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A Details on Modelling

A.1 Details of Theoretical Modelling

In Sec 4.1 of main paper, we have proposed a statistical model for the sensitive attribute classifier
output which is then used in CLEAM to rectify current measurement method. In this section, we give
more details of this model which is not included in the main paper due to lack of space.

Recall that in main paper, we mentioned that there are four possible mutually exclusive outputs c for
each sample with corresponding probability vector p:

c =

c0|0c1|0
c1|1
c0|1

 ; p =

p
∗
0α0

p∗0α
′
0

p∗1α1

p∗1α
′
1


where ci|j denotes the event of assigning label i to a sample with GT label j. Then, we mentioned
that the count for each ouptut can be modeled as a multinomial distribution, Nc ∼ Multi(n,p).
Note that Nc = [Nc0|0 , Nc1|0 , Nc1|1 , Nc0|1 ]

T is the random vector of counts for individual outputs of
c. Nci|j is the random variable of the count for event ci|j after classifying n generated images. First,
we consider following assumptions:

1. Classifiers are reasonably accurate. We state that, given the advancement in classifiers
architecture, and the assumption that the sensitive attribute classifier is trained with proper
training procedures, it is a reasonable assumption that it achieves reasonable accuracy and
hence, α0 ̸= 0 and α1 ̸= 0. Similarly, we assume that it is highly unlikely to have a perfect
classifier and as such α′

0 = 1− α0 ̸= 0 and α′
1 = 1− α1 ̸= 0.

2. Generators are not completely biased. Given that a generator is trained on a reliable
dataset with the availability of all classes of a given sensitive attribute, coupled with the
advancement in generator’s architecture, it is a fair assumption that the generator would
learn some representation of each class in the sensitive attribute and not be completely
biased, as such p∗0 ̸= 0 and p∗1 ̸= 0.

Based on this assumptions, p is not near the boundary of the parameter space, and we can conclude
that 0 < p < 1. Therefore, we can approximate the multinomial distribution as a Gaussian,
Nc ∼ N (µ,Σ), with µ = np and Σ = nM [1], where
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and therefore:

µ =
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With this, we note that the marginal distribution of this multivariate Gaussian distribution gives us a
univariate (one-dimensional) Gaussian distribution for the count of each output in cT . For example,
the distribution of the count for event c0|0, denoted by Nc0|0 , can be modeled as Nc0|0 ∼ N (µ1,Σ11).
Then, we find the total rate of data points labeled as class i when labeling n generated images using
the normalized sum of the related random variables i.e. p̂i = 1

n

∑
j Nci|j . More specifically:

p̂0 =
1

n
(Nc0|0 +Nc0|1) ∼ N (µ̃p̂0
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p̂1 =
1

n
(Nc1|0 +Nc1|1) ∼ N (µ̃p̂1
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Remark: In Sec 4.1 of the main paper, considering the probability tree diagram in Fig.1(b) (main
paper), we proposed a distribution for the possible events of classification (ci|j), and used it to compute
distribution of each event, and finally the distribution of the output of the sensitive attribute classifier
(p̂0, and p̂1). Here, we provide more information on the necessary assumptions and the expanded
forms of the equations. In the following Sec. A.2, we will similarly provide more information on
proposed CLEAM, presented in Sec. 4.2 of the main paper, which utilizes this statistical model to
mitigate the sensitive attribute classifier’s error.

A.2 Additional Details on CLEAM Algorithm

MLE value of Population Mean. In this section, first, we discuss the maximum likelihood estimate
(MLE) of the population mean for a Gaussian distribution. Given a Gaussian distribution with the
population mean µ̃p̂0 and standard deviation σ̃p̂0 , we can first find the joint probability distribution
from the product of each probabilistic outcome (we introduce the natural log as a monotonic function,
for ease of calculation). Then, to find the MLE of µ̃p̂0

, we take the partial derivative of this joint
distribution w.r.t. µ̃p̂0

, and solve for its maximum value. This maximum value is equal to the sample
mean, µ̈p̂0

, as detailed below:

∂

∂µ̃p̂0

s∏
i=1

ln(
1

σ̃p̂0

√
2π

e

−(p̂i0−µ̃p̂0
)2

2σ̃2
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1

σ̃2
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(p̂i0 − µ̃p̂0) = 0

µ̃p̂0 =
1

s

s∑
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p̂i0 = µ̈p̂0

Point Estimate of CLEAM. From this, given that s is sufficiently large, we utilize the sample
mean as the maximum likelihood approximate of the population mean. As the population mean was
modeled in Sec. A.1, we can equate the sample mean to the expanded theoretical model:

µ̈p̂0 = µ̃p̂0 = p∗0α0 + (1− p∗0)α
′
1

Now given that the classifier’s accuracy α = [α0, α1] and the sample mean µ̈p̂0
can be measured, we

are able to solve for the maximum likelihood point estimate of p∗0, which we denoted with µCLEAM
as follows:

µCLEAM =
µ̈p̂0 − α′

1

α0 − α′
1

=
µ̈p̂0 − 1 + α1

α0 − 1 + α1

Note that we compute µCLEAM w.r.t. p∗0 i.e. µCLEAM(p∗0) through-out this paper for ease of dis-
cussion, however as p∗1 = 1 − p∗0, a similar µCLEAM w.r.t. p∗1 i.e. µCLEAM(p∗1) can be found with
µCLEAM(p∗1) = 1− µCLEAM(p∗0).

Interval Estimate of CLEAM. We acknowledge that there exist other statistically probable solutions
for p∗ that could output the s p̂ samples, other than the Maximum likelihood point estimate of p∗.
We thus propose the following approximation for the 95% confidence interval of p∗. Recall the
notations µ̈p̂0 and σ̈p̂0 are the sample mean and standard deviation respectively:

µ̈p̂0
=

1

s

s∑
i

p̂i0 ; σ̈p̂0
=

√∑s
i=1(p̂

i
0 − µ̈p̂0

)2

s− 1

Since p̂ follows a Gaussian distribution, we can propose the following equation:

Pr(−z δ
2
≤ µ̈p̂0

− µ̃p̂0

σ̈p̂0√
s

≤ z δ
2
) = 1− δ
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Solving for µ̃p̂, we get:

Pr(µ̈p̂0
+ z δ

2
(
σ̈p̂0√
s
) ≥ µ̃p̂0

≥ µ̈p̂0
− zα

2

σ̈p̂0√
s
) = 1− δ

Then, given that µ̃p̂ = p∗0α0 + p∗1α
′
1 = p∗0(α0 − α′

1) + α′
1 we formulate the following:

Pr(
µ̈p̂0

+ z δ
2
(
σ̈p̂0√

s
)− α′

1

α0 − α′
1

≥ p∗0 ≥
µ̈p̂0

− zα
2

σ̈p̂0√
s
− α′

1

α0 − α′
1

) = 1− δ (1)

As such when δ = 0.05, we can determine that the 95% approximated confidence interval of p∗0 is :

ρCLEAM(p∗0) = [L(p∗0),U(p∗0)] = [
µ̈p̂0

− 1.96(
σ̈p̂0√

s
)− α′

1

α0 − α′
1

,
µ̈p̂0 + 1.96

σ̈p̂0√
s
− α′

1

α0 − α′
1

]

Extending the point estimate to a multiple label setup. We remark that in current literature,
fairness of generative models has been studied for binary sensitive attributes mainly due to the lack
of availability of a large labeled dataset needed for systematic experimentation. As a result, CLEAM
similarly focuses on binary SA to address a common flaw in the evaluation process of the many
proposed State-of-the-Art methods.

