity representation for greater replication robustness by increasing the cube’s width.

Definition 3 (Replication Robust Volume (RV)). Let the d-dimensional input feature space/domain
for X be discretized into a set Ψ of d-cubes of width/discretization coefficient ω, φi denote the number
of data points in d-cube i ∈ Ψ, µi ∈ R1×d be a statistic (e.g., mean vector) of the data points in
d-cube i, and X̃ := [µ>i ]>i∈Ψ:φi 6=0 be a compressed version of X s.t. each row of X̃ is a statistic µi
of the data points in non-empty d-cube i. The replication robust volume is

RV(X;ω) := Vol(X̃)×
∏
i∈Ψ ρi (2)

where ρi :=
∑φi

p=0 α
p with hyperparameter α ∈ [0, 1] controlling the degree of robustness.
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In contrast to the unbounded Vol(), we ensure that RV(;ω) is bounded by setting
∏
i∈Ψ ρi to be

bounded and convergent w.r.t. the size of the replicated data. Note that φi = 0 =⇒ ρi = 1 (i.e.,
an empty d-cube) and φi > 0 =⇒ ρi > 1. Before considering any robustness guarantee, we will
first show in Proposition 5 (see proof in Appendix A.3) below that RV (Definition 3) preserves the
original volume in a relative sense, i.e., the ratio VS/VS′ is preserved. The implication is a similar
effect of RV on the learning performance (Sec. 3), as empirically demonstrated in Sec. 5.1.

Proposition 5 (Bounded Distortion of RV(XS ;ω)/RV(XS′ ;ω)). Define distortion δ(ω) :=
[RV(XS ;ω)/RV(XS′ ;ω)]/[Vol(XS)/Vol(XS′)]. Then, (exp(β−1))−1 ≤ δ(ω) ≤ exp(β−1) for
any ω > 0 where β = 1/(αn). For example, β = 10 bounds δ(ω) ∈ [0.905, 1.105] approximately.

Near-optimal robustness by upper-bounding inflation. We have previously defined robust-
ness (Definition 2) as the maximum attainable inflation via replication. Since ρi and inflation
are monotonic in φi, we consider the asymptotic inflation: φi →∞. In Definition 3, even when the
data in d-cube i is replicated infinitely many times, the inflation from this d-cube is still upper-bounded
by a constant. This can be generalized to all the d-cubes as each can be considered independently and
there is a constant number of d-cubes for a fixed X and ω.

Proposition 6 (Robustness γRV). For α ∈ [0, 1), γRV ≥ (1 − α)|Ψ| where, with a slight abuse of
notation, Ψ denotes the set of non-empty d-cubes. For α = 1, γRV = 0.

Its proof is in Appendix A.3. Recall from Definition 2 that γRV = 1 is optimal robustness. From
Proposition 6, reducing α achieves a smaller upper bound on inflation and greater robustness.
However, if α is too small, then it may have an undesirable effect: RV(X;ω) < Vol(X) for some
X (with similar data points) from an honest provider without replication. In this case, RV has an
over-correcting effect: RV is designed to avoid exploitation of Vol() due to replication but mistakenly
leads to a decrease in the value of an honest dataset. Therefore, α should be set to achieve a certain
upper bound on inflation but should not be unnecessarily small; more details are given in Proposition 8
in Appendix A.3. In particular, setting α = 1/(βn) guarantees a constant upper bound exp(β−1) on
the inflation, as proven in Lemma 5 in Appendix A.3. For instance, setting β = 10 and α = 1/(βn)
guarantees RV(replicate(X, c);ω) ≤ 110%×RV(X;ω). However, it requires us to know the true n
without any replication. In practice, as we can only observe the data with replication (if any) [15], we
estimate n with the number |Ψ| of rows in X̃.

Trading off diversity representation for replication robustness via ω. A smaller ω means that the
d-cubes are more refined and RV can better represent the original data instead of crudely grouping
many data points together and representing them via a statistic. On the other hand, a larger ω means
a less refined diversity representation but greater replication robustness. In the extreme case, a
sufficiently large ω results in grouping all data points together and representing them all using a
single statistic, hence foregoing the diversity in data. So, a practitioner should determine the trade-off
between diversity representation vs. replication robustness based on the requirements of the real-world
use case. The following result (see proof in Appendix A.3) formalizes both extremes of the trade-off:

Proposition 7 (Reduction to Vol() vs. Optimal Robustness). Set ω to be s.t. each d-cube only
contains completely identical data points, and

1. set ρi to some constant KX̃,i for i ∈ Ψ based on a recursive application of Lemma 1. Then,
RV(·;ω) = Vol();

2. set α = 0. So, ρi = 1(φi 6= 0) and name this formulation RV1(·;ω). Then, γRV1
= 1.

RV1(·;ω) can be seen as reducing all potential replications to one data point. It achieves robustness
but loses the density information of each d-cube due to the indicator function. Specifically, the true
distribution may have different densities at different d-cubes, which is reflected via φi’s. But, this
information is completely lost in RV1(·;ω). In contrast, Vol() represents all the data indiscriminately,
hence sacrificing robustness. Furthermore, while we restrict our consideration of replication to
direct copying, it is natural to additionally consider a noisy replication (i.e., adding small random
perturbations to copies [15]). Intuitively, RV1(·;ω) is not robust to noisy replication as the replicated
data are perturbed. Our preliminary empirical study in Appendices B.2 and B.3 shows that RV is
robust to noisy replication if the noise magnitude is small relative to ω. So, a future work is to devise
a way to optimize the trade-off between diversity representation and replication robustness via ω. In
our work here, we empirically find ω = 0.1 suitable for the case of standardized input features.
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Figure 2: Effect of removing/adding dataset with highest/lowest RV on train/test loss for real-world
credit card and Uber Lyft datasets. Plots show the average and standard errors over 50 random trials.

In using standardized input features, we implicitly assume that the input features follow a normal
distribution. This makes the data further away from the mean (i.e., statistically rarer) more valuable
in learning [11]. We also observe this in Sec. 5.2 where data closer to the mean are valued to be
smaller across all baselines and our method. Our work here excludes considerations of outliers as
they are not truly representative of the true data distribution.

5 Experiments and Discussion

In this section, we will first verify our claim in Sec. 3 that a larger volume leads to a better learning
performance and reveal some interesting practical perspectives in Sec. 5.1. Then, in Sec. 5.2, we will
show that RV produces results consistent with existing baseline methods and also demonstrate the
limitations of these baselines. In particular, RV is model- and task-agnostic while another baseline
with an explicit dependence on the validation set is shown to have some deviation in data valuation as
the validation set changes. Lastly, in Sec. 5.3, we will verify our robustness guarantee by analyzing
its asymptotic behavior under replication. Importantly, our empirical study has gone beyond the
OLS framework used for the theoretical analysis in Sec. 3 as our method can be flexibly adapted
to handle various neural network architectures on different machine learning tasks including both
image classification and natural language processing. All experiments have been run on a server
with Intel(R) Xeon(R)@ 2.70GHz processor and 256GB RAM. Our code is publicly available at:
https://github.com/ZhaoxuanWu/VolumeBased-DataValuation.

5.1 Effect of Robust Volume (RV) on Learning Performance

In this subsection, we use RV and volume interchangeably as replication is not considered here
and Proposition 5 guarantees that RV preserves the original volume. We consider the setting of
sequentially adding/removing the dataset with highest/lowest RV to analyze the effect of RV on the
learning performance [14]. We include random selection as a baseline. We simulate 8 data providers
to make the results more generalizable. In this experiment, we use two real-world datasets: credit
card fraud detection [2] (i.e., transaction amount prediction) and Uber & Lyft [5] (i.e., carpool ride
price prediction) which are pre-processed to contain 8 and 12 standardized input features, respectively.
Fig. 2 shows the results. Additional results on two other real-world datasets are in Appendix B.4.

It can be observed that adding (resp., removing) a dataset with a larger RV leads to a smaller (resp.,
larger) train loss, thus verifying Proposition 2 that a larger volume leads to a more accurate pseudo-
inverse and smaller train loss in terms of mean squared error. This observation is also consistent
with the results on the test loss, albeit with larger standard errors. This confirms (1) that in a higher
dimensional input feature space, a larger volume does not immediately guarantee a smaller test loss.

Interesting practical perspectives. The results on adding datasets provide justification for a data
buyer with a limited budget to spend on datasets with larger RVs first to achieve the best learning
performance, thereby resonating with the active learning paradigm [29]. On the other hand, the
results on removing datasets sheds light on the following question: If training on all collected datasets
is too costly due to memory or time constraints, then which dataset should be removed first without
compromising the learning performance much (i.e., the dataset with smallest RV)?
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5.2 Empirical Comparison of Robust Volume (RV) Shapley Value with Baselines

We will demonstrate that RV without validation gives results consistent with existing baseline methods
which may require validation. Then, we will empirically show the limitations of these baselines.

