
Supplementary Material474

A Random Matrices475

A.1 Multiplication of Random Matrices476

In this section we present and prove some statistical properties of general random matrices and their477

multiplications. Let {Qn ∈ Rmn×mn−1}Nn=1 denote a set of random matrix whose elements are478

sampled iid from a distribution with mean 0 and variance σ2
n, with bounded kurtosis. Let479

Ql =

1∏
n=l−1

Qn = Ql−1 · . . . ·Q1, Bl = Ql>Ql ∈ Rm0×m0 l ∈ [2 . . . N ]

Ql =

l+1∏
n=N

Qn = QN · . . . ·Ql+1, Al = QlQl> ∈ RmN×mN l ∈ [1 . . . N − 1]

(6)

Theorem 3. ∀l480

E(Bl) = βlI βl =

l−1∏
n=1

mnσ
2
n (7)

E(Al) = αlI αl =

N∏
n=l+1

mn−1σ
2
n (8)

Proof. We only prove (7), as the proof of (8) is similar. To simplify the presentation, we use the481

following auxiliary notations: V = Q1, U =
∏2
n=l−1Qn =⇒ Ql = UV .482

Proof proceeds by induction on l.483

• l = 2:484

E[Blij ] = E[

m1∑
k=1

VkiVkj ]
i 6=j
=

m1∑
k=1

E[Vki]E[Vkj ]

E[Blii] = E[

m1∑
k=1

VkiVki] =

m1∑
k=1

E[V 2
ki]

Thus485

E[Blij ] =

{
0 i 6= j (off diagonal)

m1σ
2
1 i = j (diagonal)

• Assume that (7) holds for l − 1.486

Blij =
∑
k

Ql
kiQ

l
kj =

∑
k

∑
ν

UkνVνi
∑
ρ

UkρVρj

and therefore487

E[Blij ] =
∑
k

∑
ν

∑
ρ

E[UkνVνiUkρVρj ] =
∑
ν

∑
ρ

E[VνiVρj ]
∑
k

E[UkνUkρ]

where the last transition follows from the independence of U and V . Once again, we488

consider the diagonal and off-diagonal elements separately. If i 6= j:489

E[Blij ] =
∑
ν

∑
ρ

E[Vνi]E[Vρj ]
∑
k

E[UkνUkρ] = 0

If i = j:490

E[Blii] =
∑
ν

∑
ρ

E[VνiVρj ]E[(U>U)νρ] =
∑
ν

E[V 2
νi]E[(U>U)νν ]
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Using the induction assumption491

E[Blij ] =


0 i 6= j (off diagonal)

m1σ
2
1

l−1∏
n=2

mnσ
2
n i = j (diagonal)

from which (7) follows.492

Letm denote the width of the smallest hidden layer, m = min (m1, . . . ,mN−1), and assume that493

max (m1, . . . ,mN−1) −min (m1, . . . ,mN−1) is bounded by some Mb as m → ∞. Assume the494

following initialization scheme495

Definition 4. The elements of {Qn}Nn=1 are chosen iid from a distribution with mean 0 and variance496

σ2
n, where497

σ2
n =

2

mn−1 +mn
1 < n < N, σ2

1 =
1

m1
, σ2

N =
1

mN−1

For largem, it follows that498

mnσ
2
n = 1 +O

(
1

m

)
n ∈ [1 . . . N − 1]

mn−1σ
2
n = 1 +O

(
1

m

)
n ∈ [2 . . . N ]

Corollary 3.1. With initialization as in Def. 4, ∀l499

E(Bl) = [1 +O

(
1

m

)
]I, E(Al) = [1 +O

(
1

m

)
]I

Theorem 4. With initialization as in Def. 4, ∀l500

var(Bl) = O

(
1

m

)
, var(Al) = O

(
1

m

)
Proof. We prove by induction on l that:501

E[(Blij)
2] =

{
O
(
1
m

)
i 6= j (off diagonal)

1 +O
(
1
m

)
i = j (diagonal)

, E[BliiB
l
jj ] = 1 +O

(
1

m

)
(9)