Assuming that the constraint of the dataset is addressed, our same CLEAM approach can be easily
extended to a multi-label setup. For example, given a 3 label sensitive attribute where p∗j is the
probability of generating a sample with label j and αi|j denotes the probability (“accuracy”) of
the SA classifier in classifying a sample with GT label j as i for i,j ∈ {0, 1, 2}. Fig. 1 shows our
statistical model for this setting. We can then similarly solve for the point estimate by solving the
matrix: α0|0 α0|1 α0|2

α1|0 α1|1 α1|2
α2|0 α2|1 α2|2

[
p∗0
p∗1
p∗2

]
=

[
µ̈p̂0

µ̈p̂1

µ̈p̂2

]
(2)

 
 
 
 

 
 
Fig A: A revision of Fig 2 to align with the seeds used in Fig.1, for improved clarity. 
 
 
 
 
 

 
 
Fig B: Illustration of the theoretical extension to multi-sensitive features; specifically 3 labels per 
SA 
 
 

Figure 1: Our statistical model for fairness measurement when considering a multi-label SA. For
illustration purposes, we utilize 3 labels for a given SA. Note that, our same approach can be applied
to other multi-label settings. This statistical model accounts for inaccuracies in the SA classifier
and is the base of our proposed CLEAM (see Sec. 4.1). Here, p∗j is the ground truth probability of a
generator outputting a sample with label j and αi|j denotes the probability (“accuracy”) of the SA
classifier classifying a sample with GT label j as i for i, j ∈ {0, 1, 2}.

A.3 Details on Fairness Metric

Fairness in generative models is defined as Equal Representation meaning that the generator is sup-
posed to generate an equal number of samples for each element of an attribute, e.g., an equal number
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of generated Male and Female samples when the sensitive attribute is Gender. Therefore, the
expected distribution for a fair generator is usually a uniform distribution denoted by p̄. Considering
this, the fairness discrepancy (FD) metric [2] measures the L2 norm between p̄ and the estimated
class probability of the generator by each measurement method, i.e. µ†, where † ∈{Base, CLEAM,
Div}, as follows:

f = |p̄− µ†|2 (3)
Note that for a fair generator the fairness discrepancy f would be zero, which also indicates zero bias.

A.4 Details of Significance of the Baseline Errors

In the main manuscript (Sec. 3 of the main paper), we discussed that the relative improvement of
the previous fair generative models could be small, e.g. Teo et al. [3] and Um et al. [4] report a
relative improvement in the fairness of 0.32% and 0.75%, compared to imp-weighting [2], and they
fall within the range of our experiment’s smallest relative error, eµBase

=4.98%. Here, we provide
more detail on how we calculate the relative improvements in the main manuscript. Specifically, we
calculate the relative change of the proposed work against the previous work with the following:

Relaitve Improvement =
|(p̂0 of previous work)− (p̂0 of proposed work)|

(p̂0 of previous work)
(4)

Notice that this is similar to eµBase
of Eqn. 1 in the main paper. For example, Teo et al. (Tab. 1

90_10 and perc=0.1 settings) [3] reports that fairTL measures a f = 0.105 which is compared against
the previous work’s (Choi et al. [2]) f = 0.107. Utilizing Eqn. 3, we find that this is equivalent to
p∗0 = 0.4257 or 0.5743, and 0.4243 or 0.5757, respectively. We remark that here we report two values
per f , as the FD metric is a symmetric metric. Then applying Eqn. 4, and taking the maximum of
the values, we find the relative improvement to be 0.32%, at best. Note that as we mentioned in the
main paper for this setup the baseline measurement framework results in 4.98% error rate (with the
best performing sensitive attribute classifier), meaning that it may not be reliable for gauging the
improvement.
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B Deeper Analysis on Error in Fairness Measurement

In the main paper Sec.3, we discussed that there could be considerable error in the fairness measure-
ment, p̂, even though the sensitive attribute classifier’s accuracy is considerably high. In addition, we
further develop on this and discuss two additional factors that could result in a variation of errors. We
remark that in the main manuscript, we report diversity only using VGG-16, as specified by Keswani
et al. [5]. Further discussion in Sec. D.2

Accuracy of Individual Classes (α = {α0, α1}) Impacts the Degree of Error. Notice that in some
cases even though the sensitive attribute classifier may have a very similar average accuracy, different
degrees of errors could exist for the two different classifiers e.g. R18 and R34 in Tab. 1. This is
because the fairness measurement error is not only dependent on the average accuracy but on the
individual class accuracy i.e. α0 and α1. More specifically, given that there is a larger error in α0 for
R34 and the bias exists in p∗0 = 0.643, this results in a compounded effect and hence a larger error of
eµBase

=11.98% is observed as compared to R18 eµBase
=6.84%.

Uniform Inaccuracies at Unbiased Test-Point (p∗0 = p∗1 =0.5). In our extended experiments in Sec.
D.3 for a Pseudo-generator, we discuss that for some sensitive attribute classifiers e.g. ResNet-18
for Gender and BlackHair, the Baseline performs better than CLEAM at the unbiased test-point
i.e. p∗0 = 0.5. This is just due to the Gender and Blackhair setups having a specific combination
of (i) the Pseudo-Generator producing almost perfectly unbiased data with p∗ = [0.5, 0.5], (ii)
sensitive attribute classifier with almost perfectly uniform inaccuracies α′

0 ≈ α′
1, thereby leading to

uniform misclassification and hence the false impression of better accuracy by the baseline method, at
p∗ = [0.5, 0.5] (See Tab. 2 for extracted table) . To further illustrate this, notice how the ResNet-18
trained on Cat/Dog did not demonstrate this better performance in the Baseline due to its non-
uniform α. Nevertheless, we note this situation whereby the Baseline outperform CLEAM is specific
to the test-point p∗0 = 0.5 and does not impact the overall effectiveness of CLEAM. Furthermore,
CLEAM still demonstrates outstanding results with low error for both the PE and IE at p∗0 = 0.5.

To further demonstrate these effects, we repeat this same experiment, but with sensitive attributes
Young and Attractive from the CelebA dataset. As seen in Tab. 3, both Young or Attractive have
similar average accuracy, αAvg = α0+α1

2 of 0.801 and 0.794 but a different skewα = |α0 − α1| of
0.103 and 0.027. As such, we are able to investigate the effects that skewα has on both CLEAM and
Baseline. We did not include Diversity in this study, due to its poor performance on harder sensitive
attribute, as discussed in Sec. D.2. From our results in Tab. 3, we observe that as the skewα

increases from sensitive attribute Attractive to Young, the error becomes much more significant
in the baseline method. The average eµBase

increases from 12.69% to 17.63%. Furthermore, unlike
Gender and Blackhair, who have relatively negligible skew, Young and Attractive observes a
significantly larger error at p∗ = [0.5, 0.5].

Table 1: Extracted from Tab. 11 for ease of viewing. Comparing the point estimates and interval
estimates of Baseline [2] and our proposed CLEAM measurement framework in estimating p∗

of the GenData datasets sampled from (A) StyleGAN2 [6]. The p∗0 value for each GAN with a
certain attribute is determined by manually hand-labeling the generated data. We utilize two different
classifiers Resnet-18/34 (R18, R34)[7] with different accuracy α to obtain p̂ by classifying samples
w.r.t. BlackHair. For calculating each p̂, we utilize n = 400 samples and evaluate for a batch size of
s = 30. We repeat this for 5 experimental runs and report the mean error rate, per Eqn. 1 of the main
paper.

