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Gradients? An Explanation via Off-Manifold Robustness"445

A Broader Impact446

This work studies the impact of robust training objectives on the perceptual alignment of gradients,447

and does not propose any new tools or methods. As such, this work is foundational in nature and448

does not have any direct societal impact.449

B Additional Proofs450

Theorem 3 (Equivalence between off-manifold robustness and on-manifold alignment). A function451

f : Rd → R exhibits on-manifold gradient alignment if and only if it is off-manifold robust wrt452

normal noise u ∼ N (0,σ2) for σ → 0 (with ρ1 = ρ2).453

Proof. We proceed by observing that we can decompose the input-gradient into on-manifold and off-454

manifold components by projecting onto the tangent space and its orthogonal component respectively,455

i.e., xf(x) = Pxxf(x) + P⊥
x xf(x).456

We also observe that we can write the gradient norm in terms of an expected dot product, i.e.,457
1
σ2 Eu∼N (0,σ2)(xf(x)

⊤u)2 = 1
σ2xf(x)

⊤ E(uu⊤)xf(x) = ∥xf(x)∥2.458

Using these facts we can compute the norm of the off-manifold component as follows,459

∥xf(x)− Pxxf(x)∥2
∥xf(x)∥2  

On-manifold gradient alignment

=
∥P⊥

x xf(x)∥2
∥xf(x)∥2

=
1
σ2 Euoff∼N (0,σ2Σ)(xf(x)

⊤uoff)
2

1
σ2 Eu∼N (0,σ2)(xf(x)⊤u)2

; Σ = Cov(uoff) = P⊥
x (P⊥

x )
⊤

= lim
σ→0

Euoff∼N (0,σ2Σ)(f(x+ uoff)− f(x))2

Eu∼N (0,σ2)(f(x+ u)− f(x))2
  

Off-manifold robustness

The second line is obtained by using the fact above regarding re-writing the gradient norm in terms460

of the expected dot product, and the nal line is obtained by using a rst order Taylor expansion,461

which is exact in the limit of small sigma. From the equality of rst and last terms, we have that the462

on-manifold gradient alignment⇔ the off-manifold robustness.463

Theorem 4. The input-gradients of Bayes optimal classiers lie on the signal manifold ⇔ Bayes464

optimal classiers are relative off-manifold robust.465

Proof. From denition 3, it is clear that given a classication problem, there exists a single distractor466

distribution d(x). Now, we take gradients of log probabilities of the Bayes optimal classiers, which467

results in:468

x log p(y = i  x) = x log p(x  y = i)−


j

p(y = j  x)x log p(x  y = j)

We notice rst that the vectorsx log p(x  y) all lie tangent to the data manifold by denition, as469

this data generating process p(x  y) itself denes the data manifold. As x log p(y  x) is a linear470

combination of the class-conditional generative model gradients, it follows that the input-gradient of471

the Bayes optimal model also lie tangent to the data manifold. Now, like any vector on the tangent472

space at x, it can be decomposed into signal and distractor components. Computing the distractor,473

we nd that474
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x log p(y  x)⊙ (1−m∗(x)) = d(x)−


j

p(y = j  x)d(x) = 0

This happens because the distractor is independent of the label, thus the distractor component is475

zero, and the input-gradient of the Bayes optimal model lies entirely on the signal manifold. From476

Theorem 3, it follows that when a model gradients lie on a manifold, it is also off-manifold robust477

wrt that manifold.478

479

C Experimental Details480

C.1 Robust Training Objectives481

We consider the following robust training objectives, where l(x, y) denotes the cross-entropy loss482

function.483

1. Gradient norm regularization: l(f(x), y) + λ∥xf(x)∥22 with a regularization constant λ.484

2. A smoothness penalty: l(f(x), y) + λEϵ∼N (0,σ2)∥f(x + ϵ) − f(x)∥22 with a xed noise485

level σ2 and a varying regularization constant λ.486

3. Randomized Smoothing: Eϵ∼N (0,σ2)l(f(x+ ϵ), y) with a noise level σ2.487

4. Adversarial Robust Training: l(f(x̃), y) where x̃ = argmaxx̃∈Bϵ(x) l(f(x̃), y) and x̃ was488

obtained from the ϵ-ball around x using projected gradient descent.489

C.2 Training Details490

On CIFAR-10, we trained Resnet18 models for 200 epochs with an initial learning rate of 0.025.491

When training with gradient norm regularization or the smoothness penalty and large regularization492

constants we reduced the learning rate proportional to the increase in the regularization constant.493

After 150 and 175 epochs, we decayed the learning rate by a factor of 10.494

On ImageNet-64x64, we trained Resnet18 models for 90 epochs with a batch size of 4096 and an495

initial learning rate of 0.1 that was decayed after 30 and 60 epochs, respectively. We used the same496

parameters for projected gradient descent (PGD) as in [29], that is we took 3 steps with a step size of497

