
B FAQ616

1. What are some limitations of SkillGen?617

See Appendix C.618

2. Why might a data generation attempt in a failure?619

The transformed human segments (skill segments) during data generation (Sec. 4.4) might620

result in poses that are difficult or impossible for the motion planner or task-space controller621

to reach. Small errors can also accumulate during open-loop replay of the skill segments,622

causing failures during high-precision motions such as insertion. Despite the potential for623

these failures, proficient agents can be trained from SkillGen datasets.624

3. Are there concrete examples of situations where SkillGen succeeds in generating data625

but MimicGen fails?626

See Appendix D.627

4. Is SkillGen compatible with normal teleoperation systems or do I have to use HITL-628

TAMP?629

Yes, SkillGen is compatible with normal teleoperation systems – see Appendix L for results630

and discussion.631

5. What are the assumptions made by each HSP policy learning method?632

HSP-Reg makes no additional assumptions compared to standard Behavioral Cloning633

methods. HSP-Class makes similar assumptions to those made during data generation –634

namely that the sequence of relevant objects that the robot must interact with for a task635

are known, and we are able to observe or estimate object poses prior to robot interaction636

(Sec. 3, A2 and A3). Importantly, this does not require full object pose tracking. HSP-637

TAMP [13] makes the most assumptions. It assumes access to a TAMP system that knows638

where to move the robot before initiating the learned skill policy and when to terminate the639

learned skill policy.640

6. There is a small but significant performance gap between HSP-Reg, and the other641

HSP methods. Does that mean that policies must use privileged information to get the642

benefits of the HSP skill formulation?643

The results are close between HSP-Reg and the other methods in many cases (Fig. 4, av-644

erage success rate only lower by 10% to 13%) despite making much fewer assumptions645

(see FAQ (5) above). However, there are some easy ways to improve performance fur-646

ther (discussion in Appendix Q), including generating more data (Appendix E). Moreover,647

HSP-Reg might be the only method appropriate for tasks in which, for example, the objects648

vary.649

7. Is it necessary for SkillGen data generation rates to be high for policies trained on650

the generated demo to perform well? If not, why is it beneficial to have higher data651

generation rates?652

There isn’t a strict correlation between data generation success rate and trained policy653

success rate. In many cases, data generation success rates can be very low, especially654

when using initiation augmentation (Appendix F), compared to the resulting policy suc-655

cess rates. However, higher data generation rates can be beneficial for generating datasets656

more quickly (in terms of wall clock time), since it will take less time to reach a target657

amount of data. Even when data generation rates are low, SkillGen can leverage paral-658

lelization during data generation to generate data faster (Appendix G.4). Finally, a higher659

data generation rate can imply better coverage of the task reset distribution in the generated660

data, but a low data generation rate does not necessarily mean the task reset distribution is661

not covered well.662

8. Can SkillGen be used to generate data for different robot arms, like MimicGen?663

Yes, see Appendix N for results.664

9. Explain how SkillGen was used to generate over 24K demonstrations across 18 task665

variants in simulation from just 60 human demonstrations.666

We generated 1000 SkillGen demos for each of the 18 task variants in Fig. 4 and an addi-667

tional 6 more datasets (1000 demos each) with a different robot arm (Appendix N), using668

just 10 source human demos collected on the 6 simulation tasks. We do not include the669
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dataset scaling law experiments (Appendix E), the datasets generated with initiation aug-670

mentation, and the datasets generated in the real world, which would increase the total671

substantially.672
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C Limitations673

We discuss limitations of SkillGen that can inform future work, extending Section 7.674

1. Given sequence of skill segments during data generation. During data generation, the675

sequence of skill segments (relevant objects that must be manipulated by the robot during676

each skill) must be provided.677

2. Object pose estimates during data generation. During data generation, SkillGen as-678

sumes access to the object pose at the start of each skill segment, either by direct observa-679

tion (simulation) or estimation (real world).680

3. Quasi-static tasks with rigid objects. This paper applies SkillGen to primarily quasi-static681

tasks with rigid objects.682

4. Better performance when using source human data from HITL-TAMP [13] than from683

conventional teleoperation systems. SkillGen obtains better results when using human684

demonstrations collected with HITL-TAMP than with conventional teleoperation systems685

(Appendix L). Investigating how more consistent human annotations can reduce this gap is686

future work.687

5. Limited agent observability and action space for sim-to-real experiments. Agents used688

in the sim-to-real experiments only observe changes in robot proprioception, as no pose689

tracking or visual observations are used during execution. The agent also receives object690

poses at the start of each episode, but these are never updated. The action space is restricted691

to position-only control (no rotation). These design choices were made to maximize the692

possibility of transfer without the need for addressing the gap in perception between simu-693

lation and the real world, and without the need for extensive robot controller tuning between694

simulation and the real world. See Appendix K for more details and discussion.695
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D Analysis on Challenging Data Generation Scenarios696

In this section, we discuss some challenging data generation scenarios where SkillGen is able to697

generate data, while MimicGen struggles. We first review some limitations of MimicGen, and then698

we discuss different data generation scenarios.699

D.1 MimicGen Limitations700

Susceptibility to scene collisions. MimicGen uses a naive linear interpolation scheme during data701

generation to connect the end of one transformed object-centric human segment to another one.702

This approach is not aware of scene geometry, which can result in data generation failures due to703

collisions between the robot and other objects in the scene. By contrast, SkillGen transit and transfer704

motions between skill segments are carried out via motion planning.705

Tradeoff between Data Generation Quality and Policy Learning Proficiency. The use of naive706

linear interpolation also impacts learning ability. Longer in time (not space) interpolation segments707

have been shown to be harmful to policies trained from MimicGen data [11], which motivates the708

use of short interpolation segments with a small number of intermediate waypoints. However, this709

can lower the data generation success rate, since the end-effector controller might not be capable of710

accurately tracking waypoints that are far apart, and this also can be unsafe for real-world deploy-711

ment. Consequently, MimicGen has a fundamental tradeoff with respect to interpolation segments.712

On one hand, shorter segments are better for policy learning but can result in lower data generation713

success rates and be unsafe for real-world deployment. On the other, longer segments are more suit-714

able for real-world deployment and for ensuring better data generation throughput but make policy715

learning more difficult. By contrast, SkillGen has no such tradeoff.716

D.2 Challenging Data Generation Scenarios717

Figure D.1: Example Configurations for Clutter Tasks. Example configurations from the clutter task variants
of Square and Coffee.