Point Estimate Interval Estimate
Classifier α = {α0, α1} Avg. α Baseline Diversity CLEAM (Ours) Baseline Diversity CLEAM (Ours)

µBase eµ(↓) µDiv eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρDiv eρ(↓) ρCLEAM eρ(↓)
(A) StyleGAN2

BlackHair with GT class probability p∗
0=0.643

R18 {0.869, 0.885} 0.88 0.599 6.84% — — 0.641 0.31% [0.591, 0.607] 8.08% — — [0.631, 0.652] 1.40%
R34 {0.834, 0.916} 0.88 0.566 11.98% — — 0.644 0.16% [0.561, 0.572] 12.75% — — [0.637, 0.651] 1.24%
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Table 2: Extracted from Tab. 11 for ease of viewing. Comparing the point estimates and interval
estimate of Baseline [2], Diversity [5] and proposed CLEAM measurement frameworks in estimating
different p∗ of a pseudo-generator, based on the CelebA [8] and AFHQ [9] dataset. The p̂ is
computed with a ResNet-18 sensitive attribute classifier and the error rate is reported using Eqn. 1 of
the main paper. We repeat this for Gender, BlackHair and Cat/Dog attributes.

Point Estimate Interval Estimate
GT Baseline Diversity CLEAM (Ours) Baseline Diversity CLEAM (Ours)

µBase eµ(↓) µDiv eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρDiv eρ(↓) ρCLEAM eρ(↓)
α=[0.976,0.979], Gender (CelebA)

p∗0=0.5 0.501 0.20% 0.481 3.80% 0.502 0.40% [0.495 , 0.507 ] 1.40% [0.473 , 0.490 ] 5.40% [0.497, 0.508] 1.60%

α=[0.881,0.887], BlackHair (CelebA)

p∗0=0.5 0.500 0.00% 0.521 4.20% 0.504 0.8% [ 0.495 , 0.505 ] 1.00% [0.506 , 0.536 ] 7.20% [0.497, 0.511] 2.20%

α=[0.953,0.0.990], Cat/Dog (AFHQ)

p∗0=0.5 0.486 2.80% 0.469 6.20% 0.505 1.00% [ 0.480 , 0.493 ] 4.00% [ 0.458, 0.480 ] 8.40% [ 0.498 , 0.511 ] 2.20%

Table 3: Duplicate of Tab. 12 for ease of viewing. Comparing point estimate and interval estimate
of Baseline [2], and proposed CLEAM measurement framework on a pseudo-generator with sensitive
attribute {Young,Attractive}

Point Estimate Interval Estimate
GT Baseline Diversity CLEAM (Ours) Baseline Diversity CLEAM (Ours)

µBase eµ(↓) µDiv eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρDiv eρ(↓) ρCLEAM eρ(↓)
α=[0.749,0.852], Young

p∗0 = 0.9 0.690 23.33% — — 0.905 0.56% [0.684,0.695] 24.00% — — [0.890,0.920] 2.22%
p∗0 = 0.8 0.630 21.25% — — 0.804 0.50% [0.625,0.635] 21.88% — — [0.795,0.813] 1.63%
p∗0 = 0.7 0.570 18.57% — — 0.698 0.29% [0.565,0.575] 19.29% — — [0.690,0.706] 1.43%
p∗0 = 0.6 0.510 15.00% — — 0.595 0.83% [0.505,0.515] 15.83% — — [0.590,0.600] 1.67%
p∗0 = 0.5 0.450 10.0% — — 0.506 1.20% [0.445,0.455] 11.00% — — [0.502,0.510] 2.00%

Avg Error 17.63% —% 0.68% 18.40% —% 1.79%

α=[0.780,0.807], Attractive

p∗0 = 0.9 0.730 18.89% — — 0.908 0.89% [0.724,0.736] 19.56% — — [0.900,0.916] 1.78%
p∗0 = 0.8 0.670 16.25% — — 0.804 0.50% [0.665,0.675] 16.88% — — [0.795,0.813] 1.63%
p∗0 = 0.7 0.600 14.29% — — 0.696 0.57% [0.594,0.606] 15.14% — — [0.690,0.712] 1.71%
p∗0 = 0.6 0.540 10.00% — — 0.592 1.33% [0.534,0.546] 11.00% — — [0.580,0.604] 3.33%
p∗0 = 0.5 0.480 4.00% — — 0.493 1.40% [0.475,0.485] 5.00% — — [0.487,0.499] 2.60%

Avg Error 12.69% —% 0.94% 13.52% —% 2.22%
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C Validating Statistical Model for Classifier Output

C.1 Validation of Sample-Based Estimate vs Model-Based Estimate

As described in the main paper, we utilize the sample-based estimate, µ̈p̂0
, σ̈2

p̂0
as an approximate for

the model-based estimate µ̃p̂0
, σ̃2

p̂0
. As discussed in Sec. A.2, µ̈p̂0

allows us to find the maximum
likelihood approximate of p∗.

To validate this approximation, we utilize a ResNet-18 trained on Gender and BlackHair to
compute p̂. Then with the samples from the pseudo-generators with different p∗ (following Sec.
D.3) we computed p̂ with a batch-size of s = 30 and sample size n = 400. Finally, we calculate
the sample-based estimates as given in Eqn. 6, 7 of the main paper. As the GT p∗ and classifier’s
accuracy α is known, we also calculate the model-based estimates as given in Eqn. 4, 5 of the main
manuscript and compare it against the sample-based estimates.

Our results in Tab. 4 shows that both the sample and theoretical means and standard deviations are
close approximate to one another. Thus, we can utilise the sample statistics as a close approximation
in our proposed method, CLEAM. Additional results for different values of batch-sizes (s) and
sample-sizes (n) are tabulated in Tab. 5, 6 and 7. Notice that a reduction in s and n values contributed
to increased errors between the sample-based and model-based estimates. While making s very large
(s = 200), results in the sample based estimate almost a perfectly approximating the model based
estimates.

Table 4: Comparing sample-based estimates (µ̈p̂0 , σ̈p̂0) against model-based estimates (µ̃p̂0 ,
σ̃p̂0 ). The results show that sample-based estimates are close to model-based estimates. Furthermore,
note the discrepancy between p∗0 and µ̈p̂0

, and that between p∗0 and µ̃p̂0
, highlighting the issue of

using p̂0 directly to estimate p∗0 and the need to compensate for the sensitive attribute classifier error
as we discussed. We utilize a s = 30 and n = 400.

GT Sampled-based estimates Model-based estimates

µ̈p̂0

√
σ̈2
p̂0

µ̃p̂0

√
σ̃2
p̂0

Gender, α=[0.976,0.979]

p∗0 = 0.9 0.881 0.0101 0.881 0.0106
p∗0 = 0.8 0.781 0.0133 0.785 0.0135
p∗0 = 0.7 0.692 0.0149 0.690 0.0152
p∗0 = 0.6 0.590 0.0165 0.594 0.0162
p∗0 = 0.5 0.503 0.0164 0.499 0.0164

α=[0.881,0.887], Black-Hair

p∗0 = 0.9 0.802 0.0130 0.804 0.0139
p∗0 = 0.8 0.723 0.0151 0.727 0.0162
p∗0 = 0.7 0.653 0.0169 0.650 0.0177
p∗0 = 0.6 0.580 0.0180 0.574 0.0186
p∗0 = 0.5 0.502 0.0180 0.497 0.0189
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Table 5: We repeat the same experiment as Tab.4 with s = 20 and n = 400 samples.
GT Sampled-based estimates Model-based estimates