To design principled, fair payments to the data providers, we use (robust) volume as the characteristic
function in the commonly used Shapley value to measure the expected marginal contributions of their
datasets [14, 18, 35]. Our robust volume Shapley value (RVSV) is defined as follows [33]:

RVSVm := (1/M !)
∑
C⊆M\{Sm}[|C|!× (M − |C| − 1)!]× [RV(XC∪{Sm};ω)−RV(XC ;ω)] (3)

whereM := {S1, . . . , SM} denotes a set of M data providers/datasets and XC denotes a data matrix
constructed from concatenating the data matrix XSm′ of every data provider Sm′ ∈ C ⊆ M. Our
volume Shapley value (VSV) is computed by replacing RV(·;ω) in (3) with Vol(). We compare
VSV and RVSV with the following baselines: validation loss leave-one-out (LOO) value [21, 27],
validation loss Shapley value (VLSV) [14, 18], and information gain Shapley value (IGSV) [35]. We
consider the contributions of M = 3 data providers/matrices/datasets XS1

, XS2
, and XS3

[35]. The
input features are standardized and we set ω = 0.1. LOO and VLSV use MSE on a validation set.

Synthetic data from baseline distributions. We first consider simpler experimental settings on
synthetic data drawn from the 6D Hartmann function [24] defined over [0, 1]6 with four baseline data
distributions for XS1

, XS2
, and XS3

: (A) independent and identical distribution (i.i.d.) where XS1
,

XS2
, and XS3

contain 200 i.i.d. samples each; (B) ascending dataset size where XS1
, XS2

, and XS3

contain 20, 50, and 200 i.i.d. samples, respectively; (C) disjoint input domains where XS1
, XS2

, and
XS3

are sampled from the input domains of [0, 1/3]6, [1/3, 2/3]6, and [2/3, 1]6, respectively; and
(D) supersets XS1 ⊂ XS2 ⊂ XS3 with the respective sizes 200, 400, and 600 where XS2 (resp.,
XS3 ) has 200 i.i.d. data samples in addition to XS1 (resp., XS2 ).

The results in Fig. 3 show that both VSV and RVSV are generally consistent with IGSV. For (B)
ascending dataset size, VSV, RVSV, and IGSV increase from XS1

to XS3
, while VLSV surprisingly

values the contributions of XS1
, XS2

, and XS3
to be nearly equal; the latter may be due to VLSV’s

sensitivity to the definition of the value ν(∅) of an empty dataset/matrix ∅ when calculating the
Shapley value. Fig. 4 illustrates that for i.i.d., VLSV is sensitive to the definition of ν(∅): For
example, setting ν(∅) to 0 [18], 1.06 (by initializing parameters to zeros), and 8.75 (by initializing
parameters randomly using N (0, 1) [14]) yield different VLSVs of 0.346, 0.183, and 0.330 for XS1 ,
respectively. These conflicting choices of ν(∅) add to the difficulties of applying VLSV in practice.

Interestingly, under (C) disjoint input domains, all methods unanimously value the contribution
of XS2

to be the lowest despite their input domains to be of the same size, which is due to the
standardization of the input features and so offers the following interpretation: The data in the “center”
is the most common if we assume the true data distribution follows a normal one. Therefore, the most
common data are valued less while the statistically “rarer” data at the two tails of the distribution are
valued more. Additional experimental results with this distribution are reported in Appendix B.5. It
is counter-intuitive to see that for i.i.d., LOO values the contribution of XS1

to be 0, which may be
due to instability from the calculation of their contributions [8].

Real-world datasets with different preferences of validation sets. We use two real-world datasets:
UK used car dataset [1] (i.e., car price prediction) and credit card fraud detection dataset [2] (i.e.,
transaction amount prediction) where there are different preferences of validation sets [35]. For
instance, car dealers for different manufacturers such as Audi, Ford, and Toyota may have different
preferences over data. So, we construct two different validation sets comprising cars from different
manufacturers. Similarly, different financial institutions may differ in their interests of the transaction
amounts. For example, smaller banks typically manage and focus on smaller transaction amounts,
so we construct two different validation sets comprising large (i.e., > $1000) vs. small transaction
amounts. The results in Fig. 5 show that the effect of different preferences of validation sets on LOO
is pronounced, as expected. The effect on VLSV is less due to the averaging of marginal contributions.
On the other hand, there is no effect on IGSV, VSV, and RVSV as they do not require a validation set.

5.3 Replication Robustness

We first perform a simpler experiment to demonstrate the effect of replication and then perform more
extensive experiments under more complex settings to show the asymptotic behavior of RVSV and
existing baseline methods under replication.
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Figure 3: Contributions of XS1
, XS2

, and XS3
from Hartmann function with baseline data distribu-

tions: (A) i.i.d., (B) ascending dataset size, (C) disjoint input domains, and (D) supersets.

Figure 4: Sensitivity of VLSV to varying
ν(∅) (e.g., 3 red dotted lines).

Figure 5: Contributions of XS1
, XS2

, and XS3
for 2 vali-

dation sets distinguished by darker vs. lighter shades.

Contributions of XS1
, XS2

, and XS3
under i.i.d. setting. We perform this experiment on the Trip

Advisor hotel reviews dataset [4] (i.e., numerical rating prediction) which contains text reviews data.
We utilize the GloVe [31] word embeddings and a bidirectional long short-term memory model with
a fully-connected layer of 8 hidden units. Regression is performed over the 8-dimensional latent
features from this model. Data matrices XS1

, XS2
, and XS3

follow an i.i.d. partition of the processed
data and subsequently, XS2

and XS3
are replicated for 2 and 10 times, respectively. The results in

Fig. 6 show noticeable increases in the contribution of XS3 for IGSV and VSV, which implies that
they are not replication robust. On the other hand, both VLSV and RVSV appear robust.

Contributions of XS1
, XS2

, and XS3
under non-i.i.d. settings. As our replication robustness

includes supc (Definition 2), we investigate large replication factors c of up to 100. Since the previous
experiment shows that VLSV is robust, we use it as the baseline for comparison. We additionally
consider two non-i.i.d. data distributions extended from the previous setting: supersets and disjoint
input domains for 4 real-world datasets: California housing price prediction (CaliH) [20], Kings
county housing sales prediction (KingH) [3], US census income prediction (USCensus) [6], and
age estimation from facial images (FaceA) [41]. We use 60% of data to construct XS1 , XS2 , and
XS3 and the remaining 40% as the validation set for LOO and VLSV. For i.i.d. and supersets, we
set XS2 = XS1 s.t. XS2 simulates an honest data provider and we examine the effect of replicating
XS1

. For supersets, we vary the proportion of data from XS1
that is contained in XS3

: If the ratio
is 0.1, then XS3

contains 10% data from XS1
; if the ratio is 1, then XS1

⊂ XS3
. For disjoint input

domains, we vary how disjoint they are for XS1
, XS2

, and XS3
via a ratio: 0 (resp., 1) means that

XS1
, XS2

, and XS3
have completely disjoint (resp., overlapped) input domains. In other words, with

ratio 0, they do not contain any similar data, while with ratio 1, they may contain some similar data.
Fig. 7 shows results for two datasets with i.i.d. data distribution. For CaliH, we use the latent features
from the last layer of a neural network with 2 fully connected layers of 64 and 10 hidden units and

Figure 6: Effect of replication on contribu-
tions of XS1

, XS2
, XS3

. Darker (lighter)
shade denotes before (after) replication.

Figure 7: Contribution of the replicated XS1 with
varying replication factors c for CaliH (left) and
FaceA (right) datasets.
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the rectified linear unit (ReLU) as the activation function. Additional details on data distributions,
datasets, and models are in Appendix B.6.

Next, we compare the similarity of RVSV and baseline methods to VLSV using similarity measures
such as the Pearson correlation coefficient (rp) [18], cosine similarity (cos), and the reciprocal of
the l2 norm of the difference [36]. For RVSV, we set ω = 0.05 and 0.1, which are respectively
denoted by RVSV-005 and RVSV-01. Table 1 shows results averaged over varying replication factors
c for CaliH; the other results are reported in Appendix B.6. VSV and IGSV are not robust and may
be exploited as both increase relatively quickly with replication for c < 20 (Fig. 7). Furthermore,
our additional experiments on varying hyperparameter choices (Appendix B.7) show that IGSV is
sensitive to the choice of hyperparameter whereas RVSV is consistent, even with varying ω. From
Fig. 7, RVSV is replication robust. RVSV can also achieve a high degree of similarity to VLSV
without requiring validation, as seen in Table 1.

Table 1: Effect of replication on similarity of RVSV and existing baseline methods to VLSV for
CaliH dataset. Values in bold indicate the best results.

