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Abstract

When deployed in the real world, AI agents will inevitably face challenges that exceed their
individual capabilities. Leveraging assistance from experts, whether humans or highly capable
AI systems, can significantly improve both safety and performance in such situations. Since
expert assistance is costly, a central challenge is determining when to consult an expert. In
this paper, we explore a novel variant of this problem, termed YRC-0, in which an agent must
learn to collaborate with an expert in new environments in an unsupervised manner–that is,
without interacting with the expert during training. This setting motivates the development
of low-cost, robust approaches for training expert-leveraging agents. To support research
in this area, we introduce YRC-Bench, an open-source benchmark that instantiates YRC-0
across diverse environments. YRC-Bench provides a standardized Gym-like API, simulated
experts, an evaluation pipeline, and implementations of popular baselines. Toward tackling
YRC-0, we propose a validation strategy and evaluate a range of learning methods, offering
insights that can inform future research.

1 Introduction

Deploying AI agents in real-world environments presents a critical challenge: agents must operate effectively
in dynamic and unpredictable settings, where their individual capabilities are often insufficient to ensure
success (Amodei et al., 2016; Leike et al., 2017; Zhou et al., 2024). A promising solution is to equip agents
with the ability to leverage assistance from more capable (human or AI) experts (Sadigh et al., 2016; Reddy
et al., 2018; Nguyen et al., 2021; Ren et al., 2023). While providing expert assistance can be costly—requiring
trained personnel or complex, resource-intensive systems—it is often a worthwhile investment, given its
potential to prevent catastrophic failures and outperform purely autonomous agents. Moreover, expert costs
can be significantly reduced if an agent can intelligently decide when it requires assistance. To build such
agents, we study the problem of Yield-or-Request Control (YRC), where the goal is to train an agent to
decide when to consult an expert in order to succeed with minimal assistance.

The YRC problem have been explored in various contexts. Previous research often assumes expert availability
during the training phase (Nguyen et al., 2019; Nguyen & Daumé III, 2019; Thomason et al., 2020; Xie et al.,
2022). Yet, in many real-world scenarios, experts are unavailable or prohibitively costly to employ or simulate.
Other settings focus on in-distribution evaluations, assessing agents in environments highly similar to those
seen during training (Chernova & Veloso, 2009; Natarajan et al., 2024; Hu et al., 2020) Such settings risk
encouraging brittle solutions which fail under drastic distribution shifts.

Toward developing sample-efficient and robust YRC methods, we introduce a novel and practical variant of
the YRC problem called YRC-0 (Fig. 1). Our problem motivates the search for unsupervised approaches to
YRC. Specifically, in this setting, an agent undergoes a fully autonomous training phase in which it learns a
set of tasks independently, without any communication with an expert. At test time, the agent faces novel
tasks and may request expert assistance to enhance performance.

Developing unsupervised solutions to YRC is essential given the widespread adoption and inherent vulnerability
of fully autonomous training paradigms, such as reinforcement learning (RL) and behavior cloning, and
the high costs of training and managing domain experts. Even in scenarios where experts are available,
unsupervised approaches could serve as an effective pre-training step, significantly reducing the costs of expert
queries during subsequent fine-tuning steps.
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Figure 1: Illustration of the YRC-0
problem. Left: an agent learns tasks
on its own (e.g., RL with environment
rewards). Right: at test time, it has
to perform novel tasks with the help of
an expert. While learning in isolation,
how can the agent develop a collabo-
ration strategy that will be effective
at test time?

In this paper, we present YRC-Bench, an open-source benchmark that
provides comprehensive infrastructure for conducting empirical research
on YRC in general, and on YRC-0 in particular. The extensive collec-
tion of environments in YRC-Bench supports a wide range of research
needs—from running simple experiments to validate theoretical claims
to developing large-scale, multi-environment learning and evaluation
approaches. In particular, multi-environment evaluation encourages the
development of robust methods that do not exploit the idiosyncrasies
of any single environment. Furthermore, automated evaluation enabled
by simulated experts makes experimentation cost-effective, efficient,
safe, and reproducible. In developing this benchmark, we not only
overcome engineering challenges but also introduce novel solutions to
problems in training and evaluating policies. We release an extensible
codebase to support future contributions, enabling easy integration of
new environments and methods.

Utilizing YRC-Bench, we take initial steps toward developing robust
solutions to YRC-0. We conduct a large-scale empirical study, train-
ing over 2,600 policies and comparing 10 learning methods across 19
environments. This study expends over 1,300 GPU days (NVIDIA A6000), yielding several noteworthy
findings: (1) no method consistently outperforms others, (2) a substantial performance gap remains between
current methods and an oracle approach, and (3) this gap stems largely from the simplicity of the policy
class considered by these methods, rather than our proposed validation strategy. We distill these findings
into concrete recommendations to inform future research.

2 Related Work

Human-AI collaboration has seen growing interest in recent years (Shneiderman, 2022; Wu et al., 2022;
Pflanzer et al., 2023; Fragiadakis et al., 2024; Vats et al., 2024). Various settings have been explored in
this area. Closest to our work are approaches that enable agents to collaborate with partners who have
superior knowledge or skills in a domain (whom we call “experts” in this work). Several works enable this
capability to reduce supervision during training (Chernova & Veloso, 2009; Judah et al., 2014). At test
time, however, the agent in these settings functions autonomously. Other works focus on building truly
collaborative agents which can leverage expert assistance at test time. However, these approaches often
assume certain forms of supervision during training time, such as the presence of the expert for interaction
(Nguyen & Daumé III, 2019; Nguyen et al., 2019; 2021), an offline dataset recording interactions with experts
(Thomason et al., 2020; Padmakumar et al., 2022), or labels of dangerous states (Xie et al., 2022). Our
proposed setting takes the challenge to the extreme by assuming no supervision during training, with the goal
of developing unsupervised methods that can complement existing supervised approaches. Moreover, it tests
the generalizability of the learned policy to novel environments—an aspect overlooked by work embracing the
traditional single-environment RL setting (Natarajan et al., 2024; Da Silva & Costa, 2019).

RL generalization under distribution shifts has primarily addressed distribution shifts in single-agent
settings (Danesh & Fern, 2021; Liu et al., 2021; Paudel, 2022; Haider et al., 2023; Yang et al., 2024; Nasvytis
et al., 2024). YRC-0 is distinct because the distribution shift is also caused by the interaction with a new
agent in the environment (the expert). Meanwhile, zero-shot coordination (Hu et al., 2020) aims to learn
policies that can coordinate with novel partners, but does not evaluate in novel environments like our setting
does.

