
Under review as a conference paper at ICLR 2021

(a) (b)

Figure 5: The (a) Multi-headed network architecture, and (b) Exploration example.

Appendices

A Baseline Details and Hyperparameters

For MC-RCFR, we sweep over all combinations of the exploration parameter, using a (learned)
state-action baseline (27), and learning rate (✏, b,↵) 2 {0.25, 0.5, 0.6, 0.7, 0.9, 0.95, 1.0} ⇥

{True,False}⇥ {0.0001, 0.00005, 0.00001}, where each combination is averaged over five
seeds. We found that higher exploration values worked consistently better, which matches
the motivation of the robust sampling technique (corresponding to ✏ = 1) presented in (22)
as it leads to reduced variance since part of the correction term is constant for all histories
in an information state. The baseline helped significantly in the larger game with more
variable-length episodes.

For NFSP, we keep a set of hyperparameters fixed, in line with (21) and (16): anticipatory
parameter ⌘ = 0.1, ✏-greedy decay duration 20M steps, reservoir buffer capacity 2M entries,
replay buffer capacity 200k entries, while sweeping over a combination of the following
hyperparameters: ✏-greedy starting value {0.06, 0.24}, RL learning rate 0.1, 0.01, 0.001, SL
learning rate {0.01, 0.001, 0.005}, DQN target network update period of {1000, 19200} steps
(the later is equivalent to 300 network-parameter updates). Each combination was averaged
over three seeds. Agents were trained with the ADAM optimizer, using MSE loss for DQN
and one gradient update step using mini-batch size 128, every 64 steps in the game.

Finally, note that there are at least four difference in the results, experimental setup, and
assumptions between MC-RCFR and OS-DeepCFR reported in (31):

1. (31) uses domain expert input features which do not generalize outside of poker. The
neural network architecture we use is a basic MLP with raw input representations,
whereas (31) uses a far larger network. Our empirical results on benchmark games
compare the convergence properties of knowledge-free algorithms across domains.

2. The amount of training per iteration is an order of magnitude larger in OS-DeepCFR
than our training. In (31), every 346 iterations, the Q-network is trained using 1000
minibatches of 512 samples (512000 examples), whereas every 346 iterations we train
346 batches of 128 samples, 44288 examples.

3. MC-RCFR uses standard outcome sampling rather than Linear CFR (7).

4. MC-RCFR’s strategy is approximated by predicting the OS’s average strategy
increment rather than sampling from a buffer of previous models.

Our NFSP also does not use any extra enhancements.

A.1 Single-Agent Environments

Despite ARMAC being based on commonly-used multiagent algorithms, it has properties that
may be desirable in the single-agent setting. First, similar to policy gradient algorithms in the
common “short corridor example” (32, Example 13.1), stochastic policies are representable
by definition, since they are normalized positive mean regrets over the actions. This could
have a practical effect that entropy bonuses typically have in policy gradient methods, but
rather than simply adding arbitrary entropy, the relative regret over the set of past policies
is taken into account.

11

Under review as a conference paper at ICLR 2021

Second, a retrospective agent uses a form of directed exploration of different exploration
policies (2). Here, this is achieved by the simulation (µT

i ,⇡
t
�i), which could be desirable

whenever there is overlapping structure in successive tasks. µT
i here is an exploratory

policy, which consists of a mixture of all past policies (plus random uniform) played further
modulated with different amounts of random uniform exploration (more details are given in
Section 3.2). Consider a gridworld illustrated in Fig. 5(b). Green squares illustrate positions
where the agent i gets a reward and the game terminates. Most of RL algorithms would find
the reward of +1 first as it is the closest to the origin S. Once this reward is found, a policy
would quickly learn to approach it, and finding reward +2 would be problematic. ARMAC,
in the meantime, would keep re-running old policies, some of which would pre-date finding
reward +1, and thus would have a reasonable chance of finding +2 by random exploration.
This behaviour may also be useful if instead of terminating the game, reaching one of those
two rewards would start next levels, both of which would have to be explored.

These properties are not necessarily specific to ARMAC. For example, Politex (another
retrospective policy improvement algorithm (1)) has similar properties by keeping its past
approximators intact. Like Politex, we show an initial investigation of ARMAC in Atari in
Appendix B. Average strategy sampling MCCFR (13) also uses exploration policies that are
a mixture of previous policies and uniform random to improve performance over external and
outcome sampling variants. However, this exact sampling method cannot be used directly in
ARMAC as it requires a model of the game.