For l = 2, (9) follows from Lemma 2 and Corr 3.1. We now assume that (9) holds for l− 1 and prove502

for l, using notations as above: V = Q1, U =
∏2
l−1Qn, Q

l = UV .503

E[(Blij)2] =
∑
ν,ρ

∑
α,β

E[VνiVρjVαiVβj
∑
k,n

UkνUkρUnαUnβ ]

Let B′ = U>U . Using the induction assumption504

E[(Blij)
2]
i6=j
=
∑
ν,ρ

E[V 2
νiV

2
νj ]E[(B′νρ)

2] = O

(
1

m

)
When i = j, there are 3 cases where the terms in the sum above do not equal 0: (i) ν = α, ρ =505

β, ν 6= ρ or ν = β, ρ = α, ν 6= ρ; (ii) ν = ρ, α = β, ν 6= α; (iii) ν = ρ = α = β. Case (i) is506

similar to the above, and we therefore only expand cases (ii) and (iii) next:507

(ii)
∑
ν,α

E[V 2
νiV

2
αi]E[B′ννB

′
αα] = 1 +O

(
1

m

)
(iii)

∑
ν

E[V 4
νi]E[(B′νν)2] = O

(
1

m

)
In the derivation of (iii) we exploit the assumption that the kurtosis of the distribution used to sample508

Qn is fixed at G and cannot depend onm, indicating that E[V 4
νi] = Gσ4

1 .509

A similar argument would show that E[BliiB
l
jj ] = 1 +O

(
1
m

)
.510
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Theorem 5. Let {X(m)} denote a sequence of random matrices where E[X(m)] = [1 +O
(
1
m

)
]I511

and var[X(m)] = O
(
1
m

)
. Then X(m)

p−→ I , where
p−→ denotes convergence in probability.512

Proof. We need to show that ∀ε, δ > 0 ∃m′ ∈ N, such that ∀m >m′513

P (|X(m)− I| > ε) < δ

Henceforth we use X as shorthand for X(m). Since E(X) = [1 + O
(
1
m

)
]I , it follows that ∀ε> 0514

∃m1 ∈ N such that ∀m >m1, the following holds element-wise:515

|E(X)− I| < ε

2

Thus516

P (|X − I| > ε) ≤ P
(
|X − E(X)| > ε

2

)
Since var(X) = O

(
1
m

)
, it follows that ∀ε, δ > 0, ∃m2 ∈ N 3 ∀m >m2517

var(X) <
ε2

4
δ

From the above, and using Chebyshev inequality518

P (|X − I| > ε) <
4var(X)

ε2
< δ

∀m >m′, wherem′ = max{m1,m2}.519

520

Let Al(m) and Bl(m) denote a sequence of random matrices as defined in (6), corresponding to521

models for which m = min (m1, ...,mL−1).522

Corollary 5.1.

Bl(m)
p−→ I ∀l ∈ [2 . . . N ] Al(m)

p−→ I ∀l ∈ [1 . . . N − 1]

The proof follows from Corr 3.1, Thm 4 and Thm 5.523

A.2 Dynamics of Random Matrices524

Consider a dynamical process, where the random matrices defined above are changed as Qj →525

Qj −∆Qj ∀j, and specifically from (21):526

∆Qj = µ
( j+1∏
n=N

Qn

)>
Er

( 1∏
n=j−1

Qn

)>
, Er =

( 1∏
n=N

Qn

)
ΣXX − ΣY X (10)

Denoting Ql → Ql −∆Ql and applying the product rule527

∆Ql =

l−1∑
j=1

( j+1∏
n=l−1

Qn

)
∆Qj

( 1∏
n=j−1

Qn

)
(11)

For Bl = Ql>Ql and denoting Bl → Bl −∆Bl:528

∆Bl = [∆Ql>Ql + Ql>∆Ql] (12)

Before proceeding to analyze ∆Bl, we note that529

mNσ
2
N =

K

mN−1
=
K

m
[1 +O

(
1

m

)
]

and therefore from Thm 3530

E[
(
QN
>)
QN ] = [

K

m
+O

(
1

m

)
]I (13)
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Theorem 6. For sequence Bl(m) defined as above, if531