Active learning seeks to minimize annotation cost for training a model. Common methods include
uncertainty-based (Lewis, 1995; Settles, 2009), query-by-committee (Roy & McCallum, 2001), submodular
maximization (Hoi et al., 2006; Fujii & Kashima, 2016), and deep Bayesian (Gal et al., 2017). While active
learning can be cast as an YRC problem, it typically considers a supervised learning problem where data
points are identically independently distributed. In contrast, YRC-0 is a sequential decision-making problem
with correlated input data. Although sequential variants of active learning have been proposed (Chernova &

2



Under review as submission to TMLR

Veloso, 2009; Judah et al., 2014), the query policy in these settings is learned and used only during training
(i.e. no distribution shift for this policy), whereas an YRC-0 policy is primarily used at test time and evaluated
under an out-of-distribution (OOD) setting.

3 The YRC-0 problem
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Figure 2: Simulation of the YRC-0 problem. A coordination
environment encapsulates two policies: novice and expert.
A coordination policy decides which policy will be used to
generate the next action. The coordination policy’s decision
is then translated into an environment action and executed.

YRC-0 is concerned with making a sequence of de-
cisions, each of which asks: in this situation, should
an agent make decision on its own or seek advice
from an expert? A reward function is specified to
evaluate these decisions. As in any RL problem, the
goal is to maximize the expected return (cumulative
reward) under a distribution of states and actions
induced by the learned policy.

Formally, we define a task as a Markov decision
process (MDP) with state space S, action space
A, reward function R : S × A → R, initial state
distribution P0, and transition function P : S ×A →
∆(S), where ∆(X ) denotes the probability simplex
over a set X . A task distribution E is a distribution
over all possible tasks with the same action and state
spaces. A novice policy πn : S → ∆(A) is trained with tasks sampled from a distribution Etrain and evaluated
on tasks sampled from a different distribution Etest ̸= Etrain. An expert with policy πe : S → ∆(A) is present
only at test time to assist the novice on the test tasks. Importantly, we asssume that the novice achieves
high performance on Etrain and low performance on Etest, and the expert achieves high performance on Etest.
Our setting therefore simulates a typical fully autonomous training procedure, after which the trained agent
excels on tasks similar to those it is trained on, but falters when presented with OOD tasks.

The goal of YRC-0 is to learn a coordination policy µ : S × Φn → ∆({n, e}) that decides at each time step
t, whose policy (novice or expert) will be used for deciding the next action. Here, Φn represents the space
over internal representations extracted from πn during its decision-making process. Specifically, in state st,
while the expert computes πn(st), a representation ϕ(πn, st) ∈ Φn is extracted (e.g., the activations of a
neural network). The coordination policy µ then makes a binary decision xt ∼ µ(st, ϕ(πn, st)) ∈ {n, e}. This
decision is translated into an environment action at ∼ πxt

(st) which is then executed in the environment,
generating the next state st+1. Hence, µ induces an MDP with state space S and action space {n, e}. Fig. 2
illustrates this MDP.

With this formulation, we do not assume any specific form of expert advice; it can be demonstration, language
utterance, etc. However, to focus on the problem of when asks for advice, we assume that the novice’s
understanding of advice is perfect; each piece of advice has been interpreted into a sequence of executable
actions which are stored in the novice’s memory. Whenever xt = e, the novice retrieves the next action from
memory and executes it.1 The novice does not necessarily bother the expert every time it decides xt = e.

At test time, µ is evaluated on Etest where πe is present to assist πn. For the learning of µ, however,
πe is unavailable. The challenge of YRC-0 is to construct a learning method that can find an “effective”
coordination policy having access to only πn and Etrain, where the effectiveness is determined by a reward
function described in §4.2. YRC-0 is an OOD generalization challenge, where the distribution shift is caused
by two factors: the novel environment dynamics and the introduction of the expert. The latter factor adds a
zero-shot coordination challenge to the problem, distinguishing it from RL generalization challenges that
focus only on environmental changes Cobbe et al. (2020); Yuan et al. (2023); Pumacay et al. (2024).

By forbidding interaction with the expert during training, we encourage the development of unsupervised
learning methods for YRC. Such methods, even if imperfect, can greatly reduce the cost of expert involvement.

1One can imagine that the novice stores these actions in a queue, and whenever xt = e, it pops the next action from the
queue. If no action is available, it requests a new advice from the expert to refill the queue.
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From a pragmatic point of view, removing the presence of the expert makes it easy to instantiate the problem
in various environments. In contrast, allowing interactions with experts requires specifying an interaction
budget for each environment—a non-trivial task as a single value cannot represent various real-world scenarios.

The proposer-validation decomposition. In this work, we consider a class of learning methods that
can be decomposed into two components: a policy proposer P and a policy validator V. During training,
P considers a policy class and generates a finite set of candidate policies {µ1, µ2, . . .} from this class which
are then evaluated by V, predicting their test performances. The best candidate is chosen for testing. For
example, a deep RL method considers policies parameterized by neural networks. It employs a gradient-based
optimizer as the policy proposer, which continuously updates the set of parameters to generate candidates
for validation. Another example is to query the expert with probability p at each time step. A grid search
over a finite subset of [0, 1] can be used as the policy-proposing approach. This decomposition modularizes
the methods, allowing for effective detection of their deficiencies and parallelization of the development of
improvement strategies.

Solving a YRC-0 problem means specifying a policy proposer approach and a policy validation approach.
While there are many candidates for the proposer, developing a reliable validation approach remains a difficult
open problem. Such an approach must somehow accurately predict the test performance of a coordination
policy without access to the expert πe and the test distribution Etest.

4 YRC-Bench: Robust evaluation of learning methods across diverse environments

Prior work on YRC employs diverse training and evaluation settings, making it difficult to compare results.
To the best of our knowledge, no study has systematically evaluated these approaches across a large collection
of environments. Is there a general approach to YRC that performs well across many domains, or does
the no-free-lunch principle apply? We develop YRC-Bench as a research tool to address this question. In
addition to assembling a collection of environments, we address practical challenges to enable rigorous yet
cost-effective evaluation. Our goal is to enable researchers to easily implement new methods, quickly compare
them against existing approaches across diverse domains, and draw generalizable insights into their strengths
and limitations.