B Initial Investigation of ARMAC in the Atari Learning

Environment

While performance on Atari is not the main contribution, it should be treated as a health
check of the algorithm. Unlike previously tested multiplayer games, many Atari games
have a long term credit assignment problem. Some of them, like Montezuma’s Revenge,
are well-known hard exploration problems. It is interesting to see that ARMAC was able
to consistently score 2500 points on Montezuma’s Revenge despite not using any auxiliary
rewards, demonstrations, or distributional RL as critic. We hypothesize that regret matching
may be advantageous for exploration, as it provides naturally stochastic policies which stay
stochastic until regrets for other actions becomes negative. We also tested the algorithm
on Breakout, as it is a fine control problem. We are not claiming that out results on Atari
are state of art - they should be interpreted as a basic sanity check showing that ARMAC

could in principle work in this domain.

(a) Breakout (b) Montezuma Revenge

Figure 6: Performance on Breakout (left) and Montezuma Revenge (right). Results are shown for
two seeds.

C Training

Training is done by processing a batch of 64 of trajectories of length 32 at a time. In order
to implement a full recall, all unfinished episodes will be continued on the next training

12

Under review as a conference paper at ICLR 2021

iteration by propagating recurrent network states forward. Each time when one episode
finishes at a particular batch entry, a new one is sampled and started to be unrolled from
the beginning.

Adam optimized with �1 = 0.0 and �2 = 0.999 was used for optimization. Hyperparameter
selection was done by trying only two learning rates: 5 · 10�5 and 2 · 10�4. The results
reported use 5 · 10�5 in all games, including Atari.

D Proof of Lemma 1

Proof. First, let us notice that

WT
i (s, a) =

X

h2s

PT
t=1 ⌘

⇡t

(h)
PT

t=1 ⌘
⇡t(s)

A⇡t,i(h, a), (5)

=
X

h2s

PT
t=1 ⌘

⇡t

�i(h)PT
t=1 ⌘

⇡t

�i(s)
A⇡t,i(h, a) (6)

=
1

wT (s)

TX

t=1

X

h2s

⌘⇡
t

�i(h)A⇡t,i(h, a), (7)

where we used the perfect recall assumption in the first derivation, and we define wT (s) =P
t ⌘

⇡t

�i(s). Notice that wT (s) depends on the state only (and not on h). Now the cumulative
regret is:

RT
i (s, a) =

KX

t=1

qc⇡t,i(s, a)� vc⇡t,i(s)

=
TX

t=1

⌘⇡
t

�i(s)
�
q⇡t,i(s, a)� v⇡k,i(s)

�

=
TX

t=1

⌘⇡
t

�i(s)
X

h2s

⌘⇡
t

�i(h)

⌘⇡
t

�i(s)

�
q⇡t,i(h, a)� v⇡t,i(h)

�

=
TX

t=1

X

h2s

⌘⇡
t

�i(h)A⇡t,i(h, a)

= wT (s)WT
i (s, a).

Finally, noticing that regret matching is not impacted by multiplying the cumulative regret
by a positive function of the state, we deduce

RT,+
i (s, a)

P
b R

T,+
i (s, b)

=

�
wT (s)WT

i (s, a)
�+

P
b

�
wT (s)WT

i (s, b)
�+ =

WT,+
i (s, a)

P
b W

T,+
i (s, b)

.

E Unbiasedness of Ŵ T
i (s, a)

Lemma 2. Consider the case of a tabular representation and define the estimate ŴT
i (s, a)

as the minimizer (over W) of the empirical loss defined over N trajectories

L̂(s,a)(W) =
1

N

NX

n=1

⇥
W �A⇡jn ,i(h, a)

⇤2I{(h, a) 2 ⇢jn and h 2 s},

where ⇢jn is the n-th trajectory generated by the policy (µT
i ,⇡

jn
�i) where jn ⇠ U({1, . . . , T}).

Define N(s, a) =
PN

n=1 I{(h, a) 2 ⇢jn and h 2 s} to be the number of trajectories going

13

Under review as a conference paper at ICLR 2021

through (s, a). Then ŴT
i (s, a) is an unbiased estimate of WT

i (s, a) conditioned on (s, a)
being traversed at least once:

E
⇥
ŴT

i (s, a)|N(s, a) > 0
⇤
= WT

i (s, a).