Presence of Clutter. SkillGen successfully generates data for scenes with large obstacles, unlike718

MimicGen. We develop variants of the Square and Coffee tasks that have a large obstruction placed719

in the workspace (Fig. D.1). The reset distributions for these tasks are identical to their clutter-free720

counterparts described in Appendix J except for the presence of the obstruction, which has its own721

reset distribution, and is placed randomly near the center of the workspace. We use the same source722

demonstrations as before (collected on the clutter-free D0 variants of these tasks) and perform 200723

data generation attempts with both SkillGen and MimicGen. The data generation success rates are724

presented in Table D.1. We see that SkillGen substantially outperforms MimicGen by margins as725

large as 58.5%.726

Task Variant MimicGen [11] SkillGen
Square (D1, Clutter) 4.0 62.5
Square (D2, Clutter) 14.5 72.0

Coffee (D0, Clutter) 16.5 49.0
Coffee (D1, Clutter) 14.0 55.0

Table D.1: Data Generation Rates for Environments with Clutter. SkillGen is able to generate data for
environments with clutter much more effectively than MimicGen.
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Large Scene Variations from Source Demos. SkillGen excels at generating data even when there727

are substantial deviations from where objects were located in the source human demonstrations728

unlike MimicGen, which suffers from having to use short linear interpolation segments during gen-729

eration. For example, MimicGen is unable to produce any data on Coffee Prep D2, due to the mug730

and drawer being on opposite sides of the table compared to the source demos (D0) (see Fig. D.2),731

while SkillGen can generate data and train proficient agents on D2 (Fig. 4). SkillGen also enjoys732

large gains over MimicGen for data generation rates, especially on D2 task variants, which vary sub-733

stantially from D0, where source data was collected. This can be seen in Table F.1 (Appendix F).734

Figure D.2: Coffee Prep D0 and D2. Example configurations for two task variants of Coffee Prep. Source
demonstrations were collected on D0. MimicGen is unable to generate data on D2 due to the drawer and mug
being on opposite ends of the table compared to the source demos, while SkillGen successfully generates data
and trains proficient policies for D2.

Safe and Proficient Real World Deployment. SkillGen is able to obtain proficient policies in735

the real world, as shown in Sec. 6.3, unlike MimicGen. MimicGen had to use longer interpolation736

segments in the real world, to enforce safety during execution, which made policy learning results737

suffer (as discussed above).738
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E Dataset Scaling Law Analysis739

We present results for using different amounts of SkillGen data for policy training, to see how policy740

success rate scales with amount of data. We present results in Table E.1 (for HSP-TAMP), Table E.2741

(for HSP-Class) and Table E.3 (for HSP-Reg). HSP-Reg uses SkillGen with initiation augmentation742

(Sec. 4.5). All tasks and methods receive a significant increase from 200 to 1000 demos, and some743

tasks benefit strongly from 1000 to 5000 demos, notably Square D2 (52% to 72% on HSP-Reg) and744

Threading D1 (60% to 76% on HSP-Reg).745

Task Variant Human 200 SkillGen 200 SkillGen 1000 SkillGen 5000
Square (D2) 88.0 84.0 94.0 92.0

Threading (D1) 32.0 36.0 72.0 84.0

Piece Assembly (D0) 98.0 88.0 96.0 96.0
Piece Assembly (D2) 60.0 60.0 84.0 92.0

Table E.1: Policy Training Dataset Comparison with HSP-TAMP [13]. Table of results corresponding to
the comparison in Fig. 4 (upper right). HSC-TAMP agent performance is comparable on 200 SkillGen demos
and 200 human demos, despite SkillGen using just 10 human demos for generation. Generating more SkillGen
demonstrations can result in significant performance improvement.

Task Variant SkillGen 200 SkillGen 1000 SkillGen 5000
Square (D2) 74.0 94.0 96.0

Threading (D1) 34.0 66.0 80.0

Piece Assembly (D0) 72.0 80.0 86.0
Piece Assembly (D2) 44.0 74.0 78.0

Table E.2: Policy Training Dataset Comparison with HSP-Class. Generating more SkillGen demonstrations
can result in modest performance improvement.

Task Variant SkillGen 200 SkillGen 1000 SkillGen 5000
Square (D2) 4.0 52.0 72.0

Threading (D1) 14.0 60.0 76.0

Piece Assembly (D0) 68.0 86.0 82.0
Piece Assembly (D2) 2.0 50.0 62.0

Table E.3: Policy Training Dataset Comparison with HSP-Reg. Generating more SkillGen demonstrations
can result in substantial performance improvement for certain tasks.
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F Data Generation Success Rates746

We present data generation rates for the datasets used in our experiments (Table F.1 for simula-747

tion tasks and Table F.2 for real-world tasks and the sim-to-real task). In most cases, SkillGen748

achieves higher data generation rates than MimicGen. One notable exception is when using initia-749

tion augmentation (Sec. 4.5) – success rates are much lower in this case. However, this is due to the750

aggressive noise distribution applied to motion planner targets during the generation process. See751

Appendix G.3 for more discussion.752

Task Variant MimicGen [11] SkillGen SkillGen (+IA)
Square (D0) 73.7 99.8 30.7
Square (D1) 48.9 91.5 34.3
Square (D2) 31.8 87.7 27.5

Threading (D0) 51.0 76.2 35.0
Threading (D1) 39.2 66.4 27.2
Threading (D2) 21.6 74.3 24.9

Piece Assembly (D0) 35.6 82.5 5.1
Piece Assembly (D1) 35.5 72.7 4.7
Piece Assembly (D2) 31.3 69.3 4.6

Coffee (D0) 78.2 73.3 9.3
Coffee (D1) 63.5 73.6 9.1
Coffee (D2) 27.7 70.0 8.5

Nut Assembly (D0) 53.0 98.6 15.2
Nut Assembly (D1) 30.0 91.7 15.1
Nut Assembly (D2) 22.8 69.1 10.6

Coffee Prep (D0) 53.2 64.6 1.4
Coffee Prep (D1) 36.1 36.8 0.7
Coffee Prep (D2) 0.0 59.9 0.6

Average 40.7 75.4 14.7

Table F.1: Data Generation Rates for Simulation Environments. SkillGen improves data generation rates
over MimicGen substantially. When using initiation augmentation (+IA), data generation rates are much lower,
due to the aggressive noise distribution applied to motion planner targets.