µ̈p̂0

√
σ̈2
p̂0

µ̃p̂0

√
σ̃2
p̂0

Gender, α=[0.976,0.979]

p∗0 = 0.9 0.855 0.0201 0.881 0.0106
p∗0 = 0.8 0.774 0.0211 0.785 0.0135
p∗0 = 0.7 0.672 0.0219 0.690 0.0152
p∗0 = 0.6 0.580 0.0181 0.594 0.0162
p∗0 = 0.5 0.510 0.0230 0.499 0.0164

α=[0.881,0.887], Black-Hair

p∗0 = 0.9 0.768 0.180 0.804 0.0139
p∗0 = 0.8 0.712 0.210 0.727 0.0162
p∗0 = 0.7 0.658 0.190 0.650 0.0177
p∗0 = 0.6 0.554 0.230 0.574 0.0186
p∗0 = 0.5 0.508 0.242 0.497 0.0189

Table 6: We repeat the same experiment as per Tab.4 with s = 30 and n = 200 samples.
GT Sampled-based estimates Model-based estimates

µ̈p̂0

√
σ̈2
p̂0

µ̃p̂0

√
σ̃2
p̂0

Gender, α=[0.976,0.979]

p∗0 = 0.9 0.860 0.0232 0.881 0.0149
p∗0 = 0.8 0.780 0.0286 0.785 0.0191
p∗0 = 0.7 0.710 0.0294 0.690 0.0215
p∗0 = 0.6 0.578 0.0380 0.594 0.0228
p∗0 = 0.5 0.520 0.0321 0.499 0.0233

α=[0.881,0.887], Black-Hair

p∗0 = 0.9 0.742 0.0312 0.804 0.0197
p∗0 = 0.8 0.740 0.0332 0.727 0.0229
p∗0 = 0.7 0.610 0.0291 0.650 0.0250
p∗0 = 0.6 0.582 0.350 0.574 0.0262
p∗0 = 0.5 0.542 0.388 0.497 0.0267

Table 7: We repeat the same experiment as per Tab.4 with s = 200 and n = 400 samples.
GT Sampled-based estimates Model-based estimates

µ̈p̂0

√
σ̈2
p̂0

µ̃p̂0

√
σ̃2
p̂0

Gender, α=[0.976,0.979]

p∗0 = 0.9 0.881 0.0104 0.881 0.0106
p∗0 = 0.8 0.784 0.0133 0.785 0.0135
p∗0 = 0.7 0.690 0.0153 0.690 0.0152
p∗0 = 0.6 0.594 0.0160 0.594 0.0162
p∗0 = 0.5 0.500 0.0164 0.499 0.0164

α=[0.881,0.887], Black-Hair

p∗0 = 0.9 0.804 0.0137 0.804 0.0139
p∗0 = 0.8 0.726 0.0160 0.727 0.0162
p∗0 = 0.7 0.650 0.0179 0.650 0.0177
p∗0 = 0.6 0.573 0.0185 0.574 0.0186
p∗0 = 0.5 0.498 0.0191 0.497 0.0189
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C.2 Goodness-of-Fit Test: p̂ from the Real GANs with Our Theoretical Model

In order to make sure that our proposed theoretical model in Eqn. 4 and Eqn. 5 of the main paper, is
also a good representation of the p̂ distribution when using a generator, we perform a goodness of fit
test between the proposed model for the distribution of p̂ and sample data generated by a GAN.

Table 8: Validating goodness-of-fit of the proposed theoretical model against generated samples. A
KS-test [10] is conducted between the samples distribution of p̂ - measured from GenData with a
ResNet-18, and the theoretical distribution of p̂. We utilize s=30, n=400 with Dcrit=0.24. Since
η < Dcrit, all of the p̂ are statistically similar to the theoretical Gaussian at 95% confidence. This is
further observed by the sample-based mean (µ̈) ≈ model-based mean (µ̃).

Model Type Sensitive Attribute η µ̃ µ̈

StyleGAN2 Gender 0.1048 0.610 0.609
Blackhair 0.1065 0.601 0.601

StyleSwin Gender 0.1509 0.628 0.629
Blackhair 0.1079 0.619 0.614

To do this, we first obtain s = 30 values of p̂ from framework shown in Fig. 1 of the main paper, and
use StyleGAN2 [6] and StyleSwin [11] as the generative model. Then using ResNet-18 with known
α and GAN’s GT p∗, as discussed in Sec. 4.1 of the main paper, we form the theoretical model’s
Gaussian distribution, N (µ̃p̂0

, σ̃2
p̂0
).

Now with both our model distribution and the GAN samples, we utilise the Kolmogorov-Smirnov
goodness of fit test (K-S test) to determine if the samples distribution is statistically similar to
the proposed Gaussian model. We thus propose the following hypothesis test for the samples
p̂ij , i ∈ {1, · · · , s}:

H0 : the samples p̂ij belong to the modelled distribution.

H1 : at least one of the samples p̂ij does not match the modelled distribution.

The K-S test then measures a D-statistic (η) and compares it against a Dcrit for a given s. As we
use s = 30, and a significance level δ = 0.05 in our setup, we have Dcrit = 0.24. As seen from
Tab. 8, all of the measured η values are below Dcrit, thus we cannot reject the null hypothesis at
a 95% confidence with the K-S test. Therefore, we conclude that the distribution of the obtained
samples from the framework (by GANs as generator) are statistically similar to the proposed Gaussian
distribution. As a result, we can utilise CLEAM to approximate the p∗ range in the presence of a real
GAN as the generator.

We further perform a Quantile-Quantile(QQ) analysis to provide a more visual representation. In
particular, we plot the Quantile-Quantile(QQ) plot between the p̂ samples (produced for the data
generated by the GAN) and proposed model. As seen in Fig. 2, the p̂ samples from GAN correlate
tightly with the standardised line (in red), a line indicating a perfect correlation between theoretical
and sample quantiles. This analysis supports our claim that the p̂ samples from a real generator
(GAN) follow the distribution estimated by the proposed model.
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(a) StyleGAN2, Gender. (b) StyleSwin2, Gender

(c) StyleGAN2, Blackhair (d) StyleSwin, BlackHair

Figure 2: Quartile-Quartile(QQ) plot between s = 30 p̂ samples calculated for StyleGAN2 [6] and
StyleSwin [11] generators and proposed theoretical model for p̂
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D Additional Experiments

D.1 Experimental Results with Standard Deviation

In the main manuscript, we did not include the error bars of our experiments due to space constraints.
Hence, in this section, we provide the full tables for Tab. 1 and 2 of the main manuscript with
the standard deviation over 5 runs. Note that generally, the standard deviation at each test point is
relatively small and hence can be considered as negligible. This is likely due to the large s and n
utilized. As a result, we can utilize the mean results (as seen in the main manuscript) to compare
CLEAM against Diversity and the Baseline.

Table 9: Comparing the point estimates and interval estimates of Baseline [2], Diversity [5] and our
proposed CLEAM measurement framework in estimating p∗ of the GenData datasets sampled from
(A) StyleGAN2 [6] and (B) StyleSwin [11]. The p∗0 value for each GAN with a certain sensitive
attribute is determined by manually hand-labeling the generated data. We utilize four different
sensitive attribute classifier Resnet-18/34 (R18, R34)[7], MobileNetv2 (MN2)[12] and VGG-16
(V16)[13], with different accuracy α, to classify attributes Gender and BlackHair, to obtain p̂.
Each p̂ utilizes n = 400 samples and is evaluated for a batch size of s = 30. We repeat this for 5
experimental runs and report the mean error rate, per Eqn. 1 of the main manuscript.