Method i.i.d. disjoint 0 disjoint 1 supersets 0.1 supersets 1
rp cos 1/l2 rp cos 1/l2 rp cos 1/l2 rp cos 1/l2 rp cos 1/l2

LOO -0.991 0.730 1.894 -0.459 0.816 2.457 -0.488 0.406 0.770 -0.339 0.801 2.362 -0.590 0.771 2.100
IGSV -0.903 0.637 1.591 0.640 0.639 1.583 -0.763 0.636 1.589 -0.893 0.636 1.580 -0.716 0.653 1.687
VSV -0.886 0.787 2.493 0.644 0.784 2.415 -0.780 0.775 2.335 -0.892 0.779 2.389 -0.660 0.813 2.696
RVSV-005 0.767 0.959 5.857 0.700 1.000 77.714 -0.784 0.998 28.479 0.810 0.983 9.314 0.918 0.946 5.051
RVSV-01 0.767 0.920 4.055 0.351 0.999 47.066 -0.939 0.997 20.845 0.808 0.976 7.839 0.917 0.914 3.901

6 Related Work

Data valuation methods assign a larger value to data that leads to a better learning performance [14,
18, 35, 40]. Existing methods such as leave-one-out approaches [18], the Shapley value-based
methods [14, 17], and a reinforcement learning framework [40] require validation. Due to the tight
coupling between valuation and validation, these methods may face practical limitations arising from
using a validation set (Sec. 1). The work of [35] has proposed an information-theoretic approach
to valuing data based on the information gain (IG) on the model parameters to avoid the need for
validation. However, it has not proven that a larger IG (value) leads to a better learning performance.
Our method has this desirable theoretical property without needing validation (Sec. 3). While existing
methods demonstrate some effectiveness against replication using carefully selected validation
sets [14, 18], our method achieves such a guarantee without needing validation. The work of [15] has
considered replication from a different perspective and is thus not directly comparable to our method.

7 Conclusion and Future Work

This paper describes a model- and task-agnostic replication robust data valuation method that requires
no validation. In particular, we value data based on its inherent diversity formalized as the volume
of the data matrix because we have shown in Sec. 3 that a larger volume entails a better learning
performance. We have identified that volume is not robust to replication, so we design a data valuation
method based on the novel robust volume (RV) measure with a theoretical guarantee on replication
robustness (Sec. 4). In our experiments (Sec. 5), we have used RV as a characteristic function in
the Shapley value and empirical comparison with existing baseline methods verifies its effectiveness
in data valuation and its robustness guarantee. Importantly, we have tested on various real-world
datasets and our robust volume data valuation method can be flexibly adapted to handle machine
learning models more complex than OLS (i.e., various neural networks) to demonstrate its practical
applicability. Current works on data pricing may build on our perspective to ease the dependence on
the validation set. For future work, we plan to consider more sophisticated replication techniques and
investigate how to optimize the trade-off between diversity representation vs. replication robustness.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We clearly describe the problem of data valuation and
give an overview of our proposed method and what it achieves - a diversity-based data
valuation method without validation and with a robustness guarantee to replication. We
summarize our contributions in point forms in the introduction section.

(b) Did you describe the limitations of your work? [Yes] See Sec. 3, we show the theoretical
guarantees require complicated assumptions to generalize to high-dimensional input
feature spaces, but demonstrate in Sec. 5 that our method works well empirically. See
the last part of Sec. 4.2 that we restrict our consideration to data that follow a normal
distribution and do not contain outliers.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All assumptions
are clearly stated.

(b) Did you include complete proofs of all theoretical results? [Yes] All theoretical results
are proven. Complete proofs are given in the Appendix A.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We submit our
code as supplementary materials. Instructions on getting the datasets, processing the
datasets and running the code are given.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Experiment settings including datasets and models are described
in Sec. 5 with additional details in Appendix B.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Fig. 2 and additional figures in Appendix B.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Sec. 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Our work uses

existing datasets. We cite creators for all datasets clearly. URLs are also provided.
(b) Did you mention the license of the assets? [Yes] See Appendix B.1.
(c) Did you include any new assets either in the supplemental material or as a URL?[N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] No crowdsourcing or human subjects were involved.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] No crowdsourcing or human subjects
were involved.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] No crowdsourcing or human subjects were
involved.
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A Proofs and Derivations

A.1 Larger Volume Entails Smaller Bias

Proof of Proposition 1. Let PS be the zero-padded version of XS such that PS ∈ Rn×d. In this
proof, we only consider d = 1. Note ‖PS‖2 = ‖XS‖2 = |X>SXS | = Vol(XS)2 for d = 1. Recall
the pseudo-inverse X+ := (X>X)−1X>.

∥∥X+ −P+
S

∥∥2
=

∥∥∥∥∥ 1

‖X‖2
X> − 1

‖XS‖2
P>S

∥∥∥∥∥
2

=
1

‖X‖4
∥∥X>∥∥2

+
1

‖XS‖4
∥∥P>S ∥∥2 − 2

‖X‖2 ‖XS‖2
〈X>,P>S 〉

=
1

‖X‖2
+

1

‖XS‖2
− 2

‖X‖2 ‖XS‖2
‖XS‖2

=
1

‖XS‖2
− 1

‖X‖2

=
1

Vol(XS)2
− 1

Vol(X)2

Since Vol(X) is constant, larger the Vol(XS), smaller the square of the bias
∥∥X+ −P+

S

∥∥2
. The

proof of the proposition is complete.

The proof above establishes a direct connection between biasS and 1/V 2
S − 1/V 2. Therefore, we

can extend to M > 2 non-zero submatrices such that, for any XS ,XS′ ∈ {XS1 ,XS2 , . . . ,XSM
},

Proposition 1 still holds.

Proof of Proposition 2. The proof is relatively straightforward and follows the expansion of the
l.h.s and substituting X+ by G−1X> and X+

S by G−1
S P>S . Here, GS := X>SXS and PS is the

zero-padded version of XS . We use the expression and definitions of Q,QS ,QS′ in Lemma 2:

bias2
S − bias2

S′ :=
∥∥X+ −P+

S

∥∥2 −
∥∥X+ −P+

S′

∥∥2

=
∥∥X+

∥∥2 − 2〈X+,P+
S 〉+

∥∥P+
S

∥∥2 −
∥∥X+

∥∥2
+ 2〈X+,P+

S′〉 −
∥∥P+

S′

∥∥2

=
∥∥P+

S

∥∥2 −
∥∥P+

S′

∥∥2
+ 2〈X+,P+

S′ −P+
S 〉

=
1

V 4
S

∥∥QSP
>
S

∥∥2 − 1

V 4
S′

∥∥QS′P
>
S′

∥∥2
+ 2〈 1

V 2
QX>,

1

V 2
S′
QS′P

>
S′ −

1

V 2
S

QSP
>
S 〉

=
1

V 4
S

∥∥QSX
>
S

∥∥2 − 1

V 4
S′

∥∥QS′X
>
S′

∥∥2
+ 2〈 1

V 2
QX>,

1

V 2
S′
QS′P

>
S′ −

1

V 2
S

QSP
>
S 〉.

Theorem 1 (Sylvester’s Matrix Theorem). Given a diagonalizable square matrix A and an analytic
function f(·), we have,

f(A) =

k∑
l=1

f(λl)Al (4)

where λl is the l-th distinct eigenvalue of A and Al is the Frobenius covariant defined as follows,

Al :=

k∏
j=1,j 6=l

1

λl − λj
(A− λjI).

Corollary 1. Suppose f(A) = A−1, then

A−1 = f(A) :=

k∑
l=1

1

λl
Al.
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Lemma 2 (Expressing G−1 in Vol(X)). With G := X>X, then its inverse has

G−1 = V −2∑k
l=1(λlσl)

−1
∏k
j=1,j 6=l(G− λjI) (5)

where λl is the l-th distinct eigenvalue of G, and constant σl is defined as follows,

σl :=
∑k
g=1(−1)g+1λk−gl

[∑
H⊆{1,...,k}\{l},|H|=g−1

(∏
h∈{1,...,k}\H λ

−1
h

)]
.

We define Q :=
∑k
l=1(λlσl)

−1
∏k
j=1,j 6=l(G− λjI) for convenience.

Proof of Lemma 2. The proof uses a key result, Sylvester’s matrix theorem, specifically the corollary
for the inverse of a matrix (reproduced above in Corollary 1) and properties of the left Gram matrix
G := X>X such as invertibility and positive definiteness when X is full-rank.

First, observe since G is a real symmetric matrix, it is diagonalizable, hence a direct application of
the corollary above gives

G−1 =

k∑
l=1

1

λl
Gl (6)

where Gl is the Frobenius covariant defined in the above theorem and we consider Gl on its own,

Gl :=

k∏
j=1,j 6=l

1

λl − λj
(G− λjI)

=

k∏
j=1,j 6=l

1

λl − λj︸ ︷︷ ︸
pl

×
k∏

j=1,j 6=l

(G− λjI)︸ ︷︷ ︸
Ml

(7)

Observe the denominator of the expanded pl is a summation of terms that are products of multiple λl’s
and all with coefficient either 1 or −1. To see from a specific and self-contained example: suppose
k = 4 = l, so

pl =
1

λ4 − λ1
× 1

λ4 − λ2
× 1

λ4 − λ3

=
1

λ3
4 − λ2

4λ1 − λ2
4λ2 − λ2

4λ3 + λ4λ1λ2 + λ4λ1λ3 + λ4λ2λ3 − λ1λ2λ3
.