Task MimicGen [11] SkillGen
Pick-Place-Milk - 100.0
Cleanup-Butter-Trash - 95.0
Coffee 52.0 73.0

Nut-Assembly [Sim] 72.6 94.8

Table F.2: Data Generation Results on Real World Manipulation Tasks and Sim-to-Real Tasks. SkillGen
has high data generation throughput even in the real world, and compares favorably to MimicGen. The bottom
part of the table shows the data generation rate in simulation for the task used for sim-to-real transfer.
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G Data Generation Details753

In this section, we provide more details on SkillGen data generation. We first describe how reference754

skill segments are selected, and how they are transformed and executed. We next describe how755

initiation augmentation can be used to produce more robust closed-loop agents. Finally, we describe756

how we leveraged parallelization to generate large datasets efficiently with reasonable wall clock757

times, even when data generation rates were low.758

G.1 Reference Skill Segment Selection759

During a data generation attempt, SkillGen adapts existing skill segments to the new scene and760

executes them sequentially with motion segments (Sec. 4.4). To generate a new skill segment (for761

skill index i for a task), SkillGen requires a reference skill segment ⌧is to be selected from the762

source demonstrations Dsrc. Since the skill index should match between the source demonstrations763

and the current skill segment that must be generated, this problem reduces to selecting a source764

demonstration index j 2 {1, 2, ..., N}. In our experiments, we sample this index randomly for the765

first skill segment, and then leave it fixed for the rest of the episode. However, more sophisticated766

selection methods could be used to select a different source demonstration index for each skill index767

if desired.768

G.2 Skill Segment Execution and Action Noise769

During a data generation attempt, after an existing skill segment is selected and transformed to770

obtain a new sequence of end-effector pose actions ⌧ 0is = (T
A0

0
W , ..., T

A0
K

W ) (Sec. 4.4), this sequence771

of actions is executed one by one. However, we found it beneficial to apply additive noise to the772

pose actions. As in MimicGen, we convert each absolute pose action to a normalized delta pose773

action (using the current robot end effector pose) and add Gaussian noise N (0, 1) with magnitude774

� in each dimension, where � = 0.05. Note that the gripper actuation actions are copied as-is from775

the source skill segment, and no noise is added. These modified normalized delta pose actions are776

then executed, and stored in the generated dataset.777

G.3 Initiation Augmentation778

As described in Sec. 4.5, SkillGen has the option of adding noise to the skill initiation states TE0
W ,779

producing new initiation states TE0
0

W , to broaden the support of the initiation set and allow the trained780

closed-loop skill policies to be more robust to incorrect initiation pose predictions. We found this781

to be very helpful for HSP-Reg agents, which must directly predict initiation poses via regression.782

Consequently, all of our HSP-Reg agents are trained on datasets with initiation augmentation, unless783

otherwise noted.784

For datasets generated with initiation augmentation, we add uniform translation noise to the target785

position for each initiation state U [�t, t], where t is the position noise scale. We also modify the786

target rotation, by sampling a random rotation axis (random vector on 3D unit sphere), sampling a787

random angle � ⇠ U [0, r], converting the new sampled axis-angle rotation to a rotation matrix, and788

multiplying the target rotation by this rotation matrix. The motion planner will attempt to reach the789

new target pose, and then we will subsequently plan and execute a recovery segment consisting of790

a sequence of pose actions that moves from new pose T
E0

0
W to the original pose T

E0
W . The recovery791

segment is added to the transformed skill segment, and is part of the dataset used to train the closed-792

loop agent.793

In our experiments, we chose t = 0.08 meters and r = 80 degrees. We note that this is a very wide794

and aggressive pose randomization distribution, and that a large portion of sampled poses will be795

unreachable by the motion planner, due to the pose being in collision with the scene. This is why the796

data generation rates for the initiation augmentation datasets are significantly lower (Appendix F).797

This could be addressed with more intelligent sampling mechanisms, but we leave this for future798

work. Instead, opted to leverage parallelization during data generation to efficiently generate large799

datasets in a reasonable amount of wall clock time (described below).800
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G.4 Efficient Data Generation with Parallelization801

Datasets generated with initiation augmentation can have low data generation rates due to the broad802

noise distribution and rejection sampling process used. To mitigate this, we parallelized data col-803

lection across a large number of cpu processes. The SkillGen data generation process is easily804

amenable to this type of parallelization.805

G.5 Hardware806

Data generation runs were batched together and run simultaneously (on a compute cluster) on 8-807

GPU nodes consisting of 8 NVIDIA Volta V100 GPUs, 64 CPUs, and 400GB of memory. Real808

robot experiments were run on a machine with an NVIDIA GeForce RTX 3090 GPU, 36 CPUs,809

32GB of memory, and 1 TB of storage.810
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H Policy Learning Details811

Here, we describe how policies are trained with SkillGen data. All policies trained on MimicGen812

data are trained with BC-RNN [1] using the same hyperparameters as in MimicGen [11].813

H.1 Observation Spaces814

Every network used camera observations, consisting of a front-view camera and a wrist-view cam-815

era, and proprioception consisting of end effector poses and gripper finger positions unless otherwise816

mentioned. The simulation tasks used an image resolution of 84x84 and the real-world tasks used817

an image resolution of 120x160. All networks taking image inputs utilize pixel shift randomiza-818

tion [1, 47–50] to shift image pixels by up to 10% of each dimension randomly on each forward819

pass.820

H.2 Policy Evaluation821

Unless otherwise mentioned, policies are evaluated using 50 rollouts per checkpoint during training.822

The best-performing policy success rate is reported for each training run [1].823

H.3 Training Procedures and Hyperparameters824

We outline how each network used by the HSP algorithms described in Sec. 4.6 is trained. All825

networks are trained with the Adam optimizer [85] with a learning rate of 1e-4. Only one network826

of each type is used across all skill segments (e.g. we do not train separate networks per skill).827

Policy Network (⇡✓) (HSP-Reg, HSP-Class, HSP-TAMP): The policy network is trained with828

BC-RNN using robomimic [1] using the same default network structure and hyperparameters from829

their study. This matches the settings used for training policies in MimicGen [11].830

Termination Classifier (T✓) (HSP-Reg, HSP-Class): This is a binary classification network831