Point Estimate Interval Estimate
Baseline Diversity CLEAM (Ours) Baseline Diversity CLEAM (Ours)

µBase eµ(↓) µDiv eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρDiv eρ(↓) ρCLEAM eρ(↓)
(A) StyleGAN2

Gender with GT class probability p∗
0=0.642

R18 0.610 ± 0.004 4.98% — — 0.638 ± 0.006 0.62% [0.602± 0.004, 0.618± 0.004] 6.23% — — [0.629 ± 0.006, 0.646± 0.006] 2.02%
R34 0.596± 0.003 7.17% — — 0.634± 0.002 1.25% [0.589± 0.003, 0.599± 0.003] 8.26% — — [0.628± 0.002, 0.638± 0.002] 2.18%
MN2 0.607 ± 0.003 5.45% — — 0.637 ± 0.002 0.78% [0.602 ± 0.003, 0.612 ± 0.003] 6.23% — — [0.632 ± 0.002, 0.643 ± 0.002] 1.56%
V16 0.532 ± 0.007 17.13% 0.550 ± 0.011 14.3% 0.636 ± 0.007 0.93% [0.526 ± 0.007, 0.538 ± 0.007] 18.06% [0.536 ± 0.011 , 0.564 ± 0.011] 16.51% [0.628 ± 0.007, 0.644 ± 0.007] 2.18%

Avg Error 8.68% 14.30% 0.90% 9.70% 16.51% 1.99%

BlackHair with GT class probability p∗
0=0.643

R18 0.599 ± 0.006 6.84% — — 0.641 ± 0.004 0.31% [0.591 ± 0.006, 0.607 ± 0.005] 8.08% — — [0.631 ± 0.004, 0.652 ± 0.003] 1.40%
R34 0.566 ± 0.007 11.98% — — 0.644 ± 0.008 0.16% [0.561 ± 0.007, 0.572 ± 0.006] 12.75% — — [0.637 ± 0.009, 0.651 ± 0.008] 1.24%
MN2 0.579 ± 0.007 9.95% — — 0.639 ± 0.007 0.62% [0.574 ± 0.008, 0.584 ± 0.008] 10.73% — — [0.632 ± 0.007, 0.647 ± 0.007] 1.71%
V16 0.603 ± 0.004 6.22% 0.582 ± 0.011 9.49% 0.640 ± 0.005 0.47% [0.597 ± 0.004, 0.608 ± 0.003] 7.15% [0.568 ± 0.010, 0.596 ± 0.011] 11.66% [0.632 ± 0.004, 0.648 ± 0.005] 1.71%

Avg Error 8.75% 9.49% 0.39% 9.68% 11.66% 1.52%

(B) StyleSwin
Gender with GT class probability p∗

0=0.656
R18 0.620 ± 0.005 5.49% — — 0.648 ± 0.004 1.22% [0.612 ± 0.004,0.629 ± 0.005] 6.70% — — [0.639 ± 0.005,0.658 ± 0.005] 2.59%
R34 0.610 ± 0.002 7.01% — — 0.649 ± 0.005 1.07% [0.605 ± 0.003,0.615 ± 0.003] 7.77% — — [0.643 ± 0.006,0.654 ± 0.006] 1.98%
MN2 0.623 ± 0.008 5.03% — — 0.655 ± 0.005 0.15% [0.618 ± 0.007,0.629± 0.007] 5.79% — — [0.649 ± 0.006,0.661 ± 0.006] 1.07%
V16 0.555 ± 0.004 15.39% 0.562 ± 0.015 14.33% 0.668 ± 0.006 1.83% [0.549 ± 0.004,0.560 ± 0.004] 16.31% [0.548 ± 0.014,0.576 ± 0.014] 16.46% [0.660 ± 0.007,0.675 ± 0.007] 2.90%

Avg Error 8.23% 14.33% 1.07% 9.14% 16.46% 2.14%

BlackHair with GT class probability p∗
0=0.668

R18 0.612 ± 0.005 8.38% — — 0.659 ± 0.006 1.35% [0.605 ± 0.005,0.620 ± 0.006] 9.43% — — [0.649 ± 0.004,0.670 ± 0.004] 2.84%
R34 0.581 ± 0.006 13.02% — — 0.662 ± 0.006 0.90% [0.576 ± 0.005,0.586 ± 0.006] 13.77% — — [0.656 ± 0.005,0.669 ± 0.005] 1.80%
MN2 0.596 ± 0.006 10.78% — — 0.659 ± 0.005 1.35% [0.591 ± 0.006,0.600 ± 0.007] 11.50% — — [0.652 ± 0.005,0.666± 0.005] 2.40%
V16 0.625 ± 0.006 6.44% 0.608 ± 0.014 8.98% 0.677 ± 0.005 1.35% [0.620 ± 0.005,0.630 ± 0.006] 7.19% [0.590 ± 0.012,0.626 ± 0.013] 11.68% [0.670 ± 0.005,0.684 ± 0.006] 2.40%

Avg Error 9.66% 8.98% 1.24% 10.47% 11.68% 2.36%

Table 10: Comparing the point estimates and interval estimates of Baseline and CLEAM in estimating
the p∗ of the Stable Diffusion Model [14] with the GenData-SDM dataset. We use prompt input
starting with "A photo of with the face of" and ending with synonymous (Gender neutral) prompts.
We utilized CLIP as the sensitive attribute classifier for Gender, to obtain p̂.

Point Estimate Interval Estimate
Prompt GT Baseline CLEAM (Ours) Baseline CLEAM (Ours)

µBase eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρCLEAM eρ(↓)
α=[0.998,0.975], Avg. α=0.987, CLIP –Gender

"A photo with the face of an individual" 0.186 0.203 ± 0.011 9.14% 0.187 ± 0.11 0.05% [ 0.198 ± 0.10 , 0.208 ± 0.10 ] 11.83% [ 0.182 ± 0.10 , 0.192 ± 0.10 ] 3.23%
"A photo with the face of a human being" 0.262 0.277 ± 0.10 5.73% 0.263 ± 0.10 0.38% [ 0.270 ± 0.10 , 0.285 ± 0.10 ] 8.78% [ 0.255 ± 0.10 , 0.271 ± 0.10 ] 3.44%

"A photo with the face of one person" 0.226 0.241 ± 0.009 6.63% 0.230 ± 0.08 1.77% [ 0.232 ± 0.10 , 0.251 ± 0.10 ] 11.06% [ 0.220 ± 0.09 , 0.239 ± 0.09 ] 5.75%
"A photo with the face of a person" 0.548 0.556 ± 0.12 1.49% 0.548 ± 0.11 0.00% [ 0.545 ± 0.11 , 0.566 ± 0.11 ] 3.28% [ 0.537 ± 0.11 , 0.558 ± 0.11 ] 2.01%

Average Error 5.75% 0.44% 8.74% 3.61%
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D.2 Experimental Setup for Diversity[5]

In this section, we describe our experimental setup for Diversity [5], as utilized in the main paper.
Recall that as discussed by Kewsani et al. [5] a VGG-16 [13] model pre-trained on ImageNet [15] is
utilized as a feature extractor. Then, this feature extractor is applied to both the unknown (generator’s
data) and the controlled dataset. Finally, the unknown sample’s features are compared against the
controlled one’s via a similarity algorithm to compute diversity, δ.

From our results in Fig. 3a (LHS) based on the pseudo-generator’s setup (discussed in more details in
Sec. D.3), we recognize that the original implementation with VGG-16 trained on ImageNet works
well on the Gender sensitive attribute. This is seen by the close approximation made by the proxy
diversity score when compared against the GT diversity score evaluated with Eqn. 5, as per [5].