Since it is easier to work with 1
pl

, we derive the following formula for it by extracting a common

factor of Λ :=
∏k
i=l λl to give

1

pl
= Λ

k∑
g=1

(−1)g+1λk−gl

 ∑
H⊆{1,...,k}\{l},|H|=g−1

 ∏
h∈{1,...,k}\H

1

λh


︸ ︷︷ ︸

σl

. (8)

Using the result that determinant of the left Gram matrix is the product of its eigenvalues, we have
|G| = Λ, and substituting the definition of σl, we rewrite (7) as follows,

Gl =
1

|G|
1

σl
Ml. (9)

Recalling Vol(X)2 = |G| and plugging (9) back into (6) gives

G−1 =
1

Vol(X)2

k∑
l=1

1

λl

1

σl
Ml︸ ︷︷ ︸

Q

.

15



Examining the additional scenario of case 2) in Proposition 2. The scenario is where XS ,XS′

are similar in the sense that they may contain a similar number of rows, and are drawn from the same
distribution. We focus on showing V � max(VS , VS′) and assume

∥∥QSX
>
S

∥∥ ≈ ∥∥QS′X
>
S′

∥∥ (which
we verify empirically later by showing Proposition 2 is true most of the time in Fig.1).

Lemma 3 states that V 2 is larger than V 2
S , V

2
S′ by a multiplicative factor which is exponential in the

number of rows in VS′ , VS . See Fig. 8 for an illustration.

Lemma 3 (V vs. VS , VS′). Let V, VS , VS′ be the respective volumes of X,XS ,XS′ and let s, s′
denote the respective number of rows in XS ,XS′ . Assume X,XS ,XS′ are all full-rank, we have

V 2 > max((1 + ξS′)
s′V 2

S , (1 + ξS)sV 2
S′)

where ξS′ := minxq∈XS′ xq(X
>
SXS)−1x>q > 0 and ξS := minxq∈XS

xq(X
>
S′XS′)

−1x>q > 0.

Proof of Lemma 3. This is a constructive proof. We will add rows one by one from XS′ to XS to
finally construct X. For an arbitrary row xq from XS′ , we have

|X>S∪{q}XS∪{q}| = |X>SXS + x>q xq|

= (1 + xq(X
>
SXS)−1x>q )︸ ︷︷ ︸

coeff∅

|X>SXS |

≥ (1 + ξS′)V
2
S

The second equality uses the matrix determinant lemma. We can repeat this addition for every row
in XS′ . Note after adding xq, and we want to add a different row xq′ , in the second line the new
coefficient (having added xq) is coeff{q} = (1 + xq′(X

>
S∪{q}XS∪{q})

−1x>q′) and coeff{q} ≥ coeff∅
because (X>S∪{q}XS∪{q})

−1 is positive definite and the previously added row xq now makes a
non-negative contribution to the sum, therefore (1 + ξS′) is still a valid lower-bound for coeff{q}. In
addition, obviously |X>SXS | ≤ |X>S∪{q}XS∪{q}| so V 2

S is a valid lower bound. Recursively adding

this for s′ times gives the desired lower bound of (1 + ξS′)
s′V 2

S . The result then follows.

Figure 8: The volume of full matrix X against the volumes of submatrices XS ,XS′ . XS ,XS′ are
randomly sampled from normal (N , solid lines) and uniform (U , dashed lines) distributions and
concatenated to form X, with XS′ containing twice the number of rows as in XS . The results are
in log-scale. The volume of the full matrix X is noticeably larger than VS , VS′ even in log-scale,
indicating the actual volume is significantly larger, validating our claim that V � max(VS , VS′).

A.2 Larger Volume Entails Smaller MSE

Proof of Proposition 3. Recall the least squares solution from OLS on training set (X,y) is w =
(X>X)−1X>y. In the case of d = 1, the least squared solution w is a scalar. We simplify the
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notation by letting w and w′ be the least squared solutions on training set (XS ,yS) and (XS′ ,yS′).
Now,

w =
1

‖XS‖2
X>S yS , w′ =

1

‖XS′‖2
X>S′yS′

Then,

L(wS) = ‖y −Xw‖2

= ‖yS −XSw‖2 + ‖yS′ −XS′w‖2

= ‖yS‖2 + w2 ‖XS‖2 − 2w〈XS ,yS〉+ ‖yS′‖2 + w2 ‖XS′‖2 − 2w〈XS′ ,yS′〉

= ‖yS‖2 + ‖yS′‖2 +
1

‖XS‖4
(X>S yS)2

(
‖XS‖2 + ‖XS′‖2

)
− 2

‖XS‖2
X>S yS

(
X>S yS + X>S′yS′

)
= ‖yS‖2 + ‖yS′‖2 −

(X>S yS)2

‖XS‖2
+
‖XS′‖2 (X>S yS)2

‖XS‖4
−

2
(
X>S yS

) (
X>S′yS′

)
‖XS‖2

= ‖yS‖2 + ‖yS′‖2 +
(X>S yS)2

‖XS‖4
(
‖XS′‖2 − ‖XS‖2

)
−

2
(
X>S yS

) (
X>S′yS′

)
‖XS‖2

Similarly,

L(wS′) = ‖yS‖2 + ‖yS′‖2 +
(X>S′yS′)

2

‖XS′‖4
(
‖XS‖2 − ‖XS′‖2

)
−

2
(
X>S′yS′

) (
X>S yS

)
‖XS′‖2

Subtracting,

L(wS)− L(wS′) =

[
(X>S yS)2

‖XS‖4
+

(X>S′yS′)
2

‖XS′‖4
− 2(X>S yS)(X>S′yS′)

‖XS‖2 ‖XS′‖2

](
‖XS′‖2 − ‖XS‖2

)

=

[
X>S yS

‖XS‖2
− X>S′yS′

‖XS′‖2

]2 (
Vol(XS′)

2 −Vol(XS)2
)

The last step follows from the fact that Vol(X)2 = |X>X| = ‖X‖2 when d = 1. Therefore, we
have L(wS) ≤ L(wS′) if and only if Vol(XS) ≥ Vol(XS′).

Alternate Proof of Proposition 3. Following Lemma 4, we denote Γ := X>S yS , Γ′ := X>S′yS′ to
consider L(w)− L(w′) as follows,

L(w)− L(w′) = [‖y‖2 − w2(V 2
S − V 2

S′)− 2wΓ′]− [‖y‖2 − w′2(V 2
S′ − V 2

S )− 2w′Γ]

= −w2(V 2
S − V 2

S′) + w′2(V 2
S′ − V 2

S )− 2wΓ′ + 2w′Γ

= (w2 + w′2)(V 2
S′ − V 2

S )− 2(wΓ′ − w′Γ)

= (w2 + w′2)(V 2
S′ − V 2

S )− 2(w
Γ′

V 2
S′
V 2
S′ − w′

Γ

V 2
S

V 2
S )

= (w2 + w′2)(V 2
S′ − V 2

S )− 2(ww′V 2
S′ − w′wV 2

S ) Noting w =
Γ

V 2
S

, w′ =
Γ′

V 2
S′

= (w2 + w′2)(V 2
S′ − V 2

S )− 2ww′(V 2
S′ − V 2

S )

= (w − w′)2(V 2
S′ − V 2

S )

Since (w − w′)2 ≥ 0, we have L(w) − L(w′) ≥ 0 ⇐⇒ V 2
S′ − V 2

S ≥ 0 or equivalently,
L(w) ≥ L(w′) ⇐⇒ V 2

S′ ≥ V 2
S .

Lemma 4 (MSE of the least-squares solution on XS for d = 1). Let S, S′ be a partition of the
rows of the matrix X, so that XS ,XS′ are submatrices of X, i.e. X = [X>S X>S′ ]

>. Let yS ,yS′ be
defined similarly. Further, let w denote the least squares solution (note it is a scalar for d = 1) on the
submatrix XS with labels yS , i.e. w = (X>SXS)−1X>S yS = Γ/V 2

S . Then the mean squared loss on
the full matrix L(w) := ‖y −Xw‖2 is

L(w) = ||y||2 − w2(V 2
S − V 2

S′)− 2wΓ′ (10)

where VS := Vol(XS), VS′ := Vol(XS′) and Γ′ := X>y −X>S yS .
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Proof of Lemma 4. For d = 1, observe the least squares solution w := (X>X)−1X>y is a scalar
and (X>X)−1 = 1/(||X||2). Further, note that Vol(X)2 := det(X>X) = ||X||2. Subsequently, the
least squares solution w for (XS ,yS) is w = (X>SXS)−1X>S yS = Γ/V 2

S , where Γ := X>S yS , and
let w′,Γ′ be defined similarly for (XS′ ,yS′). Then we have

L(w) = ‖y −Xw‖2

= ‖y‖2 − 2w〈X,y〉+ w2 ‖X‖2

= ‖y‖2 − 2w〈X,y〉+ w2 ‖XS‖2 + w2 ‖XS′‖2

= ‖y‖2 − 2w(Γ + Γ′) + w2 ‖XS‖2 + w2 ‖XS′‖2

= ‖y‖2 − 2w2V 2
S − 2wΓ′ + w2V 2

S + w2V 2
S′

= ‖y‖2 − w2(V 2
S − V 2

S′)− 2wΓ′.