T✓ : O!{0, 1} that is trained to predict when the skill policy should be running. The network832

architecture uses the same observation encoder structure (with different learned weights) as the pol-833

icy network – each image is encoded using a ResNet-18 network [86] followed by a spatial-softmax834

layer [87], and these outputs are concatenated directly with the other non-image observations. This835

is then fed to an MLP with 2 hidden layers of size 1014, which outputs 2 logits. The network is836

trained with a standard multi-class classification Cross-Entropy loss. Labels to train this network837

are easily obtained from the SkillGen dataset, as each observation-action pair (o, a) is labeled with838

whether it was collected while the motion planner was running or not. We additionally apply data839

augmentation, and flip the labels on the last 50% of each motion planner segment. This is useful840

to ensure the termination classifier does not erroneously predict that the policy should terminate at841

the start of the skill segment. During agent rollouts, we additionally only accept a valid termination842

prediction when termination has been predicted 5 times – we found this to be a simple mechanism843

to prevent early termination prediction.844

Initiation Regression Network (I✓) (HSP-Reg): This is a network I✓ : O!SE(3) that directly845

predicts an end effector pose corresponding to the initiation condition for the next skill. The archi-846

tecture is the same as the termination classifier, except for the last layer, which directly predicts a847

position (3-dim) and a rotation (6-dim rotation representation from Zhou et al [88]). To allow for848

multimodal predictions, we use a Gaussian Mixture Model (GMM) head, using the same hyperpa-849

rameters as the BC-RNN-GMM model from robomimic [1]. The position and rotation targets to850

train the network come from the SkillGen dataset, and correspond to the targets that were sent to the851

motion planner during data generation. These targets are normalized to lie in [�1,+1], using the852

same procedure from Chi et al. [89]. During agent rollouts, this network directly samples a target853

pose for the motion planner to reach.854

Initiation Classifier (I✓) (HSP-Class): This is a classification network I✓ : O!{1, 2, ..., Nsrc}855

that frames skill initiation condition prediction as a classification problem over initiation states in856

the source dataset Dsrc. The architecture is the same exact network (with shared weights) as the857

termination classifier described above (T✓) – there is simply an extra classification head added to858

the output of the network. It is trained to predict the source demonstration in Dsrc that spawned the859

generated demonstration in D using a standard multi-class classification Cross-Entropy loss. During860
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agent rollouts, after predicting a source demonstration label, the corresponding initiation state in the861

source demonstration is adapted to the current state using the adaptation procedure from Sec. 4.4 to862

obtain a target pose for the motion planner.863

H.4 Hardware864

Policy learning runs each used a machine (on a compute cluster) with an NVIDIA Volta V100 GPU,865

8 CPUs, and 50GB of memory. Real robot experiments were run on a machine with an NVIDIA866

GeForce RTX 3090 GPU, 36 CPUs, 32GB of memory, and 1 TB of storage.867
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I Planning Details868

In this section, we provide additional details on the Motion Planner and the Task and Motion Planner869

used in our experiments, beyond those in Sec. 5. We used PyBullet [90] for collision checking during870

motion planning and TAMP. Within the HITL-TAMP system, we used PDDLStream [91] for task871

and motion planning.872

For each motion planning query, we decompose planning into three phases. The first is a short retreat873

motion that moves the robot’s end effector backward. The second is a transit or transfer motion that874

moves the robot a short distance in front of the query pose. The third is an approach motion that875

moves to the query pose. The retreat and approach motions move the robot out of and into contact876

respectively. During these short phases, we ignore expected collisions between the robot and any877

manipulated object along with collisions between manipulated objects and the environment. In our878

experiments, we used a retreat and approach distance of 5cm in the end effector’s z axis.879

Expanding on Section 6.3, in the real world, we assume manipulable object segmentation. While a880

number of choices on segmentation methods can be made [92, 93], we deploy a simple yet effective881

pipeline which works well in our setup. Specifically, we first perform RANSAC plane fitting to882

filter the table from the observed point cloud. Then, we use DBSCAN [94] to cluster the objects883

within the remaining point cloud. In settings where we have shape models for the objects, the884

object cloud segments are distinguished by comparing to their respective 3D models and we use885

FoundationPose [83] for object 6D pose estimation. Otherwise, we reconstruct collision volumes886

for the manipulable objects online by running marching cubes [95] on each segmented point cloud.887

For transfer motion planning, we detect whether a manipulable object is grasped by checking for888

contact between both the robot’s fingers and the object in our planning model. While grasped, we889

assume the object is rigidly attached to the robot, modifying its collision geometry.890
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J Tasks and Task Variants891

In this section, we provide detailed descriptions of all the tasks (Fig. J.1) and task variants. See the892

website (https://skillgen.github.io) for more visualizations. The action space for all893

tasks is a delta-pose action space (using an Operational Space Controller [82]) to control the arm),894

along with a gripper open/close command. Control occurs at 20 hz.895

J.1 Simulation Tasks896

(a) Square (b) Threading (c) Piece Assembly

(d) Coffee (e) Coffee Prep (f) Nut Assembly

Figure J.1: Simulation Tasks. We deploy SkillGen on 6 simulation tasks (18 task variants). These tasks include
fine-grained and long-horizon manipulation.

All tasks and task variants are taken from the MimicGen paper [11], with the exception of Nut897

Assembly (D1, D2) and Coffee Prep (D2), which were newly implemented. For each task, we898

describe the goal, the task variants, and the skill segments.899

• Square. The robot must pick a square nut and place it on a peg. (D0) The peg never moves,900

and the nut is placed in small (0.005m x 0.115m) region with a random top-down rotation.901

(D1) The peg and the nut are initialized in large regions, but the peg rotation is fixed. The902

peg is initialized in a 0.4m x 0.4m box and the nut is initialized in a 0.23m x 0.51m box.903

(D2) The peg and the nut are initialized in larger regions (0.5m x 0.5m box of initialization904

for both) and the peg rotation also varies. There are 2 skill segments (grasp nut, place onto905

peg).906

• Threading. The robot must pick a needle and thread it through a hole on a tripod. (D0)907

The tripod is fixed, and the needle moves in a modest region (0.15m x 0.1m box with 60908

degrees of top-down rotation variation). (D1) The tripod and needle move in large regions909

on the left and right portions of the table respectively. The needle is initialized in a 0.25m910

x 0.1m box with 240 degrees of top-down rotation variation and the tripod is initialized in911

a 0.25m x 0.1m box with 120 degrees of top-down rotation variation. (D2) The tripod and912

needle are initialized on the right and left respectively (reversed from D1). The size of the913

regions is the same as D1. There are 2 skill segments (grasp needle, thread into tripod).914

• Coffee. The robot must pick a coffee pod, insert the pod into the coffee machine, and close915

the machine hinge. (D0) The machine never moves, and the pod moves in a small (0.06m x916

0.06m) box. (D1) The machine and pod move in large regions on the left and right portions917

of the table respectively. The machine is initialized in a 0.1m x 0.1m box with 90 degrees918

of top-down rotation variation and the pod is initialized in a 0.25m x 0.13m box. (D2) The919

machine and pod are initialized on the right and left respectively (reversed from D1). The920

size of the regions is the same as D1. There are 2 skill segments (grasp pod, insert-into and921

close machine).922

• Three Piece Assembly. The robot must pick one piece, insert it into the base, then pick the923

second piece, and insert into the first piece to assemble a structure. (D0) The base never924

moves, and both pieces move around base with fixed rotation in a 0.44m x 0.44m region.925