2ϵ3.498

On the MNIST dataset with a distractor, we trained a Resnet18 model for 9 epochs with an initial499

learning rate of 0.1 that was decayed after 3 and 6 epochs, respectively. We also trained an l2-500

adversarially robust Resenet18 with projected gradient descent (PGD). We randomly chose the501

perturbation budget ϵ  1, 4, 8 and took 10 steps with a step size of α = 25ϵ10.502

C.3 Diffusion Models503

On CIFAR-10, we use the unconditional diffusion model edm-cifar10-32x32-uncond-vp. On504

ImageNet-64x64, we use the conditional diffusion model edm-imagenet-64x64-cond-adm. Both505

models are available at https://github.com/NVlabs/edm.506

C.4 Model Gradients507

With the unconditional diffusion model, we sum the input gradients across all classes. With the508

conditional diffusion model, we consider the input gradient with respect to the predicted class. We509

consider input gradients before the softmax [20].510

C.5 CIFAR-10 Autoencoder511

We use https://github.com/clementchadebec/benchmark_VAE to train an autoeoncoder on512

CIFAR-10 with a latent dimension k = 128. We use a default architecture and training schedule. We513
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Figure 6: Left: Images from CIFAR10. Middle: Random perturbations on the data manifold. Right:
Random perturbations off the data manifold.

then use the autoencoder to estimate, at each data point, a 128-dimensional tangent space. Figure 6514

depicts random directions within the estimated tangent spaces.515

C.6 Pre-Trained Robust Models on ImageNet516

On ImageNet, we use the pre-trained robust Resnet18 models form https://github.com/517

microsoft/robust-models-transfer. To load these models, we use the robustness library518

https://github.com/MadryLab/robustness.519

C.7 Estimating the Score on ImageNet520

We estimate the score on ImageNet using the diffusion model for ImageNet-64x64. To estimate the521

score, we simply down-scale an image to 64x64.522

C.8 MNIST with a Distractor523

The MNIST data set with a distractor is inspired by [11]. The data set consists of gray-scale images524

of size 56x28. Every image contains a single MNIST digit and the distractor. We choose the xed525

letter "A" as the distractor. On every image, we randomly place the distractor on top or below the526

MNIST digit. In order to estimate the relative noise robustness, we separately add different levels of527

noise to the signal or distractor. Figure 12 depicts images and models gradients on this data set.528

C.9 The LPIPS metric529

The LPIPS metric measures the perceptual similarity between two different images. The metric itself530

corresponds to a loss, meaning that lower values correspond to more similar images [31]. The gures531

in the main paper depict 1-LPIPS, that is higher values correspond to more similar images.532

C.10 Code Availability533

Code that allows to replicate all the results in this paper is part of the Supplementary material.534

C.11 Resources Used535

All computations were done on an internal cluster using Nvidia 2080 Ti GPUs. In total, this project536

required 6 GPU months.537

D Additional Plots538

The gures below depict the model gradients of different types of models, ranging from weakly539

robust to excessively robust. The gures depict the relationship between model gradients and the540

score qualitatively. This complements the quantitative results in the main paper.541
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Figure 7: The input gradients of different models trained with gradient norm regularization on
CIFAR-10. The top rows depict the image, the score, and the input gradients of unrobust models.
The middle rows depict the perceptually aligned input gradients of robust models. The bottom rows
depict the input gradients of excessively robust models. Best viewed in digital format.
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Figure 8: The input gradients of different models trained with a smoothness penalty on CIFAR-10.
The top rows depict the image, the score, and the input gradients of unrobust models. The middle
rows depict the perceptually aligned input gradients of robust models. The bottom rows depict the
input gradients of excessively robust models. Best viewed in digital format.
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Figure 9: The input gradients of different models trained with randomized smoothing on CIFAR-10.
The top rows depict the image, the score, and the input gradients of unrobust models. The middle
rows depict the perceptually aligned input gradients of robust models. The bottom rows depict the
input gradients of excessively robust models. Best viewed in digital format.
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Figure 10: The input gradients of different models trained with projected gradient descent on
ImageNet-64x64. The top rows depict the image, the score, and the input gradients of unrobust
models. The middle rows depict the perceptually aligned input gradients of robust models. The
bottom rows depict the input gradients of excessively robust models. Best viewed in digital format.
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Figure 11: The input gradients of different models trained with projected gradient descent on
ImageNet. The models are from [29]. The top rows depict the image, the score, and the input
gradients of unrobust models. The bottom rows depict the perceptually aligned input gradients of
robust models. Best viewed in digital format.
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(a) Images from the data set.

(b) Noise on the signal.

(c) Noise on the distractor.

(d) Input gradients of a Resnet18.

(e) Input gradients of an adversarially robust Resnet18.

Figure 12: The MNIST dataset with a distractor used to create Figure 4 in the main paper.
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