Bl(m)
p−→ I, var[Bl(m)] = O

(
1

m

)
then532

∆Bl(m)
p−→ 0, var[∆Bl(m)] = O

(
1

m

)

Proof. Bl(m)
p−→ I implies that ∀ε, δ > 0 ∃m̂ ∈ N, such that ∀m > m̂ and with probability larger533

than 1− δ.534

Bl(m) = I + e1 |e1| < ε, ∀l ∈ [2 . . . N ] (14)
In addition, from (13) and Thms. 4-5535

QN
>
QN =

K

m
I + e2 |e2| < ε

We fixm and let Bl be a shorthand for Bl(m). Now536

BN+1 = QN−1
>QN

>
QNQN−1 =

K

m
QN−1>QN−1 +O(ε) =

K

m
I +O(ε) (15)

To evaluate ∆Bl from (12), we start from537

Ql>∆Ql =

l−1∑
j=1

( 1∏
l−1

Qn

)>( j+1∏
l−1

Qn

)
∆Qj

1∏
j−1

Qn

Simplifying tj – the jth term in the sum538

tj = µ

l−1∏
1

Q>n

j+1∏
l−1

Qn

N∏
j+1

Q>nEr

j−1∏
1

Q>n

1∏
j−1

Qn = µBl(Bj+1)−1QN>ErB
j +O(ε)

The last transition is exactly true when Bl = I and Bj+1 = I , as shown in Lemma 3 in §A.3.539

Substituting Er540

tj =µBl(Bj+1)−1QN>[QNΣXX − ΣY X ]Bj +O(ε)

=µBl(Bj+1)−1[BN+1ΣXX + QN>ΣY X ]Bj +O(ε)

Substituting (14) and (15)541

tj = µ[
K

m
ΣXX + QN>ΣY X ] +O(ε) (16)

From (16) and Lemma 2542

E[Ql>∆Ql] =

l−1∑
j=1

E[tj ] = µl
K

m
I +O(ε)

Since ∆Ql>Ql = [Ql>∆Ql]>, it follows from (12) that543

E[∆Bl] = 2µl
K

m
I +O(ε) (17)

To conclude the proof, we need to show that ∀ε′, δ′ > 0 ∃m̂′ ∈ N, such that ∀m > m̂′544

P
(
|∆Bl| > ε′

)
< δ′

Since (17) is true with probability (1− δ) ∀ε, δ and ∀m > m̂, we choose ε and m̂′ such that545

|E[∆Bl]| < ε′

2
∀m > m̂′ (18)
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546

P
(
|∆Bl| > ε′

)
≤ (1− δ)P

(
|∆Bl − E(∆Bl)| > ε′

2

)
<

4var(∆Bl)

ε′2
(1− δ)

var(∆Bl) = O
(
1
m

)
implies that ∃m̂′′ ∈ N, δ > 0, such that ∀m > m̂′′547

4var(∆Bl)

ε′2
(1− δ) < δ′

It now follows that ∆Bl(m)
p−→ 0.548

To analyze the variance, we assume that all the moments of the distribution functions used to sample549

Qn are bounded. Thus, from (16), the variance of tj ∀j remains O
(
1
m

)
. Likewise, since ∆Bl is a sum550

of matrices, each with variance O
(
1
m

)
thus bounding the covariance by O

(
1
m

)
, we can deduce that551

var(∆Bl) = O
(
1
m

)
.552

553

Theorem 7. For sequence Al(m) defined as above, if554

Al(m)
p−→ I and var[Al(m)] = O

(
1

m

)
then555

∆Al(m)
p−→ 0 and var[∆Al(m)] = O

(
1

m

)
The proof is mostly similar to Thm 6, though we additionally need to show the following in order to556

replace (13):557

E[Q0ΣXXQ0>] = [
q

m
+O

(
1

m

)
]I

This, in turn, can be proved in a similar manner to the proof of Thm 3, when taking into account the558

initialization scheme defined in Def. 4.559

Note about convergence rate. In Thm 6, convergence to 0 when m → ∞ is governed by O
(
K
m