4.1 Overview

YRC-Bench is built on top of three environment suites: MiniGrid (Chevalier-Boisvert et al., 2023), Procgen
(Cobbe et al., 2020), and CLIPort (Shridhar et al., 2021), each offering a unique challenge. MiniGrid features
grid-based tasks with abstract state representations and partial observability. These environments are highly
customizable, making them suitable for simple, controlled experiments to illustrate a phenomenon or validate
a theoretical claim. Procgen consists of procedurally generated video games. The main challenges of these
tasks are pixel-based observations, stochastic dynamics, and long horizon (some task requires ∼800 steps to
complete). CLIPort is a suite of language-guided robotic manipulation tasks that require grounding language
instructions in an RGB-D observation space and a continuous action space. A common feature of these
environments is that they support the creation of novel environment dynamics (Fig. 3a). Especially, CLIPort
requires understanding compositionally novel task instructions. Test performance of standard approaches2 is
far from perfect (Fig. 3b), showing the difficulty of the generalization challenge.

YRC-Bench is designed for extensibility. It supports easy integration of any environment following the gym3
interface.3 We also defined standard interfaces for the model, policy, and trainer classes to facilitate modular
development and ensure compatibility across components.

2For Procgen and CLIPort, we use the approaches proposed by the original work. For Minigrid, we use a 3-layer convolutional
max-pooling policy to encode the observation and pass the encoded vector through a GRU RNN.

3https://github.com/openai/gym3
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(a) (b) (c)

Figure 3: (a) Training (top) and test (bottom) tasks in DoorKey (Minigrid), CoinRun (Procgen), and stack-block-
pyramid (CLIPort). (b) The generalization gaps of the novice: its average return on test tasks, normalized by average
return of expert. (c) To evaluate policies, we compute the mean and standard deviation of the area under the curve
defined by the average return at varying values of α and random seed.

4.2 Resolving evaluation challenges: expert, evaluation metric, and tracking progress

Simulated expert. YRC-Bench provides expert policies that emulate real-world experts, enabling large-scale
evaluation without the cost, risk, and complexity of employing human operators or heavy AI systems. To
construct these experts, we train PPO (Schulman et al., 2017) policies on Etest for MiniGrid and Procgen,
and employ a rule-based oracle for CLIPort. These experts are nearly ideal: they perform well and respond
to all help requests. Nevertheless, our experiments show that current methods struggle even in this simplified
setting. This highlights the fundamental difficulty of the problem of identifying risk states. We argue that it
is important to first address this core challenge before extending to more complex scenarios, which introduce
additional, orthogonal difficulties.

Reward function. YRC-0 is fundamentally a multi-objective problem: the coordination policy should
maximize the task’s return (cumulative reward) while minimizing the cost of expert assistance. To enable
direct comparison of methods, it is essential to convert this problem into a single-objective problem. Facing
similar issues, previous work employs a hard-constraint approach: either maximizing the reward given a
budget of assistance cost (Nguyen et al., 2019), or minimizing expert assistance to achieve a target reward
(Ren et al., 2023). In practice, hard constraints may not be intuitive to specify and need to be frequently
adjusted as the learning method improves.4 Alternatively, one can adopt a soft-constraint approach by
maximizing a linear combination of return and assistance cost. In this approach, a user needs to specify a
weight hyperparameter reflecting a tradeoff between the two quantities. The challenge of this approach is to
provide an interpretable formulation that allows users to easily express their preferences through the weight
hyperparameter.

We propose a soft-constraint approach where the weight hyperparameter has an interpretable meaning. The
approach can be universally applied to any RL environment and expert policy. Let Ḡe = Eπe,Etest [

∑
t rt] be

the average return of an expert on a test task and T̄e be the corresponding average episode length. Our idea
is to quantify the cost of assistance as a reduction in return, and the reduction amount is proportional to the
expert return Ḡe. Specifically, we define the following reward function

rt(α) = R(st, at) − 1{xt = e} · α · Ḡe

T̄e

(1)

where R(st, at) is the environment reward obtained for the taken action at and α ∈ [0, 1] is a user-specified
hyperparameter. If the expert takes control in T time steps, the total amount deducted from the environment
return is αT

T̄e
Ḡe. This quantity is adaptive to the specific environment and expert policy. Moreover, the penalty

has a clear and interpretable meaning—it corresponds to a fraction of the expert’s performance—which
4If a hard constraint is too easy to satisfy, it hardly affects the optimization of the main objective. When that happens, one

needs to enforce a stricter constraint (e.g., requiring the method to achieve a higher performance or lower assistance cost).
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facilitates intuitive tuning of α. For example, choosing α = 0.5 means that if the expert makes decisions
in every time step (making T = T̄e), the achieved return is approximately 50% of the expert return. In
other words, the return loses 50% of its value due to requesting help.

In practice, users may specify a wide range of α values. Hence, it is crucial to evaluate with multiple values
of α, simulating diverse scenarios. To summarize performances with multiple α values by a single number, we
propose an area-under-the-curve (AUC) metric. As the name suggests, this metric estimates the AUC formed
by the points {(αi, Ḡ(αi))}K

i=1 where Ḡ(αi) denotes the average return of the evaluated policy for a given αi

(Fig. 3c). We present a bootstrap procedure to compute the mean and error bars of this metric in Alg. 1.

Tracking progress toward solving a YRC-0 problem. In ML benchmarks, an “oracle performance” is
typically provided to measure progress. However, establishing an oracle performance for a YRC-0 problem is
non-trivial. One option is to use the expert’s average return, but this performance is unattainable under the
assumption that the novice is imperfect on the test tasks. Meanwhile, unlike many ML problems, humans
are not oracles in YRC-0. Because the mental states of both the novice and the expert are unobservable
to a third-party agent, it is difficult for a human to derive an optimal coordination policy for them. Our
solution is to run an RL algorithm at test time to learn a near-optimal coordination policy. This algorithm
operates on the MDP induced by the coordination policy and requires access to the expert policy πe and the
test environment Etest. We refer to this approach as RLOracle.

5 Learning method: Policy proposal and validation approaches

Table 1: Uncertainty measures used to construct the co-
ordination policy. Here, z = (z1, · · · , z|A|) is the logits
computed by the novice in state s (novice is π−

n during
training and πn during testing). p = Softmax(z) and p↓

denote the elements of p sorted in descending order.