Derivation of (1). We will expand the L(wS) into several terms and show there are common terms
to both L(wS) and L(wS′) which get canceled in L(wS)− L(wS′) and we analyze the difference
in the remainder terms.

L(wS) := ||y −XwS ||2 = ‖yS −XSwS‖2 + ‖yS′ −XS′wS‖2︸ ︷︷ ︸
A

Next, we want to write A = ‖yS′ −XS′wS′‖2 +RS , letting RS denote the remainder term. Note
with this expression we have L(wS)− L(wS′) = RS −RS′ . We first expand A as follows,

A = ‖yS′‖2︸ ︷︷ ︸
A1

−2〈yS′ ,XS′wS〉︸ ︷︷ ︸
B

+ ‖XS′wS‖2︸ ︷︷ ︸
C

Next to rewrite B,C as follows,

B = −2〈yS′ ,XS′(wS′ −wS′ + wS)〉 = −2〈yS′ ,XS′wS′〉︸ ︷︷ ︸
B1

+−2〈yS′ ,XS′(wS −wS′)〉︸ ︷︷ ︸
B2

,

C = ‖XS′wS‖2 = ‖XS′(wS′ −wS′ + wS)‖2

= ‖XS′wS′‖2︸ ︷︷ ︸
C1

+ 2〈XS′wS′ ,XS′(wS −wS′)〉+ ‖XS′(wS −wS′)‖2︸ ︷︷ ︸
C2

.

We can collect A1, B1, C1 to complete the square of ‖yS′ −XS′wS′‖2 and naturally collect B2, C2

to form the remainder RS as follows,

RS = −2〈yS′ ,XS′(wS −wS′)〉+ 2〈XS′wS′ ,XS′(wS −wS′)〉+ ‖XS′(wS −wS′)‖2

= 2〈XS′wS′ − yS′ ,XS′(wS −wS′)〉+ ‖XS′(wS −wS′)‖2

= 〈2(XS′wS′ − yS′) + XS′(wS −wS′),XS′(wS −wS′)〉
= 〈XS′(wS + wS′)− 2yS′ ,XS′(wS −wS′)〉
= 〈X>S′ [XS′(wS + wS′)− 2yS′ ],wS −wS′〉.

Now we can derive RS −RS′ as follows,

RS −RS′ = 〈X>S′ [XS′(wS + wS′)− 2yS′ ],wS −wS′〉 − 〈X>S [XS(wS′ + wS)− 2yS ],wS′ −wS〉
= 〈(X>SXS + X>S′XS′)(wS′ + wS)− 2X>S yS − 2X>S′yS′ ,wS −wS′〉
= 〈(X>SXS + X>S′XS′)(wS′ + wS)− 2X>y,wS −wS′〉

Adversarially constructed counter-examples to achieve arbitrary signs of L(wS) − L(wS′).
Given XS ,XS′ as follows, we construct two sets of labels y1,y2 where y1 = [y>1,S y>1,S′ ]

> and
y2 = [y>2,S y>2,S′ ]

> such that L(wS) < L(wS′) on y1 while L(wS) > L(wS′) on y2.
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Note this example is adversarially constructed to show that a larger volume does not necessarily lead
to a smaller MSE because Vol() does not take the labels into consideration.

Let d = 2, n = 6 and fix XS =

[
0.4197849, 0.82836752
0.8393158, 0.24545882
0.8544813, 0.72294841

]
,XS′ =

[
0.40205988, 0.44985846
0.36588236, 0.33433118
0.79521338, 0.34753677

]
.

Set two sets of labels y1,y2 as follows, y1,S = 0 and y1,S′ = {exp(10 × x[1])|x ∈ S′}; and
y2,S = {exp(10× x[1])|x ∈ S} and y2,S′ = 0. The exp(10× x[1]) refers to taking the exponential
of the product between 10 and the second value of a datum x ∈ R2. An observation is that since
the true function/labels only depend on the second feature of each data point, the first feature is
redundant/unnecessary to achieve a small MSE and yet included in the volume calculation. This is
how we can construct the adversarial labels.

With this setting, we have Vol(XS) > Vol(XS′) and L(wS) < L(wS′) on y1 while L(wS) >
L(wS′) on y2.

A.3 Replication Robustness

Proof of Lemma 1. Using the same notation for Xrep = [X> x>q . . . x>q ]> ∈ R(n+m)×d, we can
write Vol(Xrep)2 := |X>repXrep|. Consider the simple case where m = 1, we have

|X>repXrep| =
∣∣∣∣[X> x>q ]

[
X
xq

]∣∣∣∣ = |X>X + x>q xq|

= (1 + xq(X
>X)−1x>q )|X>X|

where the last equality uses the matrix determinant lemma. Note with a full-rank X, X>X is
invertible, symmetric and positive semi-definite, thus diagonalizable, as required by the matrix
determinant lemma.

In general,

|X>repXrep| =

∣∣∣∣∣∣∣∣[X
> x>q . . . x>q︸ ︷︷ ︸

m terms

]


X
xq
...
xq


∣∣∣∣∣∣∣∣ = |X>X +m× x>q xq|

= (1 +m× xq(X
>X)−1x>q )|X>X|

In other words, Vol(Xrep) = Vol(X)× (1 +m× xq(X
>X)−1x>q )1/2.

Lemma 5 (Inflation vs. α). When α = 1/(βn), the inflation of replicating X ∈ Rn×d with a
replication factor c is upper bounded as follows,

lim
n→∞

(
nc∑
p=0

(
1

βn
)p

)n
= exp(β−1).

Proof of Lemma 5. Suppose some rows of X are copied and appended back to get Xrep ∈ R(nc)×d

such that the replication factor is c. For simplicity, we set ω such that each d-cube contains identical
data points. As there are n rows in the original X, there can be at most n non-empty d-cubes for
any ω by the pigeon-hole principle. Note since the replication is by direct copying, the number of
non-empty d-cubes for Xrep is upper bounded by n.
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We next consider the inflation, which is the ratio RV(Xrep;ω)/RV(X;ω) as follows,

RV(Xrep;ω)

RV(X;ω)
=

Vol(X̃rep)×
∏
i∈Ωrep

ρi,rep

Vol(X̃)×
∏
i∈Ω ρi

=

∏
i∈Ωrep

ρi,rep∏
i∈Ω ρi

≤
∏
i∈Ωrep

ρi,rep

1
,
∏
i∈Ωrep

φi,rep∑
p=0

αp

≤
∏
i∈Ωrep

nc∑
p=0

αp ,
∏
i∈Ωrep

nc∑
p=0

(
1

βn
)p

≤ (

nc∑
p=0

(
1

βn
)p)n

The first line is by definition; the second equality is by observing that X̃rep = X̃ due to direct copying
and that each d-cube contains identical data points; the next inequality is by observing

∏
i∈Ω ρi ≥ 1;

the next equality is by definition of ρi; the next inequality uses nc to upper bound the number of data
points in any d-cube; the next equality substitutes α = 1/(βn) and the last inequality is by bounding
the number of non-empty d-cubes by n.

We upper-bound
∑nc
p=0(1/βn)p with respect to c→∞ as follows,

nc∑
p=0

(
1

βn
)p ≤ 1

1− 1
βn

=
βn

βn− 1
= 1 +

1

βn− 1
.

Next, apply the limit of n→∞ to give the following 2:

lim
n→∞

(1 +
1

βn− 1
)n = lim

n→∞
(1 +

1

n
× 1

β − 1
n

)n = exp(β−1).

The last equality is by first considering (β − 1
n )−1 → β−1 as n→∞ and then using a known result

of lim
n→∞

(1 + x
n )n = exp(x) ∀x.

Figure 9: Inflation vs. n. With β = 10, c = 100, the inflation (red) quickly decays and converges to
below the green line where exp(β−1) ≈ 1.105. Note x-axis denotes n, the number of data points.

Note Lemma 5 upper bounds the inflation is with respect to the replication factor c, while Lemma 6
upper bounds the RV of a X which may not contain replicated data.
Lemma 6 (RV(·;ω) vs. ω). The growth of RV(X;ω) with respect to ω is slow and upper bounded
as follows,

sup
ω

lim
n→∞

RV(X;ω)

Vol(X)
≤ exp(β−1)

2The asymptotic condition on n is included for theoretical rigor and may be easily removed in practice for
any reasonable n (larger than 10). See Fig. 9.
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where n is the number of rows in X and β = (αn)−1 where α is a user-determined robustness
coefficient.

Proof of Lemma 6. Recall RV(X;ω) := Vol(X̃) ×
∏
i∈Ω ρi. We assume Vol(X̃) ≤ Vol(X) be-

cause X̃ possibly has a smaller number of rows. Due to Lemma 1, we know that reducing a row
decreases the total volume. We subsequently verify the result of Lemma 6 to confirm this assumption
is satisfied.