)
.560

In Thm 7, convergence is governed by O( q
m

).561

A.3 Some Useful Lemmas562

Lemma 1. Given function G(W ) = 1
2‖UWVX − Y ‖2F , its derivative is the following563

dG(W )

dW
= U>UWVX(V X)> − U>Y (V X)> = U>[UWV ΣXX − ΣY X ]V > (19)

Lemma 2. Given Q =
∏1
n=N Qn, where Qn ∈ Rmn×mn−1 denotes a random matrix whose564

elements are sampled iid from a distribution with mean 0 and variance σ2
n, ∀i, j.565

E[Qij ] = 0 var[Qij ] =
1

mN

N∏
n=1

mnσ
2
n (20)

Proof. By induction on N . Clearly for N = 1:566

E[Qij ] = E[(Q1)ij ] = 0 var[Qij ] = var[(Q1)ij ] = σ2
1

Assume that (20) holds for N − 1. Let V =
∏1
n=N−1Qn, U = QN . It follows that567

E[Qij ] = E[(UV )ij ] =
∑
k

E[UikVkj ] =
∑
k

E[Uik]E[Vkj ] = 0

where the last transition follows from the independence of U and V . In a similar manner568

var[Qij ] = E[Q2
ij ] = E[(

∑
k

UikVkj)
2] = E[

∑
k

UikVkj
∑
l

UilVlj ] =
∑
k

E[U2
ik]E[Vkj ]

2

= mN−1σ
2
N

1

mN−1

N−1∏
n=1

mn · σ2
n =

1

mN

N∏
n=1

mn · σ2
n
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With the initialization scheme defined in Def. 4, var(Qij) = O
(
1
m

)
.569

Lemma 3. Consider matrix multiplication CD where C ∈ Rk×m, D ∈ Rm×k, k � m and570

rank(CD) = k. Define ∆1Rm×k, ∆2Rk×m. Then571

C∆1 = ∆2∆1 = I =⇒ CD = C∆1∆2D

Proof. Since C = ∆+
1 and ∆2 = ∆+

1572

C = ∆+
1 ∆1C = C∆1∆+

1 = C∆1∆2

573

B Supplementary Proofs and Additional Models574

B.1 Deep Linear networks575

Here we prove Thm 1 as defined in Section 2.1.576

Theorem 1. The compact matrix representation W obeys the following dynamics577

W s+1 = W s − µ
L∑
l=1

Asl · Ers ·Bsl +O(µ2)

where the gradient scale matrices Asl , B
s
l are defined in (3)578

Asl :=
( l+1∏
j=L

W s
j

)( l+1∏
j=L

W s
j

)>
∈ RK×K Bsl :=

( 1∏
j=l−1

W s
j

)>( 1∏
j=l−1

W s
j

)
∈ Rq×q

579

Proof. At time s, the gradient step ∆W s
l of layer l is defined by differentiating L(X) with respect to580

W s
l . Henceforth we omit index s for clarity. First, we rewrite L(X) as follows:581

L(X;Wl) =
1

2
‖

 l+1∏
j=L

Wj

Wl

 1∏
j=l−1

Wj

X − Y ‖2F

Differentiating L(X;Wl) to obtain the gradient ∆Wl = ∂L(X;Wl)
∂Wl

, using Lemma 1 above, we get582

∆Wl =

l+1∏
j=L

Wj

>[WΣXX − ΣY X ]

(
1∏
l−1

Wj

)>
(21)

Finally583

∆W =

1∏
l=L

(Wl − µ∆Wl)−
1∏
l=L

Wl = −µ
L∑
l=1

(
l+1∏
n=L

Wn

)
∆Wl

(
1∏

n=l−1

Wn

)
+O(µ2)

Substituting ∆Wl and Er (as defined in Def. 3) into the above completes the proof.584

585

B.2 Adding Non-Linear ReLU Activation586

The results shown in Fig. 2b pertain to a relatively simple non-linear model analyzed by Arora et al.587

(2019), here adapted to classification rather than regression. Specifically, it is a two-layer model with588