GT Diversity = p∗0 − p∗1 (5)

However, when evaluated on the harder BlackHair sensitive attribute, our results in Fig. 3a (RHS)
observed significant error between the GT Diversity scores and the proxy Diversity scores. This error
was especially prevalent in the larger biases e.g. p∗0 = 0.9. We theorized that this was due to the
differences between the domains of the feature extractor and the generated/controlled images i.e.
ImageNet versus CelebA/CelebA-HQ.

To verify this, we fine-tune the VGG-16 model on the CelebA dataset with the respective sensitive
attribute. Then we removed the last fully connected layer of the classifier model, and utilise the
4096 feature vector for the diversity measurement, as per [5]. Our results in Fig. 3b demonstrate
significant improvement on both Gender and BlackHair, based on the new improved VGG-16
model implementation. This thereby verifies our intuition that there exists a mismatch of domains in
the VGG-16 pretrained on ImageNet when utilized with CelebA samples.

However, upon further experimentation, we recognize certain limitations still exist in the Diversity
measure when used on more ambiguous and harder sensitive attribute e.g. Young and Attractive.
Similar to before, we fine-tuned the sensitive attribute classifier (feature extractor) which achieved
accuracies of 78.44% and 84.41% for Young and Attractive, respectively. However even with this
re-implementation, the diversity persistent to perform poorly, as seen in Fig. 4.

Regardless, given the improvement seen on the BlackHair sensitive attribute, we utilized our
improved VGG-16 feature extractor in the main paper, in place of the pre-trained VGG-16 (ImageNet).
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(a) VGG-16 pre-trained on ImageNet
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(b) VGG-16 pre-trained on ImageNet then fine-tuned on CelebA

Figure 3: Improvement in Diversity by fine-tuning the VGG-16, as a feature extractor: (a)
Diversity implementation by [5] with VGG-16 pre-trained on ImageNet as the feature extractor testing
on the pseudo-generator’s with p∗0 = {0.9, 0.8, 0.7, 0.6, 0.5} for sensitive attribute Gender(Left)
and BlackHair(Right). (b) We re-implemented VGG-16 and furter fine-tune it with CelebA as the
feature extractor. We observed improvement in predicting the GT p∗
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(a) VGG-16(CelebA) on Attractive
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(b) VGG-16(CelebA) on Young

Figure 4: Limitations Of Diversity algorithm. Our implementation of VGG-16 fine-tuned on
CelebA w.r.t. sensitive attribute Attractive and Young. VGG-16 Classifier achieved an accuracy
of 78.44% and 84.1% for sensitive attribute Attractive and Young. However, the same VGG-16
performs poorly on the diversity metric, demonstrating the limitations of the diversity framework.
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D.3 Measuring Varying Degrees of Bias

CLEAM for Measuring Varying Degrees of Bias. In previous experiments, we show the perfor-
mance of different methods in measuring the fairness of generators and evaluating bias mitigation
techniques. Another interesting analysis would be to see how these methods fare with different bias,
i.e. different p∗ values. A challenge of this analysis is that we cannot control the training dynamics
of either the GANs nor the Stable Diffusion Model to obtain an exact value of p∗. Thus, we introduce
a new setup and use a pseudo-generator instead of real GANs.

In this setup, we utilize the CelebA [8] and the AFHQ [9] dataset to construct different modified
datasets that follow different values of p∗ w.r.t. the sensitive attribute e.g. BlackHair attribute, when
p∗ = {0.9, 0.1}, the modified dataset contains 4880 BlackHair and 542 Non-BlackHair samples.
Then, a pseudo-generator with bias p∗ works by random sampling from the corresponding datasets.
Note that the samples in the modified dataset are unseen to the sensitive attribute classifier. For our
experiment, we use different GT values, p∗ = {p∗0, p∗1}, where p∗0 ∈ {0.9, 0.8, 0.7, 0.6, 0.5}, and
p∗1 = 1− p∗0. For a pseudo-generator, to calculate each value of p̂, a batch of n samples is randomly
drawn from the corresponding dataset and fed into the Cu for classification. We utilize a ResNet-18
to evaluate our pseudo-generator. The results in Tab. 11 for p∗0 demonstrate that CLEAM is effective
for different degrees of bias, reducing the average error (eµ) of the Baseline from 1.43%→0.27%
and 6.23%→0.49% for Gender and BlackHair on celebA respectively, and 3.52%→0.75% for
Cat/Dog on AFHQ. Additionally, note how measurement error in Baseline and Diversity increases
by increasing the data bias, while CLEAM remains consistently low. See Sec. D.4 and D.5 for
analysis with more attributes and classifiers.

Table 11: Comparing the point estimates and interval estimate of Baseline [2], Diversity [5] and
CLEAM in estimating different p∗ of a pseudo-generator, based on CelebA [8] and AFHQ [9], for
sensitive attribute Gender, BlackHair and Cat/Dog. The p̂ is computed with a ResNet-18 and the
error rate is reported per Eqn.1 of the main manuscript

Point Estimate Interval Estimate
GT Baseline Diversity CLEAM (Ours) Baseline Diversity CLEAM (Ours)

µBase eµ(↓) µDiv eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρDiv eρ(↓) ρCLEAM eρ(↓)
α=[0.976,0.979], Gender (CelebA)

p∗0=0.9 0.880 2.22% 0.950 5.55% 0.899 0.11% [0.876 , 0.884 ] 2.67% [0.913 , 0.986 ] 9.56% [0.895, 0.904] 0.56%
p∗0=0.8 0.783 2.10% 0.785 1.88% 0.798 0.25% [ 0.778 , 0.788 ] 2.75% [0.762 , 0.809 ] 4.75% [0.794,0.803] 0.75%
p∗0=0.7 0.691 1.29% 0.709 1.29% 0.701 0.14% [ 0.687 , 0.695 ] 1.86% [0.696 , 0.722 ] 3.14% [0.697, 0.707] 0.10%
p∗0=0.6 0.592 1.33% 0.591 1.50% 0.597 0.50% [0.586 , 0.598 ] 2.33% [0.581 , 0.612 ] 3.17% [0.591,0.603] 1.50%
p∗0=0.5 0.501 0.20% 0.481 3.80% 0.502 0.40% [0.495 , 0.507 ] 1.40% [0.473 , 0.490 ] 5.40% [0.497, 0.508] 1.60%

Average Error: 1.43% 2.80% 0.27% 2.20% 5.20% 0.90%

α=[0.881,0.887], BlackHair (CelebA)

p∗0=0.9 0.803 10.77% 0.803 10.77% 0.899 0.11% [ 0.800 , 0.806 ] 11.11% [0.791, 0.815] 12.11% [0.893, 0.905] 0.78%
p∗0=0.8 0.723 9.63% 0.699 12.63% 0.796 0.50% [0.719 , 0.727 ] 10.13% [0.686 , 0.713 ] 14.25% [0.790, 0.803] 1.25%
p∗0=0.7 0.654 6.57% 0.661 5.57% 0.705 0.71% [ 0.648 , 0.660 ] 7.43% [ 0.643 , 0.68 ] 8.14% [0.698, 0.712] 1.71%
p∗0=0.6 0.575 4.17% 0.609 1.50% 0.602 0.33% [ 0.564 , 0.586 ] 6.00% [0.604 , 0.614 ] 2.30% [0.599, 0.606] 1.00%
p∗0=0.5 0.500 0.00% 0.521 4.20% 0.504 0.8% [ 0.495 , 0.505 ] 1.00% [0.506 , 0.536 ] 7.20% [0.497, 0.511] 2.20%
Average Error: 6.23% 6.93% 0.49% 7.13% 8.80% 1.39%