(D1) All three pieces move in the workspace (0.44m x 0.44m region) with fixed rotation.926
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(D2) All three pieces can rotate (the base has 90 degrees of top-down rotation variation, and927

the two pieces have 180 degrees of top-down rotation variation). There are 4 skill segments928

(grasp piece 1, place into base, grasp piece 2, place into piece 2).929

• Nut Assembly. Similar to Square, but the robot must place both a square nut and round930

nut onto two different pegs. (D0) Each nut is initialized in a small box (0.005m x 0.115m931

region with a random top-down rotation). (D1) The nuts are initialized in a large box932

(0.23m x 0.51m region) with random top-down rotation, and the pegs are initialized in a933

large box (0.4m x 0.4m) with a fixed rotation. (D2) The nuts and pegs are initialized in934

a larger box (0.5m x 0.5m) with random top-down rotations. There are 4 skill segments935

(grasp each nut and place onto each peg).936

• Coffee Prep. A more comprehensive version of Coffee — the robot must load a mug onto937

the coffee machine, open the machine, retrieve the coffee pod from the drawer and insert938

the pod into machine. (D0) The mug moves in a modest (0.15m x 0.15m) region with fixed939

top-down rotation and the pod inside the drawer moves in a 0.06m x 0.08m region while940

the machine and drawer are fixed. (D1) The mug is initialized in a larger region (0.35m x941

0.2m box with random top-down rotation) and the machine also moves in a modest region942

(0.1m x 0.05m box with 60 degrees of top-down rotation variation). (D2). Same task as943

D0 but the drawer is placed on the right side of the table, and the mug is initialized on the944

left side of the table, instead of the right. There are 5 skill segments (grasp mug, place onto945

machine and open lid, open drawer, grasp pod, insert into machine and close lid).946

J.2 Real-World Tasks947

Coffee

Trash

Bin

Figure J.2: Real-World Task Executions. The 1) initial state, 2) pick initiation state, 3) pick termination state,
4) placement or insertion initiation state, and 5) placement or insertion termination state for an example episode
of the Milk-Bin, Butter-Trash, and Coffee tasks. The orange arrows indicate a transition facilitated by motion
planning, and the blue arrows indicate a transition conducted by a learned skill policy.

Figure J.2 and Figure J.3 display example task executions and the initial state distributions respec-948

tively for the Pick-Place-Milk, Cleanup-Butter-Trash, and Coffee tasks introduced in Section 6.3.949

For each task, we describe the goal, the initialization regions for the objects, and the skill segments.950

• Pick-Place-Milk. The robot must pick the milk and place it in the bin. The milk and951

bin objects are randomly placed anywhere on the table, with random orientations that are952

within +/-45 degrees of yaw from their nominal orientations. There are two skill segments:953

pick milk and place into bin.954

• Cleanup-Butter-Trash. The robot must pick the butter and insert it into the trash can by955

pushing the trash can’s lid. The butter and trash can are placed randomly on the left and956

right sides of the table respectively, with random orientations that are within +/-45 degrees957

of yaw from their nominal orientations. There are two skill segments: pick butter and insert958

into trash can.959

• Coffee. The robot must pick the coffee pod, insert it into the coffee machine, and then close960

the machine’s lid. The pod is initialized in a 0.44m x 0.35m box (as in MimicGen [11]).961
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There are two skill segments: pick pod and both insert pod into machine as well as close962

lid. Here, the insertion and closing are treated as a single learned skill.963

CoffeeTrashBin
Figure J.3: Real-World Reset Distributions. The initial states of the Pick-Place-Milk, Cleanup-Butter-Trash,
and Coffee tasks each overlaid onto a single image.
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K Sim-to-Real Experiment964

Figure K.1: Real-World Nut Assembly Execution. An example execution of the real-world Nut Assembly
task. The task involves four skill segments (in blue) and four motion planning segments (in orange). The skill
segments are 1) pick the Square Nut, 2) place the Square Nut on the Square Peg, 3) pick the Round Nut, 4)
place the Round Nut on the Round Peg.

As described in Section 6.3, we performed an experiment to explore SkillGen’s ability at facilitating965

zero-shot sim-to-real transfer. In this section, we provide further details omitted in the main text.966

We considered the “Nut Assembly” task (Figure K.1) where the robot must pick a Square Nut, place967

the Square Nut on the Square Peg, pick a Round Nut, and place the Round Nut on the Round Peg.968

This task is long-horizon in that it involves four skill stages; additionally, each place stage require969

precise manipulation to fit each nut on its associated peg.970

Insertion Tolerance. We designed a simulated analog of the task, “Nut Assembly [Sim]”, in ro-971

bosuite [78]. In the real world, we replicate the CAD model of each nut and peg and 3D printed972

them so that the real and simulated geometries matched. The square peg is 3.2cm on each side,973

the square hole on the nut is 4.6cm on each side, the round peg is 4cm in diameter, and the round974

hole is approximately 6.8cm in diameter, leaving only a couple centimeters of tolerance for each nut975

insertion.976

Initialization Bounds. In simulation, the nuts and pegs are each initialized randomly in non-977

overlapping 21cm x 41.5m quadrants of the table, with fixed orientation. In the real world, the978

initialization region for the objects are as follows: square nut (18cm x 26cm), round nut (20cm x979

20cm), square peg (14cm x 40cm) and round peg (16cm x 30cm). The simulation bounds were980

intentionally designed to be more extensive than the real world initialization bounds.981

Observation and Action Space. As mentioned in Section 7, we made several assumptions specifi-982

cally for this experiment. First, we trained pose-based rather than image-based policies. As a result,983

there is no visual sim-to-real transfer. Second, because pose estimation during robot execution984

can be challenging, for example, due to the robot occluding the camera, each policy observes only985

the initial object poses. They do however consume up-to-date robot proprioception measurements,986

consisting of the end effector position and width of the gripper fingers. We make an additional sim-987

plification, and provide the end effector position with respect to the initial object position for all 4988

items, instead of providing the end effector position and the object poses separately. Consequently,989

the final observation consumed by the agent is simply the robot end effector position with respect990

to the initial square nut position, square peg position, round nut position, and round peg position,991

as well as the width of the gripper fingers. Additionally, we simplified the agents action space by992

fixing the orientation of the end effector, which results in a 4-DOF position-only action space (one993

extra dim for gripper actuation).994

Policy Training Details. We mostly follow the procedure described in Appendix H for HSP-Class995

training and the procedure from MimicGen [11] for training the MimicGen policies. We use an996

increased learning rate of 1e-3 for the closed-loop policy network. We also change the RNN policy997

to make it “open-loop” over the RNN horizon by repeating the first observation in the sequence998

instead of providing the current observation – this is equivalent to the action chunking described in999