ReLU activation, where only the weights of the first layer are being learned. Similarly to (1), the loss589

is defined as590

L(X) =
1

2

n∑
i=1

‖f(xi)− yi‖2 f(xi) = aᵀ · σ(Wxi), a ∈ Rm, W ∈ Rm×d

6



m denotes the number of neurons in the hidden layer. We consider a binary classification problem591

with 2 classes, where yi = 1 for xi ∈ C1, and yi = −1 for xi ∈ C2. σ(.) denotes the ReLU592

activation function applied element-wise to vectors, where σ(u) = u if u ≥ 0, and 0 otherwise.593

At time s, each gradient step is defined by differentiating L(X) with respect to W . Due to the594

non-linear nature of the activation function σ(.), we separately3 differentiate each row of W , denoted595

wr where r ∈ [m], as follows:596

ws+1
r −ws

r = −µ∂L(X)

∂wr

∣∣∣
wr=ws

r

= −µ
n∑
i=1

[
aᵀ · σ(W sxi)− yi

]∂f(xi)

∂wr

∣∣∣
wr=ws

r

= −µ
n∑
i=1

[ m∑
j=1

ajσ(ws
j · xi)− yi

]
arx

ᵀ
i 1ws

r
(xi)

= −µar
n∑
i=1

1
ws

r
(xi)

[
Ψs(xi) · xi − yi

]
xᵀ
i where Ψs(xi) =

m∑
j=1

ajw
s
j1ws

j

(xi)

Above 1
ws

r
(xi) denotes the indicator function that equals 1 when ws

r · xi ≥ 0, and 0 otherwise.597

In order to proceed, we make two assumptions:598

1. The distribution of the data is symmetric where P (xi) = P (−xi).599

2. W and a are initialized so that w0

2i
=9w0

2i−1
and a

2i
=9a

2i−1 ∀i ∈ [m2 ].600

It follows from Assumption 2 that at the beginning of training 1
w0

2j

(xi) + 1
w0

2j−1

(xi) = 1, ∀xi601

such that w
2j−1xi 6= w

2j
xi 6= 0, and ∀j ∈ [m2 ]. Consequently602

Ψ0(xi) =

m∑
j=1

ajw
0
j1ws

j

(xi) =
1

2

m∑
j=1

ajw
0
j =

1

2
aᵀW 0

∀xi such that w
2j−1xi 6= w

2j
xi 6= 0. Finally603

w1
r −w0

r = −µar
[1
2
aᵀW 0

n∑
i=1

w0
rxi≥0

xix
ᵀ
i −

n∑
i=1

w0
rxi≥0

yix
ᵀ
i

]

Next, we note that Assumption 1 implies604

E[

n∑
i=1

w·xi≥0

xix
ᵀ
i ] =

1

2
E[

n∑
i=1

xix
ᵀ
i ] =

1

2
E[ΣXX ]

for any vector w. Thus, if the sample-size n is large enough, at the beginning of training we expect605

to see606

ws+1
r −ws

r ≈ −µ
ar
2

[aᵀW sΣXX − m̃s
r] ∀r

where row vector m̃s
r denotes the vector difference between the centroids of classes C1 and C2,607

computed in the half-space defined by ws
r · x ≥ 0. Finally (for small s)608

W s+1 −W s ≈ −µ1

2

[
(aaᵀ)W sΣXX − M̃s

]
where M̃s denotes the matrix whose r-th row is arm̃s

r. This equation is reminiscent of the single609

layer linear model dynamics W s+1 = W s − µErs, and we may conclude that when it holds and610

using the principal coordinate system, the rate of convergence of the j−th column of W s is governed611

by the singular value dj .612

3Since the ReLU function is not everywhere differentiable, the following may be considered the definition of
the update rule.
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B.3 Weight Evolution613

To analyze the weight dynamics, we first shift to the principal coordinate system defined in Def 1.614

In this representation Ers = W sD −M , where D = diag({dj}qj=1) is a diagonal matrix. Based615

on Thm 1 and the subsequent discussion of convergence rate, assuming that the width of the hidden616

layers is very large, we can readily substitute Bsl ≈ I ∀l in (2), to obtain617

W s+1 = W s − µ
L∑
l=1

AslEr
s +O(µ2) (22)

Let wj ∈ RK denote the j-th column of W , mj denote the j-th column of M . From (22) we have618

ws+1
j = ws

j − µ
L∑
l=1

Asl (djw
s
j −mj) j ∈ [K]

This is a telescoping series; denoting As =
∑L
l=1A

s
l ,619

ws+1
j =ws

j − µAs(djws
j −mj) = (I − µdjAs)ws

j + µAsmj = . . .