Method Measure g(s)
MaxLogit maxi zi

MaxProb (Lewis, 1995) maxi pi

Margin (Scheffer et al., 2001) p↓
1 − p↓

2
NegEntropy (Settles, 2009)

∑
i pi ln pi

NegEnergy (Liu et al., 2020) ln
∑

i exp(zi)
Deep SVDD (Ruff et al., 2018) neural network

Policy validation by simulating test conditions.
As mentioned, a major challenge in solving YRC-0
is policy validation, i.e., how to predict the test
performance of a policy during training, without ac-
cess to the expert and test distribution. Without
a validation approach, no learning method can be
applied to our problem, as the policy selected for
testing is ill-defined. To establish our validation ap-
proach, let us first define the oracle validator, which
evaluates a policy under the exact test conditions
V⋆(µ) = Eval(µ, πn, πe, Etest). Here, the function
uses µ to coordinate πn and πe to perform test tasks
sampled from Etest, and returns a score capturing
the quality of µ. Our solution constructs a sim-
ulated validator Ṽ(µ) = Eval(µ, π̃n, π̃e, Ẽtest) that
mimics V⋆, where π̃n, π̃e, and Ẽtest are referred to as
the simulated novice, expert, and test distribution,
respectively.

How should one choose π̃n, π̃e, and Ẽtest so that Ṽ closely mimics V⋆? First of all, we set Ẽtest = Etrain,
because we have access to only this distribution during training. Given this choice, we want to construct
a simulated expert π̃e that performs well on this distribution and a simulated novice π̃n that performs
poorly on it. A natural choice for π̃e is πn, as our setting assumes that the novice performs well under
Etrain. To construct a poor policy on Etrain as the simulated novice, we learn a weakened novice π−

n by
running the same algorithm used to train πn but with limited supervision (i.e., limiting the number of
interactive episodes in RL or demonstrations in behavior cloning). Put all together, our simulated validator
is Ṽ(µ) = Eval(µ, π̃n = π−

n , π̃e = πn, Ẽtest = Etrain).

Let Ḡ(π, E) be the mean episode return of a policy π on tasks sampled from a distribution E . To achieve a
faithful simulation of the test conditions, we want the ratio G(π−

n , Etrain)/Ḡ(πn, Etest) to be close to 1, i.e.,
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the performance of the simulated expert on train tasks is close to that of the real novice on test tasks.5
Empirically, we already obtain good results if this ratio is not greater than 5.

Policy proposal approaches. We employ methods that compute a decision function fg,τ (s) = 1{g(s) ≥ τ}
for each state s, where g is uncertainty measure and τ is a threshold. If f(s) = 1, the novice follows the expert
policy (xt = e); otherwise, it follows its own policy (xt = n). We consider various choices for the uncertainty
measure (shown in Table 1), inspired by active learning and OOD detection methods. For each method, we
generate a set of candidates thresholds T = {τ1, τ2, · · · }. Let µτ be the coordination policy induced by fg,τ .
We select the threshold τ⋆ = argmaxτ∈T Ṽ(µτ ) which maximizes the performance computed by the simulated
validator Ṽ proposed in the previous section. In this approach, generating the candidate set T presents a
challenge, as the ranges of some uncertainty measures are not fixed. For example, NegEntropy outputs a
value in [− ln |A|, 0], where A is the action space of an MDP. This range varies across environments, making a
standard grid search difficult to conduct. We propose an adaptive method to address this problem. Using the
simulated novice π̃n, we generate K task episodes, where the tasks are sampled from the training distribution.
We gather a pool of states from these episodes and pass them through the uncertainty measure to generate a
pool of scores. We then use the (n · 10)-th percentile of these scores as the candidates, where n = 0, 1, · · · , 10.

6 Experiments

YRC-Bench presents a unique opportunity to systematically analyze and compare the behavior of diverse
methods across a broad spectrum of tasks, yielding more robust insights than evaluations restricted to narrow
domains. In this work, we conduct a large-scale study of ten YRC-0 approaches across 19 environments
drawn from YRC-Bench. Our experiments are computationally intensive, requiring a total of 1,347 NVIDIA
A6000 GPU hours. The detailed runtime for each method and environment suite is provided in §D.6.

6.1 Setup

We implement the policy proposal and validation framework described in §5, combined with the uncertainty
measures listed in Table 1, resulting in six distinct learning methods. In addition, we evaluate four rule-based
baselines: AlwaysExpert, which always yields control to the expert; AlwaysNovice, which always retains
control; AlwaysRandom0.5, which flips a fair coin at each step to decide whether to yield control; and
Random, which queries the expert with a fixed probability p ∈ [0, 1]. The first three baselines do not require a
validator. For Random, the optimal value of p is selected using the simulated validation procedure described
in §5. Finally, we include the RLOracle approach (§4.2) as a reference for oracle performance.

For both deep SVDD and RLOracle, we attempt various types of input features. We try every possible
(non-empty) combination of the raw environment observation (obs), the hidden features computed by the
novice policy (to account for the novice’s uncertainty) (hidden), and the novice’s softmax action distribution
(dist).

For each environment, we evaluate each method on 1,600 test tasks and run 1,000 bootstrap simulations to
compute the mean and standard deviation of the evaluation metric (AUC; Fig. 3c).

6.2 Results

Owing to space limitations, we report the principal findings in this section and provide additional analyses in
§D. We note that the value of these findings lies not in their quantity, but in their rigor, as each is grounded
in extensive experimental evidence.

Finding 1: There is no single best method. Fig. 4 presents an overview comparison of methods, showing
the number of environments in which each achieves the highest mean AUC. Our analysis reveals a lack of
consistency across methods. Even the most successful ones achieve top performance in only 3 out of 19
environments. This result underscores the importance of a thorough empirical evaluation when selecting

5Note that we are assuming knowledge of Ḡ(πn, Etest). This is a minimal and reasonable assumption, as without any
knowledge about the test conditions, predicting the test performance would be impossible.

7



Under review as submission to TMLR

DistShift DoorKey LavaGap bossfight caveflyer chaser climber coinrun dodgeball heist jumper maze ninja plunder assembling
kits
seq

packing
boxes
pairs

put
block

in
bowl

stack
block

pyramid
seq

separating
piles

0.5

0.6

0.7

0.8

0.9

1.0

Best method +oracle validator +oracle proposer minigrid procgen cliport

Figure 5: Test performance of learning methods across environments, normalized by the performance of the best
RLOracle method. For each environment, we show three variants: the best performing method with simulated
validation (i.e., excluding AlwaysNovice, AlwaysExpert, and AlwaysRandom0.5), the same method with an oracle
validator (+oracle validator), and the same method with an oracle proposer, which employs a deep RL approach
(+oracle proposer). The gaps between the latter two variants and the original indicate potential performance gains
that could be achieved by improving the replaced components. Error bars represent 2× standard deviation.

a solution approach for a specific YRC problem. It also suggests the necessity of having a comprehensive
benchmark like YRC-Bench, which supports quick evaluation of diverse methods by providing a unified
interface, standardized evaluation pipeline, and off-the-shelf baseline implementations.
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method attains the highest mean AUC; solid
bars denote use of our validation method.