Zhao et al. [19].1000

Experiment Summary. Ultimately, through SkillGen, we were able amplify a single simulation1001

source demonstration into 1000 simulation demonstrations on Nut Assembly [Sim], train a pose-1002
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based HSP-Class policy, and deploy it using SkillGen without any real-world data, where it achieved1003

35% success rate, while the MimicGen agent could not complete the full task, and achieved 5%1004

success rate on the first square nut insertion.1005
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L Results with Conventional Teleoperation Source Demonstrations1006

Task Variant MimicGen [11] SkillGen
Square (D0) 73.7 87.3
Square (D1) 48.9 73.8
Square (D2) 31.8 65.1

Threading (D0) 51.0 43.6
Threading (D1) 39.2 36.7
Threading (D2) 21.6 36.9

Piece Assembly (D0) 35.6 48.7
Piece Assembly (D1) 35.5 48.4
Piece Assembly (D2) 31.3 53.8

Coffee (D0) 78.2 81.5
Coffee (D1) 63.5 75.4
Coffee (D2) 27.7 59.8

Average 44.8 59.3

Table L.1: Data Generation Rates from using Conventional Teleoperation Source Data. SkillGen improves
data generation rates over MimicGen substantially for most tasks, particularly the D2 variants.

Task Variant MimicGen [11] HSP-Class HSP-Reg
Square (D0) 90.7 100.0 84.0
Square (D1) 73.3 84.0 58.0
Square (D2) 49.3 68.0 46.0

Threading (D0) 98.0 94.0 94.0
Threading (D1) 60.7 46.0 56.0
Threading (D2) 38.0 34.0 50.0

Piece Assembly (D0) 82.0 80.0 74.0
Piece Assembly (D1) 62.7 48.0 52.0
Piece Assembly (D2) 13.3 42.0 36.0

Coffee (D0) 100.0 98.0 100.0
Coffee (D1) 90.7 100.0 94.0
Coffee (D2) 77.3 92.0 90.0

Average 70.0 73.8 69.5

Table L.2: Agent Performance on Datasets Generated from Conventional Teleoperation Source Data.
Across the tasks, the average SkillGen policy learning results are comparable to MimicGen, but HSP-Class
slightly outperforms the MimicGen baseline.

The experiments presented in Sec. 6 used demonstrations collected with HITL-TAMP [13], a teleop-1007

eration system where humans only demonstrate select skill segments of each task. A TAMP system1008

plans and executes the rest of the task, in between skill demonstrations. In this section, we ana-1009

lyze how SkillGen’s performance changes when using source demonstrations from a conventional1010

teleoperation system instead of HITL-TAMP.1011

We use the same source demonstrations as MimicGen, and annotate the skill phases (Sec. 4) to1012

enable data generation with SkillGen. Table L.1 shows that the average data generation rate is higher1013

by 15% over MimicGen. However, Table L.2 shows that the average policy learning results are1014

comparable to MimicGen (compared to the substantial improvements over MimicGen from using1015

HITL-TAMP source data in Fig. 4). This shows that SkillGen performance is higher when using1016

HITL-TAMP source data. One potential reason is due to the variability in motion planner poses when1017

using manual annotations compared to the consistent annotations based on pre-conditions coming1018

from the HITL-TAMP system. This variability can pose a challenge for learning methods [61].1019

Analyzing this gap further is a valuable avenue for future work.1020
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M Ablations1021

Task Variant H-TAMP H-TAMP(+T) H-Class H-Class(-T) H-Reg H-Reg(-T) H-Reg(-R)
Square (D0) 100.0 100.0 100.0 100.0 94.0 98.0 80.0
Square (D2) 94.0 90.0 94.0 96.0 52.0 46.0 40.0

Threading (D0) 100.0 100.0 92.0 94.0 94.0 92.0 100.0
Threading (D1) 72.0 68.0 66.0 58.0 60.0 66.0 58.0

Piece Assembly (D0) 96.0 94.0 80.0 80.0 86.0 80.0 80.0
Piece Assembly (D2) 84.0 82.0 74.0 76.0 50.0 40.0 14.0

Coffee (D0) 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Coffee (D2) 94.0 100.0 100.0 98.0 98.0 96.0 56.0

Table M.1: Ablation of Key Components. To understand the difficulty of predicting policy termination, we
modify HSP-TAMP to use a termination classifier (HSP-TAMP (+T)), and modify HSP-Class and HSP-Reg to
use TAMP to handle termination instead of the termination classifier (-T variants). We see that performance is
largely unchanged, indicating that learning termination is relatively easy. To understand the value of initiation
augmentation (Sec. 4.5), we train HSP-Reg on dataset generated without it. The large performance regressions
demonstrate it can be critical.

M.1 Difficulty of Predicting Policy Termination1022

To understand the difficulty of predicting policy termination, we make the following changes to1023

each method. HSP-TAMP (+T): we modify HSP-TAMP to use the same policy termination clas-1024

sifier T (ot) from HSP-Class and HSP-Reg, and use it instead of TAMP to determine when agent1025

⇡✓ should terminate and cede control back to TAMP. HSP-Class (-term) and HSP-Reg (-T): we use1026

the same conditions as HSP-TAMP to dictate when to cede control from the agent ⇡✓ back to the1027

motion planner, instead of using the classifier. We see that the performance of HSP-TAMP (+T) is1028

at most 4% below and 6% above HSP-TAMP, showing that predicting policy termination is not very1029

difficult. Comparing HSP-Class (-term) to HSP-Class (8% lower to 2% higher) and HSP-Reg (-T)1030

to HSP-Reg (10% lower to 6% higher) corroborates this claim. By comparison, the significant dif-1031

ference in performance between HSP-Class and HSP-Reg on a select few tasks (analyzed in Sec. 6)1032

demonstrates that motion planner target prediction is significantly more challenging. This suggests1033

that the key bottleneck for improving HSP-Reg performance is improving its ability to predict mo-1034

tion planner target poses – there is consequently an opportunity for future work to improve this by1035

integrating models that utilize 3D information [58, 59] or exploring alternative model architectures.1036