=

s∏
ν=1

(I − µdjAν)w0
j + µ

[
s∑

ν=1

s∏
ρ=ν+1

(I − µdjAρ)Aν
]
mj

(23)

The only difference between individual columns lies in dj , which governs the rate of convergence of620

the first term to 0, and the rate of convergence of the second term to the optimal value of 1
dj
mj .621

In the discussion following the proof of Thm 2, we noted that the approximation Asl ≈ I breaks down622

before Bsl ≈ I . Nevertheless, while it is still valid, (23) further simplifies to the following623

ws+1
j = (1−µdjL)sw0

j + µ

[
s∑

ν=1

(1− µdjL)(s−ν)LI

]
mj = λsjw

0
j + µL

[
s−1∑
k=0

λkj

]
mj

= λsjw
0
j + (1− λsj)

mj

dj
λj = 1− µdjL

C Additional Empirical Results624

C.1 Weight Initialization625

We evaluate empirically the weight initialization scheme from Def. 4. When compared to Glorot626

uniform initialization (Glorot & Bengio, 2010), the only difference between the two schemes lies627

in how the first and last layers are scaled. Thus, in order to highlight the difference between the628

methods, we analyze a fully connected linear network with a single hidden layer, whose dimension629

(the number of hidden neurons) is much larger than the input and output dimensions. We trained630

N=10 such networks on a binary classification problem, once with the initialization suggested in631

Def. 4, and again with Glorot uniform initialization. While both initialization schemes achieve the632

same final accuracy upon convergence, our proposed initialization variant converges faster on both633

train and test datasets (see Fig. 10).634

C.2 Spectral Bias635

The spectral bias, discussed in Section 4.3, can also induce similar learning order in different636

networks. To support the discussion in Section 4.3, in §C.2.2) we analyze the relation between the637

spectral bias and accessibility, in order to clarify its relation to the Learning Order Constancy and638

the PC-bias. First, however, we expand the scope of the empirical evidence for this effect to the639

classification scenario and real image data (§C.2.1).640
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(a) train (b) test

Figure 10: Learning curves of a fully connected linear network with
one hidden layer, trained on the dogs and cats dataset, and initial-
ized by Glorot uniform initialization (orange) and the initialization
proposed in Def. 4 (blue).

Figure 11: Evaluations on test-sets projected
to the first P principal components, for differ-
ent values of P (see legend) of 10 VGG-19
models trained on CIFAR-10

C.2.1 Spectral Bias in Classification641

Rahaman et al. (2019) showed that when regressing a 2D function by a neural network, the model642

seems to approximate the lower frequencies of the function before its higher frequencies. Here643

we extend this empirical observation to the classification framework. Thus, given frequencies644

κ = (κ1, κ2, ..., κm) with corresponding phases φ = (ϕ1, ϕ2, ..., ϕm), we consider the mapping645

λ : [−1, 1]→ R given by646

λ(z) =

m∑
i=1

sin(2πκiz + ϕi) :=

m∑
i=1

freqi(z) (24)

Above κ is strictly monotonically increasing, while φ is sampled uniformly.647

The classification rule is defined by λ(z) ≶ 0. We created a binary dataset whose points are fully648

separated by λ(z), henceforth called the frequency dataset (see visualization in Fig. 13 and details in649

§D.4). When training on this dataset, we observe that the frequency of the corresponding separator650

increases as learning proceeds, in agreement with the results of Rahaman et al. (2019).651

Figure 12: Visualization of the separator learned by st-VGG when trained on the frequency dataset, as captured
in advancing epochs (from left to right): 1, 100, 1000, 10000. Each point represents a training example (yellow
for one class and purple for the other). The background color represents the classification that the network
predicts for points in that region.