Finding 2: Our simulated validation approach is effec-
tive. Methods leveraging this approach collectively outper-
form their counterparts in 14 out of 19 environments. Fur-
thermore, 3 out of the 4 most successful methods employ the
simulated validator.

Finding 3: Random is a surprisingly strong baseline.
Despite its simplicity, this approach outperforms more sophis-
ticated methods like deep SVDD in multiple environments.
This result shows that complex methods may not always yield
superior performance.

Finding 4: There remains significant room for improve-
ment. As shown in Fig. 5, the performance of current methods
often falls well short of oracle performance, highlighting sub-
stantial room for improvement—especially in more challenging environments such as Procgen and CLIPort.

Finding 5: Performance of the best methods is limited due to the fact that they consider a
narrow policy space. To offer more specific guidance for future development, we introduce a systematic
diagnostic method based on the proposer-validator decomposition of each algorithm. As a reminder, the
policy proposer generates candidate coordination policies, while the validator evaluates these candidates to
select the best one. Ideally, we want a policy proposer that identifies the optimal policy as a candidate, and a
validator that ranks it above all other policies. When an approach falls short, either the policy proposer, or
the validator, or both are deficient.

The proposer-validator decomposition enables us to identify components limiting the performance of an algo-
rithm by replacing each with an oracle counterpart and measuring the resulting improvement. A performance
boost after replacement indicates that the replaced component is deficient and requires enhancement.

We first examine the validator component by replacing the simulated validator with an oracle validator that
accurately estimates the test performance. As shown in Fig. 5, this replacement yields minimal improvement
across most environments, with bossfight and coinrun being notable exceptions. This suggests that our
simulated validation approach generally offers reliable policy evaluation.

8
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More revealing is the replacement of the policy proposer (+oracle proposer). We use RLOracle’s proposer,
which generates candidate neural-network-based policies through PPO training on test environments. This
replacement produces substantial performance improvements in 10 out of 19 environments. This indicates
that current methods are primarily limited by their policy proposers rather than their validators.

Taken together, our results reveal a fundamental limitation of current approaches: their search strategy does
not identify effective candidate policies, as it operates within an overly restricted policy space. Our finding
suggests that future research should focus on methods capable of exploring richer policy spaces.

Drawing from the findings obtained from our experiments, we compose a list of concrete recommendations
for practitioners who want to develop or deploy solutions to YRC problems:

1. Explore diverse methods, as good performance reported in one environment may not transfer to
another.

2. Do not overlook simple, computationally cheap baseline like Random, which may yield surprisingly
good performance.

3. Implement an oracle approach, like RLOracle, to estimate the remaining room for improvement.
Remember that human-based policies are often not oracles in this problem.

4. Replace the policy proposer or policy validator of the current method with an oracle counterpart to
pinpoint the method’s primary limiting component.

7 Conclusion & Limitations

In this work, we formalize the learning to Yield and Request Control (YRC) problem, a critical challenge
for AI agents operating in dynamic, safety-critical environments. Solving this problem is an important first
step toward tackling more complex human-AI collaboration challenges. Our findings highlight significant
potential room for improvement, highlight opportunities for the research community to contribute in this
area. Developing robust methods for this problem paves the way for safe, effective human-AI collaborative
systems in the future.

While our work proposes a cost-effective and computationally efficient simulation of real-world scenarios,
several limitations warrant consideration. First, the simulated experts in YRC-Bench may not fully capture the
variability and cognitive biases of human operators. Second, although our benchmark incorporates distribution
shifts across environments, real-world shifts may involve more complex, multimodal dynamics that are not
yet modeled in existing simulations. Third, the cost model assumes fixed query costs, whereas practical
deployments often face context-dependent or time-varying costs. By focusing on rule-based (always/random),
logit-based, OOD-based and oracle-RL methods, we intentionally cover the most widespread coordination
paradigms, extracting clean, generalizable patterns that serve as performance baselines. Although we do not
exhaust every possible algorithmic family (e.g., meta-learning, offline RL, human-in-the-loop adaptation),
our findings reveal fundamental proposer-validator bottlenecks that will directly inform and accelerate the
design of these future approaches. Finally, our evaluation focuses on episodic tasks, leaving open questions
about lifelong coordination in non-stationary settings. We choose PPO-trained and rule-based “experts” to
guarantee scalable, deterministic evaluation, sacrificing the idiosyncratic biases of real humans for consistency
and speed. This strategic trade-off establishes a stable, low-variance baseline. Our modular framework can
seamlessly swap in human-in-the-loop studies or richer learned expert models in future work without altering
its core mechanics.

In terms of methodology, we have so far explored only simple policy-proposing and validation approaches.
Threshold-based methods perform well with our proposed validator because they operate within restricted
policy spaces, which effectively mitigate overfitting. However, as we have shown, such a constrained policy
space also limits performance. As one transitions toward methods that operate on richer policy spaces (e.g.,
deep RL methods), the risk of overfitting increases, and our proposed validator may not be sufficiently reliable
to prevent it. We believe that addressing the current limitations of the simulation and developing a more
faithful simulated validation approach are promising directions for future research.
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Pseudocode 1. Coordination environment interface

class CoordEnv(gym.Env):
def __init__(self, config, base_env, novice, expert):
def reset(self): # unlike gym3, actually reset to an initial state of a new task
def step(self, action): # like gym3, automatically reset upon end of episode

Figure 6: Interface of the coordination policy’s MDP class.

Pseudocode 2. Training a coordination policy

# 1) Parse command-line flags
args = flags.make()
# 2) Configuration can be specified using a YAML file (args.config) or by flags (args)
config = config_utils.load(args.config, flags=args)
# 3) Make training, validation, and test environments
envs = YRC.core.environment.make(config)
# 4) Initialize coordination policy
coord_policy = YRC.core.policy.make(config, envs)
# 5) Create evaluator
evaluator = YRC.core.Evaluator(config)
# 6) Initialize algorithm
algorithm = YRC.core.algorithm.make(config, envs)
# 7) Train coordination policy
algorithm.train(coord_policy, envs, evaluator)

Figure 7: Training a coordination policy with YRC-Bench.