To derive an upper bound on
∏
i∈Ω ρi, we first consider the fact that given an ω, the number of

non-empty d-cubes is upper bounded by n, the number of rows in X. Then, for each of these d-cubes,
the up-weight constant ρi is upper bounded by 1/(1− α) due to the geometric series sum. Therefore,∏

i∈Ω

ρi ≤ (
1

1− 1
βn

)n.

Using the similar technique in proof of Lemma 5, we have

lim
n→∞

(
1

1− 1
βn

)n = exp(β−1),

and the result follows.

Fig. 10 shows a numerical experiment where 50 matrices X are independently and randomly drawn,
and for each we compute the ratio RV(X;ω)/Vol(X) (in y-axis) over a range of ω (in x-axis). In
particular, β = 10 and we see the upper bound is in fact followed.

Figure 10: Growth of RV(X;ω) is upper bounded by exp(β−1) (black dotted line). β = 10 and the
discretization coefficient ω takes range (0, 0.5).

Proof of Proposition 5 (Bounded Distortion). We re-arrange the distortion δ(ω) :=
[RV(XS ;ω)/RV(XS′ ;ω)]/[Vol(XS)/Vol(XS′)] as follows,

δ(ω) =
RV(XS ;ω)

Vol(XS)︸ ︷︷ ︸
≤exp(β−1) by Lemma 6

× Vol(XS′)

RV(XS′ ;ω)︸ ︷︷ ︸
≤1 by Proposition 8

≤ exp(β−1). (11)

The ≤ 1 is from the fact that replication-robustness valuation on an original matrix (without repli-
cation) is no smaller than the original volume (with two mild conditions that X contains sufficient
diversity to not resemble a replicated dataset, and α is not too small, see Proposition 8, we empirically
verify these assumptions by verifying the upper and lower bounds of δ(ω) in Fig. 11), implying the
RV will not reduce the information contained in the original matrix.

The lower bound of (exp(β−1))−1 is by an argument by symmetry. Specifically, taking reciprocal on
both sides of

RV(XS ;ω)

Vol(XS)
× Vol(XS′)

RV(XS′ ;ω)
≤ exp(β−1)

gives
RV(XS′ ;ω)

Vol(XS′)
× Vol(XS)

RV(XS ;ω)
≥ (exp(β−1))−1.
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Since the reference on S, S′ is arbitrary, we arrive at the lower bound by switching the indexing.

Furthermore, we verify the two conditions required to apply Proposition 8 by empirically verifying
the distortion is bounded. We construct two equal-sized, independent and identically sampled d-
dimensional matrices, XS ,XS′ and plot the distortion over a range of ω. Note we have considered
varied d ∈ {1, 2, 5, 10} and two such distributions: d dimensional N (0, 1) or uniform distribution
U(0, 1). The result is in Fig. 11. The black dotted lines are the theoretical upper and lower bounds.
Fig. 11 suggests the bound on distortion may be tighter, implying in practice the consistency in
relative valuation is preserved.

Figure 11: Distortion δ(ω) vs. size of XS ,XS′ . XS ,XS′ are equal-sized, independent and identically
sampled from d-dimensional normal distribution N (0, 1) or uniform distribution U(0, 1). Black
dotted lines are exp(β−1)−1, exp(β−1) where β = 10. The discretization coefficient ω = 0.1.

Proof of Proposition 6. By definition and simple rearranging, we can write

γRV ,
RV(X;ω)

supc RV(replicate(X, c);ω)
=

Vol(X̃)

Vol(X̃rep)
×
∏
i∈Ψ

ρi
ρ′i

where ρ′i denotes the coefficient for the d-cube after replication. We calculate these two terms
separately.

Consider µi for some d-cube, and let µ′i denote the statistic after replication. We have µi = µ′i
because each data point in the d-cube is replicated for equal number of times (i.e.,→∞) due to supc.
This implies X̃ = X̃rep and Vol(X̃)/Vol(X̃rep) = 1.

For a non-empty d-cube, ρi ≥ 1 and ρ′i ≤ 1/(1 − α) due to the geometric series. So we have
ρi
ρ′i
≥ (1− α). Multiplying all |Ψ| such ratios we have

∏
i∈Ψ

ρi
ρ′i
≥ (1− α)|Ψ|. Combining this with

the previous result completes the proof.

Proof of Proposition 7. We outline the proof ideas and omit the tedious details.

1. Reduction of RV(·;ω) to Vol() requires careful tracing of the constantsKX̃,i using Lemma 1.
There may be different ways to set the values of KX̃,i for this equality to hold from different
order of tracing. We provide one such construction.

First, construct A = X̃. We will use A to represent the intermediate construction of X
for the calculation of Vol(). Also, set KX̃,i = 1, i ∈ Ψ. This step fills up each non-empty
d-cube with one data point.

The second step exhausts the remaining data points B, one distinct data point at a time.
The remaining data points from the first step are all the data points excluding one data
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point for each d-cube. We abuse notation a little to write B := X \ A = X \ X̃. For
each distinct x ∈ B, suppose it goes into the i-th d-cube and it has m copies in B: update
KX̃,i ← (1+m×x(A>A)−1x>)1/2 and then update A← [A> x> . . .x>︸ ︷︷ ︸

m times

]> by Lemma 1

and remove all copies of x from B. Iterate until B is empty.

2. γRV1
= 1 is from a direct application of Proposition 6.

Proposition 8 (Conditions for RV(X;ω) ≥ Vol(X)). For a given ω and X, RV(X;ω) ≥ Vol(X)
requires the following two conditions:

1. The original X contains sufficient diversity that it does not resemble replicated copies of
data.

2. The α is not too small (so
∏
ωi
ρi will not be too small).

Proof of Proposition 8. For a given ω, let the rows which occupy d-cubes alone be in XA and the
rest in XB . Each row in XA occupies some d-cube by itself, while each row in XB has to “share” a

d-cube with another row in XB . With this, we rearrange and rewrite X =

[
XA

XB

]
and we have

Vol(X)2 = |GA| × |I + G−1
A GB | (12)

from Lemma 7 where GA := X>AXA,GB := X>BXB .

Let X̃B be the estimated XB according to the d-cubes: for each d-cube containing more than one
row, take the average of the rows in a d-cube, and put this as one row in X̃B . With this, we write

X̃ =

[
XA

X̃B

]
. Note X̃ is part of the calculation for RV(X;ω).

We have
Vol(X̃)2 = |GA| × |I + G−1

A G̃B |

similarly as above where G̃B := X̃>BX̃B . Substituting this into the definition of RV gives

RV(X) = Vol(X̃)× (
∏
i∈Ω

ρi) = |GA| × |I + G−1
A G̃B | × (1 + ε) (13)

Here, we write
∏
i∈Ω ρi = (1 + ε) where ε ≥ 0 is a constant which depends on α. A smaller α leads

to a smaller ε.

We compare (12) and (13) as follows,

|GA| × |I + G−1
A GB | ≤ |GA| × |I + G−1

A G̃B | × (1 + ε)

|I + G−1
A GB | ≤ |I + G−1

A G̃B | × (1 + ε).

While we want to find the conditions under which above inequality is satisfied, it may be more
intuitive to consider the conditions which can dissatisfy it. So we consider

|I + G−1
A GB | > |I + G−1

A GB̂ | × (1 + ε).

Due to the previous discussion in Lemma 7, we know |I + G−1
A GB | is large if XA covers little

relative to XB , similarly for |I + G−1
A G̃B |. Therefore, we are left to find out the conditions where

XA covers little relative to XB but XA covers a lot relative to X̃B as this will lead to the l.h.s to be
larger than r.h.s. The extreme case of XA is empty while XB contains multiple copies of the same
datum, fits the described scenario very well.

In summary, under two conditions: 1) the original X contains sufficient diversity that it does not
resemble replicated copies of data; 2) the α is not too small (so

∏
ωi
ρi will not be too small); then we

have RV(X;ω) ≥ Vol(X). The first condition is intuitive. The second one on α can be understood
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as a trade-off between enforcing robustness (smaller α) vs. representing data (larger α). In practice,
we should set α to achieve the desired robustness guarantee but not extremely small as it would have
an over-correcting effect of mistakenly reducing the value of an honest dataset.

B Additional Experimental Results

B.1 Dataset License

Credit Card [2]: Database Contents License (DbCL); Uber & Lyft [5]: CC0 1.0 Universal (CC0
1.0); Used Car [1]: CC0 1.0 Universal (CC0 1.0); Hotel Reviews [4]: Attribution-NonCommercial
4.0 International (CC BY-NC 4.0); CaliH [20]: CC0 1.0 Universal (CC0 1.0); KingH [3]: CC0
1.0 Universal (CC0 1.0); USCensus [6]: CC0 1.0 Universal (CC0 1.0); The FaceA dataset [41]:
non-commercial research purposes only.

B.2 Simulation for Replication Experiments on Volume and RV

We illustrate that the inflation of robust volumes (RV) can be controlled. We generate a dataset with
200 i.i.d. samples uniformly drawn from the synthetic 6D Friedman [13] function. As shown in
Fig. 12, the volume of the dataset explodes exponentially with the number of full dataset replications.
On the contrary, robust volume controls the volume explosion through α and the resultant RV stays
almost constant with replications. Similar behavior is observed when we randomly select data rows
to replicate instead.