Proof. The empirical loss being quadratic, under the event {N(s, a) > 0}, its minimum is
well defined and reached for

ŴT
i (s, a) =

1

N(s, a)

N(s,a)X

n=1

A⇡jn ,i(hn, a),

where hn 2 s is the history of the n-th trajectory traversing s. Let us use simplified notations
and write An = A⇡jn ,i(h, a)I{(h, a) 2 ⇢jn and h 2 s} and bn = I{(h, a) 2 ⇢jn and h 2 s}.
Thus

E
h
ŴT

i (s, a)I
n NX

m=1

bm > 0
oi

= E
"PN

n=1 AnI
�PN

m=1 bm > 0

PN
m=1 bm

#

=
NX

n=1

E
"
E
"
AnI

�PN
m=1 bm > 0

PN

m=1 bm

���
NX

m=1

bm

##

=
NX

n=1

E
"
E
h
An

���
NX

m=1

bm
i I
�PN

m=1 bm > 0

PN
m=1 bm

#

.

Now, E
⇥
An

��PN
m=1 bm

⇤
= E

⇥
An|bn

⇤
E
⇥
bn|

PN
m=1 bm

⇤
since given bn, An is independent ofPN

m=1 bm. Thus

E
h
ŴT

i (s, a)I
n NX

m=1

bm > 0
oi

=
NX

n=1

E
⇥
An|bn

⇤
E
"
E
hE

⇥
bn
��PN

m=1 bm
⇤
I
�PN

m=1 bm > 0

PN
m=1 bm

#

=
NX

n=1

E
⇥
An|bn

⇤
E
"
bnI

�PN
m=1 bm > 0

PN

m=1 bm

#

Since
PN

n=1 E
h
bnI
�PN

m=1 bm>0

PN
m=1 bm

i
= E

h PN
n=1 bnPN
m=1 bm

I
�PN

m=1 bm > 0
 i

= P
�PN

m=1 bm > 0
�
, by

a symmetry argument we deduce E
h
bnI
�PN

m=1 bm>0

PN
m=1 bm

i
= 1

N P
�PN

m=1 bm > 0
�

for each n.
Thus

E
h
ŴT

i (s, a)
���N(s, a) > 0

i
= E

h
ŴT

i (s, a)
���

NX

m=1

bm > 0
i

=
E
h
ŴT

i (s, a)I
nPN

m=1 bm > 0
oi

P
�PN

m=1 bm > 0
�

=
1

N

NX

n=1

E[An|bn] = E[A1|b1]

which is the expectation of the advantage A⇡j ,i(h, a) conditioned on the trajectory ⇢j going
through h 2 s, i.e. WT

i (s, a) as defined in (3).

F Neural Network Architecture

The following recurrent neural network was used for no-limit Texas Hold’em experiments.
Two separate recurrent networks with shared parameters were used, consuming observations
of each player respectively. Each of those networks consisted of a single linear layer mapping

14

Under review as a conference paper at ICLR 2021

input representation to a vector of size 256. This was followed by a double rectified linear
unit, producing a representation of size 512 then followed by LSTM with 256 hidden units.
This produced an information state representation for each player a0 and a1.

Define architecture B(x), which will be reused several times. It consumes one of the informa-
tion state representations produced by the previously mentioned RNN: h1 = Linear(128)(x),
h2 = DoubleReLU(h1), h3 = h1 + Linear(128)(h2), B(a) = DoubleReLU(h3).

The immediate regret head is formed by applying B(s) on the information state representation
followed by a single linear layer of the size of the number of actions in the game. The same is
done for an average regret head and mean policy head. All those B(s) do not share weights
between themselves, but share weights with respective heads for another player.

The global critic q(h) is defined in the following way. nA = Linear(128), nB = Linear(128),
a0 = nA(s0) + nB(s1), a0 = nB(s0) + nA(s1), h1 = Concat(a0, a1), h2 = B(h1) and finally
q0(s1, s2) and q1(s1, s2) are evaluated by a two linear layers on top of h2. B(x) shares
architecture but does not share parameters with the ones used previously.

15

	Introduction
	Background
	The Advantage Regret-Matching Actor-Critic
	Theoretical Properties
	Adaptive Policy Selection
	Network architecture

	Empirical Evaluation
	No-Limit Texas Hold'em

	Conclusion and Future Work
	Baseline Details and Hyperparameters
	Single-Agent Environments

	Initial Investigation of ARMAC in the Atari Learning Environment
	Training
	Proof of Lemma 1
	Unbiasedness of Ti(s,a)
	Neural Network Architecture