A YRC-Bench

A.1 Coordination Environment Wrapper

To standardize coordination policy training and evaluation, we introduce the CoordEnv wrapper. This class
converts any Gym-compatible environment (Brockman et al., 2016; Towers et al., 2024) into an MDP for the
coordination policy that preserves the original state space S but replaces the action space with two choices
{n, e}, representing the coordination policy’s decisions of requesting control (novice acts) and yielding control
(expert acts). At each timestep, the wrapper resolves the coordination policy µ’s decision into an action in
the base environment’s action space: at ∼ πxt

(st). Subsequently, the next state st+1 is generated following
the base environment’s transition dynamics: st+1 ∼ P (st, at).

Fig. 6 describes the interface of CoordEnv. The class expects a base environment that follows the gym3
interface except that calling .reset() actually resets it to an initial state of a task (the reset() method of
an gym3 environment has no effect). This feature is employed during evaluation to ensure that all evaluation
runs are conducted with the same set of tasks.

Fig. 7 shows simple steps to train a coordination policy using our codebase. Each step is highly customizable
by extending the codebase’s core classes.

A.2 Training Novice and Expert Policies

Each environment requires three policies for training and evaluation: expert πe, novice πn, weakened novice
π−

e .
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Expert construction. For MiniGrid and Procgen, we train πe using PPO on Etest until convergence (Huang
et al., 2024)For CLIPort, we use the rule-based oracles provided by the benchmark.

Novice construction. The novice πn is trained exclusively on Etrain. MiniGrid and Procgen novices
are learned by running PPO on Etrain until convergence CLIPort novices are checkpoints trained with 100
demonstrations.

Weakened Novice Policy Training. We create π−
n by deliberately limiting training exposure. For MiniGrid

and Procgen, we halve PPO training epochs while maintaining Etrain exposure. CLIPort’s π−
n uses checkpoints

trained on only 10 demonstrations, reflecting partial task mastery. This mimics test-time performance
degradation while preserving training distribution familiarity.

A.3 Training Coordination Policy

A.3.1 Logit-Based Methods

Let z = (z1, z2, · · · , z|A|) be the logits output by the novice, and p = Softmax(z) = (p1, p2, · · · , p|A|) is the
softmax distribution derived from z. A logit-based method outputs a score u that captures the degree of
uncertainty of the novice. Whenever the score falls below a pre-specified threshold, the novice yields control
to the expert.

The score for each method is defined as follows:

• MaxLogit: u = maxi zi

• MaxProb: u = maxi pi

• Margin: u = maxi pi − maxj ̸=i⋆ pj where i⋆ = argmaxi pi (the difference between the highest and
second highest softmax probabilities)

• NegEntropy: u =
∑|A|

i=1 pi ln pi

• NegEnergy: u = τ · ln
∑|A|

i=1 exp(zi/τ). Following (Liu et al., 2020), we set the temperature τ = 1
in all experiments.

Threshold selection. To determine the threshold, we conduct a grid search over a set of candidate thresholds,
and select the one that maximizes validation performance. To generate these candidates, we rollout π−

n for 64
episodes. In each episode, the policy executes a task sampled from Etrain This generates a pool of uncertainty
scores, which each corresponds to the decision of the novice in a state encountered in an episode. We sort
the scores and use the k-th percentiles as threshold candidates with k = 0, 10, 20, · · · , 100. This method is
data-driven and adaptive to the score range, which varies dramatically among methods.

A.3.2 Deep SVDD

Our implementation of Deep SVDD is based on PyOD. All hyperparameters for Deep SVDD are set to their
default values in PyOD. Similar to Logit-based methods, Deep SVDD computes an uncertainty score; the
novice yields control if the score is below a threshold. We first generate executions of 64 Etrain tasks using π−

n .
The generated data is used to both train the OOD-detection model and to determine the optimal threshold.
The threshold is also chosen following a similar procedure as that of logit-based method: we generate a pool
of uncertainty scores and use the percentiles as candidates.

A.3.3 RLOracle

RLOracle implements Proximal Policy Optimization (PPO) (Schulman et al., 2017). Our implementation
largely follows CleanRL (Huang et al., 2022).6 To obtain our results, we run this algorithm with the
coordination environment wrapper corresponding to Etest.

The underlying policy is an Impala model (Espeholt et al., 2018). Depending on the chosen configuration,
the input features may include a raw environment observation, a hidden representation extracted from the
novice, or the softmax output distribution of the novice.

6https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppg_procgen.py
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Algorithm 1 Bootstrap procedure to compute AUC metric. AreaUnderCurve computes the area under the
curve formed by the input points. We use N = 1000, K = 6, M = 1600, m = 256 in our experiments.

1: Input: Data points {(αi, {Gi,j}M
j=1)}K

i=1 where αi = i
K

and Gi,j is the return of the evaluated policy in the j-th
episode, during which α = αi.

2: Output: Mean estimation and its standard deviation
3: Initialize E = ∅
4: for N simulations do ▷ § 5
5: Initialize D = ∅
6: for i = 1 . . . K do
7: Draw an m-element sample Si from {Gi,j}M

j=1
8: Compute Ḡi = mean(Si)
9: D ← D ∪ {(αi, Ḡi)}

10: E ← E ∪ {AreaUnderCurve(D)}
return mean(E), std(E)

We refer readers to our GitHub repository for detailed training and model hyperparameters.

A.4 Evaluation

Alg. 1 presents our bootstrap procedure for computing the evaluation metric for each policy.

B Policy Feature Extraction

In MiniGrid, both the novice πn and weakened novice π−
e are trained using the GitHub repository: https:

//github.com/lcswillems/rl-starter-files. To extract the hidden features (hidden) and the softmax
action distribution (dist), we leverage the model’s intermediate layers. For the former, we process the raw
image observations through convolutional layers and text inputs through an embedding module, fusing these
modalities into a unified hidden representation. Then, for the latter, we apply the actor network to this
hidden representation to compute unnormalized action scores (logits). Critically, this mirrors the forward
pass of the original model but excludes the final step of constructing a probability distribution (via the
Categorical class), allowing direct access to the pre-softmax logits. This approach ensures alignment with
the model’s internal decision-making process while enabling targeted analysis of policy behavior.

For Procgen, we employ the same framework. Hidden features (hidden) are extracted via the ImpalaModel
embedder (Espeholt et al., 2018), which processes high-dimensional visual observations through its residual
convolutional architecture. Then these features are mapped through the policy network to produce unnor-
malized action scores. While the model’s forward pass applies log-softmax normalization and constructs a
categorical distribution for policy gradient updates, our analysis directly utilizes the raw outputs from the
final policy layer. This preserves the model’s original action preference rankings while bypassing probability
normalization, a critical design choice that maintains numerical fidelity with the policy’s internal decision
logic while enabling direct comparison of action selection mechanisms across different policy versions.