See Appendix Q for further discussion.1037

M.2 Value of Initiation Augmentation1038

To show the value of initiation augmentation (Sec. 4.5), we train HSP-Reg on datasets generated1039

without motion augmentation (HSP-Reg (-R)) and compare with HSP-Reg. Removing motion aug-1040

mentation can cause significant performance drops (e.g. 40% drop on Coffee D2, 26% on Three1041

Piece Assembly D2), showing that it can be critical to enable better performance by allowing agents1042

to recover from incorrect motion planner target predictions.1043
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N Robot Transfer1044

We apply SkillGen to generate datasets and train agents for a robot arm that is different than the one1045

the human collected source demonstrations on (Fig. N.1). We use the same source demonstrations1046

as those used in our main experiments, collected on the Panda arm, and generate demonstrations1047

for the Sawyer arm. The results are presented in Table N.1 (data generation) and Table N.2 (policy1048

learning). We see that data generation rates are substantially higher for SkillGen than MimicGen,1049

and that HSP-Class policies trained on SkillGen data are higher performing than their MimicGen1050

counterparts.1051

Figure N.1: Data Generation for Sawyer Robot Arm. Example configurations for task variants where Skill-
Gen generated data for the Sawyer robot arm, using source human data collected on the Panda robot arm.

Task Variant MimicGen [11] SkillGen
Square (D0) (Panda) 73.7 99.8
Square (D0) (Sawyer) 55.8 95.2
Square (D1) (Panda) 48.9 91.5
Square (D1) (Sawyer) 38.8 94.0

Threading (D0) (Panda) 51.0 76.2
Threading (D0) (Sawyer) 28.8 68.2
Threading (D1) (Panda) 39.2 66.4
Threading (D1) (Sawyer) 23.7 62.5

Nut Assembly (D0) (Panda) 53.0 98.6
Nut Assembly (D0) (Sawyer) 34.7 86.1
Nut Assembly (D1) (Panda) 30.0 91.7
Nut Assembly (D1) (Sawyer) 22.1 78.3

Table N.1: Data Generation Rates for Generating Datasets for Different Robots. We use SkillGen to
produce datasets on the Sawyer robot arm using the same 10 source demos collected on the Panda arm. SkillGen
improves data generation rates substantially over MimicGen.

Task Variant MimicGen [11] HSP-Class
Square (D0) (Panda) 90.7 100.0
Square (D0) (Sawyer) 86.0 96.0
Square (D1) (Panda) 73.3 98.0
Square (D1) (Sawyer) 60.7 98.0

Threading (D0) (Panda) 98.0 92.0
Threading (D0) (Sawyer) 88.7 94.0
Threading (D1) (Panda) 60.7 66.0
Threading (D1) (Sawyer) 50.7 54.0

Nut Assembly (D0) (Panda) 60.0 92.0
Nut Assembly (D0) (Sawyer) 74.0 88.0
Nut Assembly (D1) (Panda) 16.0 78.0
Nut Assembly (D1) (Sawyer) 8.0 62.0

Table N.2: Agent Performance on Generated Datasets for Different Robot Arms. We use SkillGen to
produce datasets on the Sawyer robot arm using the same 10 source demos collected on the Panda arm. HSP-
Class policies trained on SkillGen data significantly outperform agents trained on MimicGen data.

34



O Algorithm Pseudocode1052

Algorithm 1 provides the pseudocode for the data generation process described in Section 4.4. For1053

each skill trajectory in the source demonstration, SkillGen first estimates the current pose of the1054

object that the skill manipulates. This is used to transform the stored initiation state. Then, MOTION-1055

PLANNER solves for a robot configuration that reaches this pose and plans a joint-space path to the1056

configuration, executed with a joint space controller. Finally, each end-effector action is adapted to1057

the world frame and executed using task-space control.1058

Algorithm 1 Demonstration Generation
procedure GENERATE-DATA(⌧ )

for ⌧is 2 ⌧ do
T

O0
i

W  ESTIMATE-POSE()

T
E0

0
W  T

Oi
W ⌧is[0]

q0  CURRENT-CONFIG()

q⇤  INVERSE-KINEMATICS(T
E0

0
W )

for q 2 MOTION-PLANNER(q0, q⇤) do
JOINT-SPACE-CONTROL(q)

for T
Et
Oi
2 ⌧is do

T
E0

t
W  T

O0
i

W T
Et
Oi

TASK-SPACE-CONTROL(T
E0

t
W )

Algorithm 2 provides the pseudocode for HSP deployment, which was described Section 4.6. The1059

structure has some global similarity with Algorithm 1, but critically, it operates over skills instead of1060

trajectories and does not require pose estimation. For each skill in a provided sequence of skills  ,1061

DEPLOY-HSP predicts the initiation pose using the current observation o. Then, it plans and executes1062

joint-space motions to the initiation pose. Until the termination network predicts to terminate, the1063

skill queries its policy for the next task-space action.1064

Algorithm 2 HSP Deployment
procedure DEPLOY-HSP( )

for hO, I✓,⇡✓, T✓i 2  do
o OBSERVE()

T
E0

0
W  I✓(o)

q0  CURRENT-CONFIG()

q⇤  INVERSE-KINEMATICS(T
E0

0
W )

for q 2 MOTION-PLANNER(q0, q⇤) do
JOINT-SPACE-CONTROL(q)

while T✓(o) 6= True do
T

E0
t

W  ⇡✓(o)

TASK-SPACE-CONTROL(T
E0

t
W )

o OBSERVE()
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P Comparison with HITL-TAMP1065

As we described in Section 2, HITL-TAMP [13] is a prior system that integrates BC and planning to1066

improve both data collection efficiency and policy success rates. Within SkillGen, we optionally use1067

HITL-TAMP to both collect a handful of source demonstrations (Section 4.3) and deploy learned1068

skills at test time through HSP-TAMP (Section 4.6). However, when compared directly, SkillGen1069

has several advantages over HITL-TAMP.1070

Fewer Assumptions. HITL-TAMP requires a model to plan the TAMP segments. Specifying one1071

requires defining Planning Domain Definition Language (PDDL) actions, including their parame-1072

ters, preconditions, and effects, along with sampling procedures that generate continuous action pa-1073

rameter values [91]. In contrast, SkillGen only requires a skill plan at data generation time, namely1074

the sequence of objects that will be acted upon. At test time, SkillGen can even reduce this assump-1075

tion by learning a single skill that encompasses all learned segments without explicitly conditioning1076

on any objects. HITL-TAMP also requires pose observation or estimation during all its phases, for1077

example, to define TAMP-gated hand-off regions from TAMP to a learned policy. Through directly1078

learning initiation sets, which can be viewed as learning-gated conditions, SkillGen not only uses1079

learning to transfer control but also avoids pose estimation in its HSP-Reg configuration.1080