α=[0.953,0.0.990], Cat/Dog (AFHQ)

p∗0=0.9 0.862 4.44% 0.855 5.00% 0.903 0.33% [ 0.859 , 0.865 ] 4.56% [ 0.844 , 0.866 ] 6.22% [ 0.900 , 0.907 ] 0.78%
p∗0=0.8 0.766 4.25% 0.774 3.25% 0.802 0.25% [ 0.762 , 0.771 ] 4.75% [ 0.765 , 0.784 ] 4.38% [ 0.797 , 0.807 ] 0.88%
p∗0=0.7 0.677 3.29% 0.670 4.29% 0.707 1.00% [ 0.672 , 0.682 ] 4.00% [ 0.655, 0.686 ] 6.43% [ 0.701 , 0.712 ] 1.71%
p∗0=0.6 0.583 2.83% 0.551 8.17% 0.607 1.17% [ 0.578 , 0.588 ] 3.67% [ 0.540, 0.562 ] 10.00% [ 0.602 , 0.613 ] 2.17%
p∗0=0.5 0.486 2.80% 0.469 6.20% 0.505 1.00% [ 0.480 , 0.493 ] 4.00% [ 0.458, 0.480 ] 8.40% [ 0.498 , 0.511 ] 2.20%
Average Error: 3.52% 5.38% 0.75% 4.20% 7.09% 1.55%
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D.4 Measuring Varying Degrees of Bias with Additional Sensitive Attributes

In Sec. D.3, we demonstrate CLEAM’s ability to improve accuracy in approximating p∗ for the
sensitive attributes Gender and BlackHair. In this section, we extend the experiment on CelebA
dataset but with harder (lower α) sensitive attributes i.e. Young, and Attractive. We did not include
Diversity in this study, due to its poor performance on harder sensitive attribute, as discussed in D.2.

From our results in Tab. 12, both Young and Attractive classifiers have relatively large errors
(eµBase

) in the baseline i.e. on average 17.63% and 12.69%, respectively. Then utilizing CLEAM,
even with the harder sensitive attributes, we are able to significantly reduce these errors to 0.68% and
0.94%. See Sec. B for more details regarding the effect that the different degrees of inaccuracies in
α have on the Baseline error.

Table 12: Comparing point estimate and interval estimate of Baseline [2], and proposed CLEAM
measurement framework on a pseudo-generator with sensitive attribute {Young,Attractive}

Point Estimate Interval Estimate
GT Baseline Diversity CLEAM (Ours) Baseline Diversity CLEAM (Ours)

µBase eµ(↓) µDiv eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρDiv eρ(↓) ρCLEAM eρ(↓)
α=[0.749,0.852], Young

p∗0 = 0.9 0.690 23.33% — — 0.905 0.56% [0.684,0.695] 24.00% — — [0.890,0.920] 2.22%
p∗0 = 0.8 0.630 21.25% — — 0.804 0.50% [0.625,0.635] 21.88% — — [0.795,0.813] 1.63%
p∗0 = 0.7 0.570 18.57% — — 0.698 0.29% [0.565,0.575] 19.29% — — [0.690,0.706] 1.43%
p∗0 = 0.6 0.510 15.00% — — 0.595 0.83% [0.505,0.515] 15.83% — — [0.590,0.600] 1.67%
p∗0 = 0.5 0.450 10.0% — — 0.506 1.20% [0.445,0.455] 11.00% — — [0.502,0.510] 2.00%

Avg Error 17.63% —% 0.68% 18.40% —% 1.79%

α=[0.780,0.807], Attractive

p∗0 = 0.9 0.730 18.89% — — 0.908 0.89% [0.724,0.736] 19.56% — — [0.900,0.916] 1.78%
p∗0 = 0.8 0.670 16.25% — — 0.804 0.50% [0.665,0.675] 16.88% — — [0.795,0.813] 1.63%
p∗0 = 0.7 0.600 14.29% — — 0.696 0.57% [0.594,0.606] 15.14% — — [0.690,0.712] 1.71%
p∗0 = 0.6 0.540 10.00% — — 0.592 1.33% [0.534,0.546] 11.00% — — [0.580,0.604] 3.33%
p∗0 = 0.5 0.480 4.00% — — 0.493 1.40% [0.475,0.485] 5.00% — — [0.487,0.499] 2.60%

Avg Error 12.69% —% 0.94% 13.52% —% 2.22%
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D.5 Measuring Varying Degrees of Bias with Additional Sensitive Attribute Classifier

In this section, we validate CLEAM’s versatility with different sensitive attribute classifier architec-
tures. In our setup, we utilise MobileNetV2 [12] as in [16]. Then similar to Sec. D.3, we utilize
a pseudo-generator with known GT p∗ for Gender and BlackHair sensitive attribute from the
CelebA [8] dataset, and Cat/Dog from the AFHQ [9] dataset, to evaluate CLEAM’s effectiveness at
determining bias.

As seen in our results in Tab.13, MobileNetV2 achieved reasonably high average accuracy
∈[0.889,0.983]. Then, when evaluating p∗ of the pseudo-generator we observed similar behav-
ior to ResNet-18 discussed in sec. D.3. In particular, we observed a significantly large eµBase

(for the
baseline) of 1.42%, 9.74% and 2.81% for the Gender, BlackHair and Cat/Dog sensitive attribute,
respectively. Whereas, CLEAM reported an eµCLEAM

of 0.13%, 0.7% and 0.62%, respectively. The
same trend can be observed in the IE. We thus demonstrate CLEAM’s versatility and ability to be
deployed as a post-processing method (without retraining), on models of varying architecture.

Table 13: Comparing the point estimates and interval estimate of Baseline [2], Diversity [5] and
proposed CLEAM measurement frameworks in estimating different p∗ of a pseudo-generator, based
on the CelebA [8] and AFHQ [9] dataset. The p̂ is computed with a MobileNetV2[12] classifier and
the error rate is reported using Eqn. 1 of the main manuscript. We repeat this on Gender (CelebA),
BlackHair (CelebA) and Cat/Dog(AFHQ) sensitive attribute.

Point Estimate Interval Estimate
GT Baseline Diversity CLEAM (Ours) Baseline Diversity CLEAM (Ours)

µBase eµ(↓) µDiv eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρDiv eρ(↓) ρCLEAM eρ(↓)
α=[0.980,0.986], Gender (CelebA)

p∗0 = 0.9 0.882 2.00% 0.950 5.55% 0.899 0.11% [ 0.879 , 0.885 ] 2.33% [0.913 , 0.986 ] 9.56% [0.895,0.902] 0.56%
p∗0 = 0.8 0.786 1.75% 0.785 1.88% 0.800 0.00% [ 0.782 , 0.790 ] 2.25% [0.762 , 0.809 ] 4.75% [0.794,0.804] 0.75%
p∗0 = 0.7 0.689 1.57% 0.709 1.30% 0.699 0.14% [ 0.685, 0.693 ] 2.14% [0.696 , 0.722 ] 3.14% [0.694,0.704] 0.86%
p∗0 = 0.6 0.593 1.17% 0.591 1.50% 0.600 0.00% [ 0.585 , 0.597 ] 2.50% [0.581 , 0.612 ] 3.17% [594,0.605] 1.00%
p∗0 = 0.5 0.497 0.60% 0.481 3.80% 0.502 0.40% [ 0.491 , 0.502 ] 1.80% [0.473 , 0.490 ] 5.40% [495,0.507] 1.40%