For CLIPort, we adapt the framework to accommodate its dual-stream architecture for robotic manipulation.
Hidden features are derived through separate attention (pick) and transport (place) networks that process
RGB-D observations and language goals through coordinated ResNet and CLIP-linguistic fusion pathways
He et al. (2016); Radford et al. (2021). The attention stream first computes pixel-wise confidence maps
for object selection, while the transport stream subsequently predicts placement locations and orientations
conditioned on the chosen pick point. Unnormalized action scores emerge as spatial heatmaps encoding
both positional and rotational preferences across the workspace. Though the operational pipeline constructs
categorical distributions during training through spatial softmax normalization, our analysis directly utilizes
the pre-normalization confidence values from both streams. This preserves the geometric relationships
in the model’s pick-and-place reasoning while maintaining fidelity to the original visuolinguistic feature
representations, crucial for interpreting the policy’s physical interaction decisions in structured action spaces.
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C Environments

YRC-Bench is built on top of three open-source benchmarks: MiniGrid (Chevalier-Boisvert et al., 2023) ,
CLIPort (Shridhar et al., 2021), ProcgenAISC (commit 7821f2c) (Di Langosco et al., 2022).

C.1 MiniGrid Environments

We use the following environments:

• MiniGrid-DistShift-: 1-v0 for training, and 2-v0 for testing;
• MiniGrid-DoorKey-: 5x5-v0 for training, 8x8-v0 for testing;
• MiniGrid-LavaGap: S5-v0 for training, S7-v0 for testing

All environments use partially observable grids with discrete actions. The test environments feature larger
state spaces and more complex trajectory solutions.

C.2 Procgen

The suite includes 11 distinct platformer games with pixel-based observations and discrete actions:

• bossfight: combat-focused game with escalating enemies
• caveflyer: navigation through procedural caverns
• chaser: avoidance of pursuing enemies
• climber: vertical ascension challenge
• coinrun: collection-based platformer
• dodgebal: projectile avoidance game
• heist: stealth-based item retrieval
• jumper: precision jumping challenges
• maze: complex spatial navigation
• ninja: timing-based obstacle course
• plunder: resource gathering under threat

We use the easy distribution for training and the hard distribution for testing. The hard distribution
introduces stochastic elements and more complex terrains.

C.3 CLIPort

We experiment with five tasks:

• Assembling-Kits-Seq: sequential object placement in kits
• Packing-Boxes-Pairs: pbject pairing and containerization
• Put-Block-in-Bowl: precise object-in-container placement
• Stack-Block-Pyramid-Seq: vertical structure assembly
• Separating-Piles: object sorting and segregation

We use the seen split for training and the unseen split for testing. The unseen split (testing) introduces novel
object geometries and color combinations not encountered in the seen split. The tasks require 6-DOF control
with a continuous action space and spatial reasoning over pixel-based observations.
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Figure 8: Per-environment performance of RLOracle variants. Using observations as input features yields larger
performance boost in more complex environments like Procgen and CLIPort.

D Detailed Results

D.1 Performance of RLOracle Methods

We further analyze the performance of individual RLOracle algorithms across different environments,
as shown in Fig. 8. This detailed breakdown reveals that the advantage of raw observation-based policies
is more pronounced in the Procgen and CLIPort environments, while it is less evident in the MiniGrid
suite. This discrepancy can be attributed to the nature of the environments: Procgen and CLIPort feature
visually rich, high-dimensional observation spaces, where direct access to raw observations provides a clear
advantage in learning nuanced coordination behaviors. In contrast, MiniGrid offers low-dimensional, symbolic
representations, where the distinction between raw observations and the novice’s internal features is less
significant. In such structured environments, the novice policy’s internal representations already capture
most of the relevant task information, diminishing the benefit of using raw observations.
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Figure 9: Comprehensive performance comparison across all learning methods and environments. RLOracle
represents the RL-computed upper bounds. logit and OOD methods approach the upper bound in several
environments, mostly MiniGrid ones. Gray backgrounds denotes those environments.

D.2 Near-Optimal Coordination Achievements

Fig. 9 illustrates the overall performance of each algorithm and input feature type across all environments
studied in this paper. It reveals an interesting pattern: logit-based and OOD detection-based coordination
policies achieve near-skyline performance in 3 environments. We analyze these representative success cases:

DoorKey (MiniGrid): The 8 × 8 grid environment exhibits deterministic dynamics but requires precise
multi-step sequencing (find key, then unlock door, then navigate to goal). The MaxLogit policy matches
skyline performance matches skyline performance by interfering the novice’s potentially flawed decision-making,
preventing costly mistakes and ensuring efficient completion of the task.

LavaGap (MiniGrid): This environment’s lethal consequences (falling into lava) create clean separation
between high-confidence navigation actions and uncertainty “cliff edges.” The OOD-based method with
hidden-dist features and Margin logit policy are the closest to skyline performance.

Climber (Procgen): Despite procedural generation, the logit-based methods are statistically the same
as skyline methods. The policy successfully distinguishes between challenging-but-seen obstacles (handled
by novice) and truly novel gap configurations (referred to expert), despite being trained solely on the easy
distribution.

Our analysis also reveals substantial performance gaps between RLOracle and other methods. Notably,
across all CLIPort manipulation tasks, no method approaches even the worst-performing RLOracle. For
example, in the packing-boxes-pairs task, the lowest-performing RLOracle variant (using only the novice’s
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Figure 10: Comparison of logit-based and OOD detection methods. Error bars show the standard deviation across
each method’s variants.

action probability distribution as input) achieves a performance of 0.83, while the best non-RLOracle
methods (logit-based approaches) reach only 0.73, representing a 13.7% relative performance gap. Other
CLIPort tasks exhibit even wider disparities, with RLOracle outperforming alternatives by at least 30.7%
on assembling-kits-seq, 35.1% on put-block-in-bowl, 40.3% on stack-block-pyramid-seq, and 20.9% on
separating-piles. These substantial gaps highlight fundamental limitations in current coordination strategies
for high-dimensional manipulation tasks, underscoring the urgent need for improved policy architectures that
better leverage both environmental observations and novice uncertainty signals.