In a more realistic adversarial replication setting, random noises could be injected into the replicated
data rows. Interestingly, RV remains robust when the magnitude of the injected noise is small relative
to ω, further demonstrating RV’s practical utility. Specifically in this experimental setting when ω is
set to 0.1, the RV is kept almost constant when the random Gaussian noise has σ = 0.01 (see pink
dashed line in Fig. 12). On the other hand, RV does not inflate as much as Vol when σ is increased
to 0.03 (compare gray and red lines). However, we observe if σ becomes too large, the robustness
degrades. This is because when the magnitude of injected noise is larger than the actual data, it
effectively becomes “new” but noisy data. Consequently, it is still practically challenging when the
Gaussian noise is large. As large noise could dilute the data row’s original information, it is difficult
to distinguish whether the row is replicated (with noise).

Figure 12: Vol & RV vs. replication. full, rand and σ denote three types of replications, where
full (resp. rand) replicates all data (resp. random rows) and σ denotes noisy replication with noise
∼ N (0, σ2). Here, ω = 0.1.

B.3 Selection of the Discretization Coefficient

Throughout the work, we set ω = 0.1 for standardized features, including for real-world datasets
which may contain unknown noise in labels. Through synthetic experiments, we show empirically
that ω ∈ [0, 0.5] is a suitable range for standardized features when noise is small. Intuitively, feature
standardization “squashes” most of the data to a relatively small range. For instance, the [−2, 2]
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Figure 13: The choice of ω does not change values much under (A) i.i.d., (B) ascending dataset size,
(C) disjoint input domain and (D) supersets. Setting ω > 0.5 is not recommended as it results in an
overly “compressed” X̃.

range is the 95% confidence interval for standardized features. As illustrated in Fig. 13, the relative
RVSV does not vary much for any ω < 0.5 under all 4 settings: (A) i.i.d., (B) ascending dataset sizes,
(C) disjoint input domain and (D) supersets.

Note that in the disjoint input domain setting, XS1 and XS3 are valued more because of feature
standardization. The standardized features have the following interpretation: values that are very
positive or negative are statistically rare, and thus are more valuable. In contrast, values which are
close to the mean (a value of 0) are statistically common, and thus less valuable. The implication is
less common data are given higher values. We find ω = 0.1 suitable under standard scaling and in
practice it may be adjusted based on the prior on the amount of noise expected in the feature/input,
i.e., larger noise requires a larger ω.

B.4 Robust Volume and Learning Performance

Figure 14: The effect of removing/adding the dataset with the highest/lowest RV on the train/test loss
for two additional real-world datasets, the UK used car and the hotel reviews. The plots show the
average and standard errors over 50 random trials.

To further verify that a larger RV leads to a better learning performance, we present results on
two additional real-world datasets, the UK used car dataset [1] (i.e., car price prediction) and the
Trip Advisor hotel reviews dataset [4] (i.e., numerical rating prediction). The two datasets are
pre-processed through feature selection or neural networks to contain 5 and 8 standardized features
respectively. Other experimental setups follow that of Sec. 5.1. The results are in Fig. 14. We observe
a consistent general trend, adding (resp. removing) a dataset with high RV leads to lower (resp.
higher) train and test loss. These results (along with the previous results) suggest that RV is a good
indicator for the learning performance on the data without requiring validation, and is thus a good
data valuation method.

B.5 Overlap of Input Domains

To extend the “disjoint input domain” case discussed in Sec. 5.2, we set the input range of XS1 ,XS2

to be [0, 0.5 + z]6 and XS3 to be [0.5, 1]6, where z is the amount of domain overlap. To interpret, a
larger z implies a less “unique” dataset XS3

and thus less value for XS3
. We show in Fig. 15 that

all methods including RVSV observe the correct trend, except that VLSV is still dominated by ν(∅)
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Figure 15: The effect of an increasing amount of input domain overlap on the valuation of XS3 ,
across different valuation methods. The values are averaged over 10 trails.

discussed in Sec. 5.2. Interestingly, we also observe a similar rate of decrease of the relative value of
XS3

for IGSV, VSV and RVSV.

B.6 Replication Experiments

Experimental Settings. For CaliH and KingH, we train a neural network (NN) with 2 hidden layers
consisting of 64 and 10 hidden units, respectively. For USCensus, we train an NN with 2 hidden layers
consisting of 128 and 16 hidden units, respectively. For FaceA, we train a convolutional NN with
3 convolutional layers (the first two of which each followed by 2-dimensional batch normalization
and max pooling), followed by 3 fully connected layers consisting of 1024, 64, and 10 hidden units
respectively. The activation function used is the rectified linear unit (ReLU). Consequently, the
features after the last hidden layer may contain completely zeros, so we remove features that contain
only zero. Alternatively, leaky ReLU can be used instead to prevent this issue.

Additional Results. The results on four datasets (four rows) CaliH, KingH, USCensus and FaceA for
the two non-i.i.d. distributions: supersets and disjoint are in Fig. 16. We can make these observations
from the results: LOO’s behavior is unstable, in particular for supersets ratio of 0.1 (leftmost column)
where 10% of XS1 is contained in XS3 . VSV and IGSV both increase quite quickly for c ≤ 20.
RVSV and VLSV are consistent regardless of c. The tabulated SV similarity results for KingH,
USCensus and FaceA are in Tables 2, 3 and 4. We find that RVSV generally performs the best, in
terms of similarity in relative valuations to the validation-based VLSV.

Table 2: Similarity with VLSV under replication for KingH. Bold values indicate best results.
Method i.i.d. disjoint 0 disjoint 1 supersets 0.1 supersets 1

rp cos 1/l2 rp cos 1/l2 rp cos 1/l2 rp cos 1/l2 rp cos 1/l2

LOO 0.693 0.215 0.381 -0.008 0.483 0.964 0.704 0.752 1.971 -0.114 0.051 0.091 0.883 0.524 1.068
IGSV -0.898 0.639 1.569 -0.937 0.637 1.547 -0.998 0.629 1.520 -0.962 0.641 1.597 0.592 0.660 1.723
VSV -0.902 0.741 2.055 -0.932 0.743 2.084 -0.999 0.727 1.954 -0.963 0.750 2.140 0.547 0.782 2.415
RVSV-005 0.819 0.985 9.890 0.283 0.998 28.557 -0.908 0.998 26.040 0.668 0.980 8.425 -0.978 0.940 4.757
RVSV-01 0.817 0.977 7.965 -0.000 0.996 19.873 -0.874 0.995 16.779 0.662 0.962 6.109 -0.977 0.892 3.416

Table 3: Similarity with VLSV under replication for USCensus. Bold values indicate best results.
The disjoint ratio 0 for USCensus dataset leads to NaN values for VSV so we show from disjoint
ratio 0.2.

Method i.i.d. disjoint 0.2 disjoint 1 supersets 0.1 supersets 1
rp cos 1/l2 rp cos 1/l2 rp cos 1/l2 rp cos 1/l2 rp cos 1/l2

LOO 0.891 0.816 2.493 -0.127 0.517 1.632 -0.950 0.164 0.290 0.845 0.211 0.396 0.682 0.602 1.344
IGSV 0.302 0.640 1.582 0.589 0.640 1.579 -0.999 0.641 1.599 0.475 0.640 1.596 -0.022 0.658 1.713
VSV 0.292 0.739 2.064 0.606 0.739 2.052 -0.998 0.739 2.073 0.482 0.740 2.061 -0.099 0.779 2.368
RVSV-005 -0.975 0.963 6.223 0.758 0.998 30.976 0.687 0.999 46.907 -0.999 0.974 7.456 -0.846 0.915 3.920
RVSV-01 -0.976 0.958 5.782 0.756 0.997 24.403 0.602 0.998 28.317 -0.999 0.973 7.257 -0.847 0.908 3.753

Table 4: Similarity with VLSV under replication for FaceA. Bold values indicate best results.
Method i.i.d. disjoint 0 disjoint 1 supersets 0.1 supersets 1

rp cos 1/l2 rp cos 1/l2 rp cos 1/l2 rp cos 1/l2 rp cos 1/l2

LOO -0.080 0.558 1.165 0.823 0.709 1.854 0.903 0.690 1.662 -1.000 0.948 5.157 0.693 0.946 5.084
IGSV 0.019 0.732 2.088 0.229 0.733 2.100 -0.898 0.731 2.096 -0.838 0.735 2.137 0.632 0.760 2.347
VSV 0.013 0.701 1.807 0.226 0.706 1.847 -0.894 0.702 1.816 -0.836 0.709 1.869 0.603 0.745 2.095
RVSV-005 -0.867 0.941 4.828 0.340 1.000 69.502 0.923 1.000 100.947 0.869 0.943 4.909 -0.957 0.880 3.209
RVSV-01 -0.877 0.884 3.275 0.140 0.997 20.856 0.921 0.998 30.487 0.859 0.915 3.926 -0.953 0.830 2.586
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Figure 16: Valuations for the replicated dataset XS1
under two data distributions: supersets of ratios

0.1 & 1 (left two) and disjoint of ratios 0 & 1 (right two). The vertical axis shows XS1 ’s value. The
horizontal axis shows the replication factor c. From first row to last row: CaliH, KingH, USCensue,
FaceA. Note The disjoint ratio 0 for USCensus dataset leads to NaN values for VSV so we show
from disjoint ratio 0.2.