Lower Human Effort. Although HITL-TAMP partially automates the demonstration process, a1081

human must still manually teleoperate a portion of each episode. Thus, the amount of human effort1082

required scales linearly with the number of demonstrations. In contrast, SkillGen only requires a1083

fixed amount of human effort and can spawn an arbitrarily large number of demonstrations. Further-1084

more, policy learning results can be comparable given a similar amount of SkillGen demonstrations1085

and HITL-TAMP demonstrations (Sec. 6.2), with just a fraction of the human effort.1086

Object Grasp Segments Delegated to Learned Policies. HITL-TAMP, TAMP is responsible for1087

carrying out object grasps, while SkillGen defers all object interaction to learned agents. For exam-1088

ple, in the real-world Coffee task, TAMP controls the arm to grasp the coffee pod and approach the1089

insertion point on the machine, and a learned policy is only responsible for the insertion segment. In1090

SkillGen, there are two skill segments that must be learned – one for pod grasping and one for pod1091

insertion. Despite this increased difficulty, a policy trained on SkillGen data performs comparably.1092

HSP-Class obtains 65% on the Coffee task with 100 SkillGen demos generated from just 3 human1093

demos, in comparison to HSP-TAMP achieving 74% from 100 HITL-TAMP demos.1094
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Figure P.1: Comparison Between Skill Segments Learned by SkillGen and HITL-TAMP. The experiments
in HITL-TAMP [13] assumed that TAMP carries out object grasps (the left two frames for the Coffee task
shown above) – consequently, the trained agent was responsible for less portions of each task (e.g. the right
two frames for the Coffee task above). By contrast, SkillGen is responsible for all segments shown above.
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Q Discussion on HSP-Reg Results1095

HSP-Reg makes the fewest assumptions out of the three HSP methods presented in this work1096

(Sec. 4.6). However, while the average task success rate is only lower by 10% to 13% than the1097

other methods, there can still be a significant gap in policy performance depending on the specific1098

task. In this section, we provide some reasons to be optimistic that HSP-Reg performance can be1099

increased significantly.1100

Using more SkillGen data. In this work, our main experiments (Fig. 4) used 1000 SkillGen demon-1101

strations – this number was chosen for consistency with prior work [11]. However, we found that1102

using more demonstrations can significantly boost HSP-Reg results (Appendix E). Some notable1103

performance increases from 1000 SkillGen demos to 5000 SkillGen demos include Square D2 (52%1104

to 72% on HSP-Reg) and Threading D1 (60% to 76% on HSP-Reg).1105

Improving agent observability. HSP-Reg is responsible for directly predicting a 6-DoF target1106

pose for the motion planner to reach – this can be the key bottleneck for improving performance1107

(corroborated by ablations in Appendix M and the performance gap between HSP-Reg and HSP-1108

Class). This can be a difficult prediction problem when using just a front-view and wrist-view image1109

for this prediction. Consequently, we ran an experiment to see if adding a third, side-view image1110

would improve results. We used 5000 SkillGen demos with front-view, wrist-view, and side-view1111

observations, and obtained our best HSP-Reg results – 82% for Square D2 (compared to the 52% in1112

Fig. 4), 86% for Threading D1 (compared to 60%), and 74% for Piece Assembly D2 (compared to1113

50%). These results also demonstrate that adding depth information for the pose prediction can be1114

beneficial, as used in prior work [58, 59].1115
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R Skill Segments and Annotations1116

In order to amplify a set of source demonstrations in a targeted manner, SkillGen requires annotation1117

of the start and end of each skill that should be learned on the demonstrations. Even when using1118

HITL-TAMP to gather source demonstrations, the TAMP model must specify action preconditions1119

and effects (Appendix P), which loosely correspond to skill initiation and termination conditions.1120

The choice of what skills to learn and how fine-grained they should be can be customized by a1121

human supervisor. For example, in the Coffee task displayed Fig. J.2, the robot must insert the pod1122

and then close the coffee machine lid. We choose to model and learn both behaviors as a single skill1123

rather than split them into two separate skills, connected by transit motion planning. This imposes a1124

larger burden on learning but reduces the execution time by not requiring motion planning between1125

the two behaviors.1126

Ultimately, the motivation of Sec. 4 is our primary recommendation with respect to modeling prin-1127

ciples. Motion planning is a safe and reliable technique for addressing contact-adverse segments of1128

tasks, which are often substantial in many common tasks. If learned policies are able to replicate1129

these attributes for a given task, then it makes sense to incorporate more learning. Otherwise, defer-1130

ring learning to primarily the contact-rich task segments, where motion planning is ineffective is the1131

wiser strategy.1132
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Appendix584

A Overview585

The Appendix contains the following content.586

• FAQ (Appendix B): answers to some common questions587

• Limitations (Appendix C): more thorough list and discussion of SkillGen limitations588

• Analysis on Challenging Data Generation Scenarios (Appendix D): more results and589

discussion on challenging data generation scenarios addressed by SkillGen590

• Dataset Scaling Law Analysis (Appendix E): full set of results for generating larger591

datasets with SkillGen592

• Data Generation Success Rates (Appendix F): data generation success rates for SkillGen593

datasets594

• Data Generation Details (Appendix G): more details on how SkillGen generates data595

• Policy Learning Details (Appendix H): more details on how policies were trained from596

SkillGen datasets597

• Planning Details (Appendix I): more details on the planners used in this work598

• Tasks and Task Variants (Appendix J): detailed descriptions of tasks and task variants599

used to evaluate SkillGen600

• Sim-to-Real Experiment (Appendix K): details on sim-to-real experiments601

• Results with Conventional Teleoperation Source Demonstrations (Appendix L): Skill-602

Gen performance on conventional teleoperation source demos603

• Ablations (Appendix M): ablations of certain data generation and policy learning compo-604

nents605

• Robot Transfer (Appendix N): SkillGen applied to generate data and train policies across606

robot arms607

• Algorithm Pseudocode (Appendix O): pseudocode for SkillGen data generation and pol-608

icy deployment609

• Comparison with HITL-TAMP [13] (Appendix P): more discussion on how SkillGen610

compares with HITL-TAMP611

• Discussion on HSP-Reg Results (Appendix Q): more discussion on the gap between HSP-612

Reg and other methods and additional promising results613

• Skill Segments and Annotations (Appendix R): more commentary on skill segments and614

how they can be annotated in the source data615
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