D.3 Comparison of Logit-based and OOD detection-based Methods

Our experiments reveal an interesting insight in comparing logit-based methods with the Deep SVDD OOD
detection approach, as quantified in Fig. 10. Overall, in 1 out of 19 evaluated environments, logit-based
methods outperform Deep SVDD. In 2 environments the OOD detection-based method performs better. And
in the remaining cases, they tie.

This suggests that practitioners may prefer computationally lightweight logit-based coordination unless
operating in domains with known visual-semantic mismatch between observation space and task requirements.
Based on our results, we suggest practitioners reconsider the prevailing assumption that complex OOD
detection is universally preferable for safety-critical coordination (Yang et al., 2024). We demonstrate
that simpler approaches often suffice when distribution shifts primarily affect agent behavior rather than
environmental appearance.

D.4 Best features for RLOracle
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Figure 11: Number of environments in which
each variant of RLOracle achieve the highest
AUC mean. Variants that take raw environ-
ment observations as input yield superior per-
formance.

. While being an oracle in our setting, RLOracle is a viable
approach in a life-long learning setting, where the novice contin-
uously adapts to test conditions. We investigate the best recipe
for this approach to provide helpful insights for researchers who
want to tackle this setting.

Our experiments reveal that including raw environment observa-
tions as input to the coordination policy consistently improves
performance compared to using only its hidden representations
or its logit outputs. This trend presents in 15 out of 19 envi-
ronments (Fig. 11), suggesting that the novice does not acquire
helpful, easily extractable uncertainty information if trained
only to perform tasks autonomously.

Our results also highlight a relationship between environment
complexity and observation-space utility. While raw obser-
vations generally provide richer learning signals, their value
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diminishes in structured environments with comprehensive fea-
ture representations. For instance, in Minigrid environments,
the difference between using raw observations and structured feature representations is negligible. However, in
more visually complex environments like Procgen or CLIPort (e.g., CaveFlyer or stack-block-pyramid-seq),
raw observations provide crucial information that significantly enhances performance (see App. D.1 for details).
We thus suggest practitioners to prefer observation-conditioned coordination policies unless observations are
complex to model and hidden representations are sufficiently rich.

D.5 Normalized Novice-to-Expert Score Ratios

To quantify the gap between novice and expert policies on unseen test tasks, Etest, we compute for each
environment i the normalized score ratio

ri = W̄i

Ēi

δri = ri

√(
σW,i

W̄i

)2
+

(
σE,i

Ēi

)2
(2)

where Ēi ±σE,i and W̄i ±σW,i are the expert’s and novice’s mean returns and standard deviations, respectively.
Fig. 12 (left) shows ri with 2 × δri error bars for all 19 environments across MiniGrid, Procgen, and CLIPort.

We chose these suites to capture distinct evaluation challenges:

• MiniGrid: a simple, highly customizable gridworld for quick proof-of-concept demonstrations on
abstract state representations, highlighting decision-making challenges that generalist LLMs often
face.

• Procgen: long-horizon, procedurally generated visual tasks that stress robust visual control and
exploration.

• CLIPort: vision-language manipulation benchmarks requiring integration of visual perception with
high-level language instructions.

Across individual tasks, novice policies achieve between approximately 12% and 43% of expert returns in
MiniGrid (mean r ≈ 0.23), 17% − 55% in Procgen (mean r ≈ 0.32), and 24% − 74% in CLIPort (mean
r ≈ 0.45). This systematic shortfall highlights the difficulty of generalizing to novel test environments.

We further aggregate these ratios at the suite level by

rS = 1
|S|

∑
i∈S

ri δrS =

√∑
i∈S δr2

i

|S|
(3)

where S indexes environments in each suite. Fig. 12 (right) shows the average ratio rS with 2 × δrS error
bars. The consistent deficit across all suites, never exceeding 50% of expert performance, underscores that
even our best-trained novices fall significantly short of expert performance when generalizing beyond training.

These patterns serve two purposes: (1) they illustrate that different environment families pose unique
generalization challenges, and (2) they motivate our coordination framework, which adaptively requests
expert guidance most aggressively in those environments where ri is both lowest and most variable, thereby
allocating expert queries where they yield the highest marginal benefit.

D.6 Computation Cost and Time

All experiments were executed on a single NVIDIA A6000 GPU with 48 GB VRAM and 100 GB of host
memory. To highlight the significant computational cost, Table 2 summarizes the total wall-clock times for
the training and evaluation phases, as well as their combined cost.

Table 2 reveals that we expended a staggering total of over 1347 GPU-days of continuous run time on a
single A6000 card. This corresponds to nearly 3.7 years of dedicated GPU usage, underscoring the high
resource demands of large-scale experiments under distribution shift. In particular, the Procgen suite alone
accounted for almost 82% of total compute during training, reflecting the complexity and variability of those
environments. Even the simplest MiniGrid tasks required several GPU-days to achieve robust evaluation.
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Figure 12: Left: Per-environment novice-to-expert score ratios ri with error bars 2× δri, hatched by suite (no hatch:
MiniGrid; dotted: Procgen; slashed: CLIPort). Right: Suite-averaged ratio rS with aggregated error bars 2× δrS .
Novices consistently achieve less than half of expert returns across all domains, and exhibit higher instability (wider
error bars) on more stochastic tasks.

Table 2: Wall-clock time on NVIDIA A6000 (48 GB) with 100 GB RAM. Times rounded to nearest hour for readability.

Category Training Evaluation Total

By environment
MiniGrid 3 d-14 h 0 d-12 h 4 d-2 h
Procgen 1105 d-11 h 14 d-19 h 1120 d-6 h
CLIPort 201 d-11 h 21 d-16 h 223 d-2 h

By algorithm
Always-based 3 d-0 h 6 d-9 h 9 d-9 h
Threshold-based 85 d-21 h 12 d-1 h 97 d-22 h
OOD-based 122 d-16 h 5 d-16 h 128 d-8 h
RLOracle 1082 d-0 h 5 d-17 h 1087 d-17 h

Overall 1310 d-12 h 36 d-23 h 1347 d-10 h

By algorithm, the skyline RLOracle dominated resource consumption (≈ 1087 GPU-days), while our
OOD-based method consumed an additional ≈ 128 GPU-days. The relatively lower cost of the Always-based
and Threshold-based methods (9 − 97 GPU-days respectively) highlights that naive baselines are cheaper
but far less adaptive.

These figures make clear that replicating and extending our suite of experiments demands significant
computational investments, reinforcing the importance of efficient coordination policies that can reduce expert
queries without incurring prohibitive compute costs.
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