To visualize the decision boundary of an st-VGG network trained on this dataset as it evolves with652

time, we trained N=100 st-VGG networks. Since the data lies in R2, we can visualize it and the653

corresponding network’s inter-class boundary at each epoch as shown in Fig. 12. We can see that the654

decision boundary incorporates low frequencies at the beginning of the learning, adding the higher655

frequencies only later on. The same qualitative results are achieved with other instances of st-VGG656

as well. We note that while the decision functions are very similar in the region where the training657

data is, at points outside of the data they differ drastically across networks.658

C.2.2 Spectral Bias: Relation to Accessibility659

In order to connect between the learning order, which is defined over examples, and the Fourier660

analysis of a separator, we define for each example its critical frequency, which characterizes the661

smallest number of frequencies needed to correctly classify the example. To illustrate, consider the662

frequency dataset defined above. Here, the critical frequency is defined as the smallest j ∈ [m] such663

that λj(z) =
∑j
i=1 freqi(z) classifies the example correctly (see Figs. 14a,14b).664

In this binary classification task, we observe a strong connection between the order of learning and665

the critical frequency. Specifically, we trained N=100 st-VGG networks on the frequency dataset,666
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Figure 13: Visualization of the classification
dataset used to extend Rahaman et al. (2019)
to a classification framework.

(a) 2 classes freq 0 (b) 2 classes freq 1

Figure 14: Visualization of the critical frequency, showing all the
points in the 2D-frequency dataset with critical frequency of (a) 0,
and (b) 1.

(a) (b)

Figure 15: (a) Correlation between critical frequency and accessibility score in the 2D-frequency dataset. (b)
Correlation between discriminability and critical frequency in the 2D-frequency dataset.

and correlated the accessibility scores with the critical frequency of the examples (see Fig. 15a). We667

see a strong negative correlation (r = −0.93, p < 10−2), suggesting that examples whose critical668

frequency is high are learned last by the networks.669

In order to see the effect of the spectral bias in real classification task and extend the above analysis670

to natural images, we need to define a score that captures the notion of critical frequency. To this671

end, we define the discriminability measure of an example - the percentage out of its k neighbors that672

share the same class as the example. Intuitively, an example has a low discriminability score when673

it is surrounded by examples from other classes, which forces the learned boundary to incorporate674

high frequencies. In Fig. 15b we plot the correlation between the discriminability and the critical675

frequency for the 2D frequency dataset. The high correlation (r=−0.8, p < 10−2) indicates that676

discriminability indeed captures the notion of critical frequency.677

C.3 Projection to higher PC’s678

In Section 3.3 we described an evaluation methodology, based on the creation of a modified test-set679

by projecting each test example on the span of the first P principal components. We repeat this680

experiment with VGG-19 networks on CIFAR-10, and plot the results in Fig. 11.681

D Methodology682

D.1 Implementation details and hyper parameters683

The results reported in Section 5 represent the mean performance of 100 st-VGG and linear st-VGG684

networks, trained on the small mammals dataset. The results reported in Section 5 represent the685

mean performance of 10 2-layers fully connected linear networks trained over the cats and dogs686

dataset. The results in Fig. 9 represent the mean performance of 100 st-VGG network trained on the687

small mammals dataset. In every experimental setup the network’s hyper-parameters were coarsely688

grid-searched to achieve good performance over the validation set, for a fair comparison. Other689

hyper-parameters exhibit similar results.690
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Figure 16: Visualization of the small mammals dataset, with amplification of 1.5% of its principal components
by a factor of 10. Top: original data; middle: data amplified along the first principal components; bottom: data
amplified along the last principal components

D.2 Generalization Gap691

In Section 5 we discuss the evaluation of networks on datasets with amplified principal components.692