B.7 IGSV vs. RVSV

Effect of hyperparameters on the SV. The setting of the experiments is consistent as described
previously, including data distributions and models used. In IGSV, a crucial hyperparameter is the
user-specified prior σ in the covariance, namely assuming the random variables of interest follow
N (0, σ2I) [35]. In this case, the random variables are the parameters of the linear regressor. Here we
vary the σ ∈ {0.0001, 0.001, 0.01, 0.1, 1}. For RVSV, we vary the ω ∈ {0.01, 0.05, 0.1, 0.2, 0.25}
and calculate the log() of RV for numerical stability and due to Lemma 7 below which sheds some
light on the similarity between RV and IG. The results on four datasets CaliH, KingH, USCensus and
FaceA for the two non-i.i.d. distributions: supersets and disjoint are in Fig. 17.

We make two observations. 1): For IGSV, different priors lead to different SV with the same
XS1

,XS2
,XS3

. The data providers will thus want to use the prior which leads to their SV being
the highest, and may result in disagreement. For RVSV, all the experimented ω values coincide
with the same SV, avoiding this potential selection over ω. 2): ln() function is plotted as a growth
rate reference. While in some cases IGSV grows slower than ln(), it does not converge, implying
that a data provider can always have non-zero additional gain with more replication, especially for
c ≤ 20. Confirming the result of our previous replication experiments that IGSV may be less robust.
In contrast, RVSG stays consistent regardless of c.

An interesting connection from volume to information gain. IGSV leverages the information
gain criterion, or alternatively the conditional entropy criterion. The intuitive interpretation is given
XS1

, XS2
is valuable if XS2

provides additional and new information that is not captured by XS1
.

Interestingly, log Vol() offers an echoing interpretation via Lemma 7. The intuition is also similar,
given XS1

, XS2
is valuable if XS2

“occupies” additional space that is not “occupied” by XS1
.

Furthermore, this similarity inspired us to relate to the duality of maximum entropy sampling [34],
which gives rise to the following practical implication: a greedy iterative approach to maximize the
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Figure 17: IGSV (solid lines with dot) and RVSV (dashed lines) vs. replication factor c. σ denotes
the prior on the standard deviation for IGSV. ω is the discretization for RVSV. Valuations for the
replicated dataset XS1

under two data distributions:supersets of ratios 0.1 & 1 (left two) and disjoint
of ratios 0 & 1 (right two). The y-axis shows XS1

’s value. The x-axis shows the replication factor c.
The first to last row: CaliH, KingH, USCensus, FaceA.

log Vol() in data collection/purchase gives a near-optimal solution ((1 − 1/e)-approximation) in
terms maximizing the volume. See detailed discussion below.
Lemma 7 (Duality of Volume Decomposition). For full-rank XS ,XS′ of X, we have

log VS∪S′ = log VS + 0.5× log VS|S′

where log VS|S′ := log |I + G−1
S GS′ |.

Proof of Lemma 7.
V 2
S∪S′ := |X>X| = |GS + GS′ | = |GS × (I + G−1

S GS′)|
= |GS | × |I + G−1

S GS′ | = V 2
S |I + G−1

S GS′ | Taking log on both sides

2 log(VS∪S′) = 2 log(VS) + log(|I + G−1
S GS′ |)

log(VS∪S′) = log(VS) + 0.5× log(|I + G−1
S GS′ |)

We explicitly write V = VS∪S′ and define a notation VS|S′ to better illustrate the similarity to the
duality in maximum entropy sampling where maximizing the entropy of the selected set (H[fO])
minimizes the conditional entropy (H[fX\O|fO]) on the remaining set as follows,

H[fX ] = H[fO] + H[fX\O|fO]

whereX denotes the input space for the input locations to be observed, andO ⊆ X is a selected subset
of the input locations and f() is the unknown function of interest. H(·) is the standard differential
entropy.

VS depends on the relation between XS and XS′ in how well XS covers the space relative to XS′ as
reflected in |I + GS′G

−1
S |. VS is large if XS covers the remaining subset XS′ (implying VS′ will be
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small). This is because VS∪S′ is a constant. Similarly, in MES, if H[fO] is large, then H[fX\O|fO]
will be small, because H[fX ] is a constant.

A practical implication is thus: suppose a data provider already knows what data can be collected (de-
noted by S ∪ S′ to be consistent with previous discussion), and wants to maximize the value of
collected data (denoted by S) under a constrained budget (e.g. time, memory, and other processing
costs), an iterative greedy approach to update S, S′ as follows:

argmax
xi

log VS − log VS|S′

S ← S ∪ {xi}
yields an (1 − 1/e)-approximation [22] if log Vol() as in our definition is submodular. Note our
proof is different from the examples [26] which define the squared volume to be the determinant of
the (right) Gram matrix. That definition admits a simpler proof technique by a geometric argument
that is not applicable to our definition of volume.

First, we recall the definition of submodularity. Let [n] denote the set {1, . . . , n} as the indices of the
rows/data points in X, there are thus 2n possible subsets of [n]. A set function g : 2n 7→ R is called
submodular if for any S ⊆ S+ ⊆ [n] and ∀x ∈ X (x is a data point in X),

g(S ∪ {x})− g(S)︸ ︷︷ ︸
∆S

≥ g(S+ ∪ {x})− g(S+)︸ ︷︷ ︸
∆S+

.

Proposition 9 (Submodularity of log Vol()). If for any S ⊆ S+ ⊆ [n], G+ −G is positive semi-
definite where G := X>SXS and G+ := X>S+XS+ , then log Vol() is submodular.

Proof. By letting g() = log Vol() and a direct application of Lemma 1 , we have: ∆S = 1/2 ×
log(1 + x(X>SXS)−1x>) and ∆S+ = 1/2× log(1 + x(X>S+XS+)−1x>). We want to show:

∆S ≥ ∆S+

1/2× log(1 + x(X>SXS)−1x>) ≥ 1/2× log(1 + x(X>S+XS+)−1x>)

x(X>SXS)−1x> ≥ x(X>S+XS+)−1x>

x
[
(X>SXS)−1 − (X>S+XS+)−1

]
x> ≥ 0.

Next, by a direct application of Lemma 8 below: substituting A = X>SXS ,B = X>S+XS+ , we can
show (X>SXS)−1 − (X>S+XS+)−1 is positive semi-definite and the proof is complete.

The assumption G+ −G is positive semi-definite, has the interpretation that the left Gram of a
larger dataset (XS+ ) has “more” information (the entire result is verified empirically after the proof).
Fig. 18 shows the proportion of log Vol() is submodular over 500 independent trials of randomly
sampled matrices XS (and subsequently constructed XS+). We observe log Vol() is almost always
submodular. The exceptions may be attributed to that randomly drawn matrices may sometimes
violate the condition of G,G+ being positive definite required by Lemma 1, or equivalently XS may
not be full-rank if n is small relative to d.

While the lemma below is with respect to matrices, if we consider the scalar version, it is much more
intuitive: for two positive scalars a, b > 0, a ≥ b =⇒ 1/b ≥ 1/a. The result essentially generalizes
this idea to symmetric and positive definite matrices. We will use A � 0 to denote A is positive
semi-definite.
Lemma 8. Given A,B ∈ Rd×d are both symmetric and positive definite, then

B−A � 0 =⇒ A−1 −B−1 � 0

Proof.

B−A � 0

=⇒ A−1/2(B−A)A−1/2 � 0

=⇒ A−1/2BA−1/2 � I

=⇒ A1/2B−1A1/2 � I,
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Figure 18: The proportion of log Vol() is submodular with respect to randomly drawn XS ,XS+ , S ⊂
S+. d denotes feature dimension. N denotes X is sampled from the standard normal distribution
N (0, I) and U denotes X is sampled from the uniform distribution U(0, 1). XS is then a randomly
sampled submatrix of X, containing 0.2 × n number of data points of X. X+

S is constructed by
appending a randomly select data point from X to XS . The proportion is calculated over 500
independent random trials. We observe that log Vol() is almost always submodular, except in some
degenerate cases where the randomly drawn XS is not full-rank.

therefore,

B−1 = A−1/2A1/2B−1A1/2A−1/2

� A−1/2IA−1/2

� A−1.

The first implication is by using the fact that B − A � 0 =⇒ C>AC � C>BC for any
conformable matrix C and viewing A−1/2 as a conformable matrix. The second implication is
by considering the relationship between a symmetric and positive definite matrix B and I, where
I � B =⇒ B−1 � I. The following steps are substitutions and applications of the definition of
�.
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