Examples of these images are shown in Fig. 16: the top row shows examples of the original693

images, the middle row shows what happens to each image when its 1.5% most significant principal694

components are amplified, and the bottom row shows what happens when its 1.5% least significant695

principal components are amplified. Amplification was done by a factor of 10, which is significantly696

smaller than the ratio between the values of the first and last principal components of the data. After697

amplification, all the images were re-normalized to have 0 mean and std 1 in every channel as698

customary.699

D.3 Architectures700

st-VGG. A stripped version of VGG which we used in many of the experiments. It is a convolutional701

neural network, containing 8 convolutional layers with 32, 32, 64, 64, 128, 128, 256, 256 filters702

respectively. The first 6 layers have filters of size 3 × 3, and the last 2 layers have filters of size703

2× 2. Every other layer is followed by a 2× 2 max-pooling layer and a 0.25 dropout layer. After704

the convolutional layers, the units are flattened, and there is a fully-connected layer with 512 units705

followed by 0.5 dropout. The batch size we used was 100. The output layer is a fully-connected layer706

with output units matching the number of classes in the dataset, followed by a softmax layer. We707

trained the network using the SGD optimizer, with cross-entropy loss. When training st-VGG, we708

used a learning rate of 0.05.709

Linear st-VGG. A linear version of the st-VGG network. In linear st-VGG, we change the activation710

function to the identity function, and replace max-pooling by average pooling with a similar stride.711

Linear fully connected network. An L-layered fully connected network. Each layer contains 1024712

weights, initialized with Glorot uniform initialization. 0.5 dropout is used before the output layer.713

Networks are trained with an SGD optimizer, without momentum or L2 regularization.714

D.4 Datasets715

In all the experiments and all the datasets, the data was always normalized to have 0 mean and std 1,716

in each channel separately.717

Small Mammals. The small-mammals dataset used in our experiments is the relevant super-class718

of the CIFAR-100 dataset. It contains 2500 train images divided into 5 classes equally, and 500 test719

images. Each image is of size 32× 32× 3. This dataset was chosen due to its small size.720

Cats and Dogs. The cats and dogs dataset is a subset of CIFAR-10. It uses only the 2 relevant classes,721

to create a binary problem. Each image is of size 32× 32× 3. The dataset is divided to 20000 train722
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images (10000 per class) and 2000 test images (1000 per class). This dataset is used when a binary723

problem is required.724

ImageNet-20. The ImageNet-20 dataset is a subset of ImageNet containing 20 classes. This data725

resembles ImageNet in terms of image resolution and data variability, but contains a smaller number726

of examples in order to reduce computation time. The dataset contains 26000 train images (1300 per727

class) and 1000 test images (50 per class). The choice of the 20 classes was arbitrary, and contained728

the following classes: boa constrictor, jellyfish, American lobster, little blue heron, Shih-Tzu, scotch729

terrier, Chesapeake Bay retriever, komondor, snow leopard, tiger, long-horned beetle, warthog, cab,730

holster, remote control, toilet seat, pretzel, fig, burrito and toilet tissue.731

Frequency dataset A binary 2D dataset, used in Section 4.3, to examine the effects of spectral bias732

in classification. The data is define by the mapping λ : [−1, 1]→ R given in (24) by733

λ(z) =

m∑
i=1

sin(2πκiz + ϕi) :=

m∑
i=1

freqi(z)

with frequencies κ = (κ1, κ2, ..., κm) and corresponding phases φ = (ϕ1, ϕ2, ..., ϕm). The classifi-734

cation rule is defined by λ(z) ≶ 0.735

In our experiments, we chose m = 10, with frequencies κ1 = 0, κ2 = 1, κ3 = 2, ..., κ10 = 9. Other736

choices of m yielded similar qualitative results. The phases were chosen randomly between 0 and 2π,737

and were set to be: ϕ1 = 0, ϕ2 = 3.46, ϕ3 = 5.08, ϕ4 = 0.45, ϕ5 = 2.10, ϕ6 = 1.4, ϕ7 = 5.36,738

ϕ8 = 0.85, ϕ9 = 5.9, ϕ10 = 5.16. As the first frequency is κ1 = 0, the choice of ϕ0 does not matter,739

and is set to 0. The dataset contained 10000 training points, and 1000 test points, all uniformly740

distributed in the first dimension between −1 and 1 and in the second dimension between −2π and741

2π. The labels were set to be either 0 or 1, in order to achieve perfect separation with the classification742

rule λ(z).743
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