Avg Error 1.42% 2.81% 0.13% 2.20% 5.20% 0.91%

α=[0.861,0.916], BlackHair (CelebA)

p∗0 = 0.9 0.78213.11% 0.80310.78% 0.899 0.11% [ 0.777 , 0.787 ] 13.67% [0.791 , 0.815 ] 9.44% [0.893,0.900] 0.78%
p∗0 = 0.8 0.70511.88% 0.69912.63% 0.800 0.00% [ 0.699 , 0.710 ] 12.63% [0.686 , 0.713 ] 14.25% [0.793,0.807] 0.88%
p∗0 = 0.7 0.62311.00% 0.661 5.56% 0.700 0.00% [ 0.618 , 0.628 ] 11.71% [ 0.643 , 0.68 ] 8.14% [0.694,0.706] 0.86%
p∗0 = 0.6 0.550 8.33% 0.609 1.50% 0.600 0.00% [ 0.544 , 0.556 ] 9.33% [0.604 , 0.614 ] 2.33% [0.593,0.608] 1.17%
p∗0 = 0.5 0.478 4.40% 0.521 4.20% 0.506 1.20% [ 0.472 , 0.484 ] 5.60% [0.506 , 0.536 ] 7.20% [0.498,0.514] 2.80%

Avg Error 9.74% 6.93% 0.70% 10.59% 8.27% 1.30%

α=[0.964,0.897], Cat/Dog (AFHQ)

p∗0 = 0.9 0.875 2.77% 0.880 3.26% 0.897 0.34% [ 0.872 , 0.878 ] 3.07% [0.871 , 0.890] 3.25% [ 0.894 , 0.900 ] 0.68%
p∗0 = 0.8 0.784 2.00% 0.770 3.75% 0.791 1.11% [ 0.780 , 0.788 ] 2.53% [0.759 , 0.781 ] 5.12% [ 0.786 , 0.796 ] 0.42%
p∗0 = 0.7 0.704 0.62% 0.692 1.08% 0.698 0.20% [ 0.700 , 0.708 ] 1.19% [ 0.684, 0.709 ] 2.40% [ 0.694 , 0.703 ] 0.86%
p∗0 = 0.6 0.617 2.78% 0.611 1.83% 0.597 0.54% [ 0.611 , 0.622 ] 2.78% [0.602 , 0.620 ] 3.42% [ 0.591 , 0.603 ] 1.58%
p∗0 = 0.5 0.529 5.87% 0.536 7.20% 0.495 0.93% [ 0.523 , 0.536 ] 7.17% [0.524 , 0.548 ] 9.68% [ 0.488 , 0.503 ] 2.44%

Avg Error 2.81% 3.42% 0.62% 3.35% Avg Error 4.77% 1.20%
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D.6 Measuring SOTA GANs and Diffusion Models with Additional Classifier

In this section, we further explore the utilization of CLIP as a sensitive attribute classifier; more
details on CLIP in Sec. E. Here, we follow the setup in Sec. 5.1 of our main manuscript to measure
the bias in GenData-StyleGAN2 and GenData-StyleSwin w.r.t. Gender. Additionally, we evaluate a
publically available pre-trained Latent Diffusion Model (LDM) [17] on FFHQ [6], where we acquire
the GT p∗ w.r.t. Gender with the same procedure as GenData.

Our results in Tab. 14 and 15 shows that the Baseline is able to achieve reasonable accuracy in
estimating the GT p∗. This is because CLIP’s accuracy is very high (α0=0.998) on the bias class
(p∗0) for both StyleGAN2, StyleSwin and LDM resulting in less mis-classification from occurring.
Regardless, CLEAM is still able to further improve on the already very accurate baseline, further
reducing the error from eµBase

≥ 0.91%, on StyleGAN2, StyleSwin and LDM to eµCLEAM
≤ 0.47%.

A similar trend can be observed in the IE, where it is able to bound the GT p∗0.

Table 14: Comparing the point estimates and interval estimates of Baseline [2] our CLEAM in
estimating p∗ of StyleGAN2 [6] and StyleSwin [11] with the GenData datasets. We utilize SA
classifier CLIP to classify sensitive attribute Gender. The p∗0 value of each GAN w.r.t. SA is
determined by manually hand-labeling the generated data. We repeat this for 5 experimental runs and
report the mean error rate, per Eqn. 1 of the main manuscript.

Point Estimate Interval Estimate
α = {α0, α1} Avg. α Baseline Diversity CLEAM (Ours) Baseline Diversity CLEAM (Ours)

µBase eµ(↓) µDiv eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρDiv eρ(↓) ρCLEAM eρ(↓)
(A) StyleGAN2

Gender with GT class probability p∗
0=0.642

CLIP {0.998, 0.975} 0.987 0.653 1.71% — — 0.645 0.47% [0.649, 0.657] 2.34% — — [0.641, 0.649] 1.09%
(B) StyleSwin

Gender with GT class probability p∗
0=0.656

CLIP {0.998, 0.975} 0.987 0.666 0.91% — — 0.658 0.30% [0.663,0.669] 1.98% — — [0.655,0.662] 0.91%

Table 15: Comparing the point estimates and interval estimates of Baseline [2] our CLEAM in
estimating p∗ of a pretrained Latent Diffusion Model[17] on the FFHQ dataset. We repeat this for 5
experimental runs and report the mean error rate, per Eqn. 1 of the main manuscript.

Point Estimate Interval Estimate
α = {α0, α1} Avg. α Baseline Diversity CLEAM (Ours) Baseline Diversity CLEAM (Ours)

µBase eµ(↓) µDiv eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρDiv eρ(↓) ρCLEAM eρ(↓)
Latent Diffusion Model

Gender with GT class probability p∗
0=0.570

CLIP {0.998, 0.975} 0.987 0.585 2.63% — — 0.571 0.18% [0.578, 0.593] 4.04% — — [0.564, 0.579] 1.58%
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D.7 Comparing Classifiers Accuracy on Validation Dataset vs Generated Dataset

In our proposed CLEAM, we use α pre-measured on the validation dataset, denoted by αval. In this
section, we show that αval is a good approximate of the α when measured on the generated data,
denoted by αgen. Note that αgen is not available in practice, therefore αval is used as approximation
during CLEAM measurement. We further remark that our purpose of this experiment is only done
to validate αval as a good approximation for αgen and is not necessary in the actual deployment of
CLEAM.

Comparing αval vs αgen on GANs. To validate that, we utilize our newly introduced generated
dataset, with known labels and measure the αgen for both Gender and Blackhair on StyleGAN2
and StyleSwin and compared it against the αval. The results in Tab. 16 show that αval is a good
approximation of the αgen of the generated dataset.

In addition, in Tab. 17, we further demonstrate the difference in effect when utilizing αgen as
opposed to αval with CLEAM for sensitive attribute Gender on StyleGAN2 from the GenData
dataset. Overall, we observed only marginal improvements, for most cases, when utilizing the αgen.
Additionally, as the improvements by CLEAM were still very significant when utilizing the αval,
and as the labels for the generated dataset are not readily available to evaluate αgen, we found the
αval to be a good approximation for αgen for fairness measurement.

Comparing αval vs αgen on SDM. Similarly when evaluating the SDM with CLEAM, we also
utilize αval in-place of αgen. However, as a validation dataset is not readily available for SDM,
we explored the use of a poxy validation dataset whose domain is a close representation as our
applications. More specifically, we utilize CelebA-HQ as our proxy validation dataset (with known
labels w.r.t. Gender) to attan αval. Then similarly, we compare αval to αgen from our labelled
GenData-SDM (per prompt). As shown in Tab. 18 our approximated αval (measured on CelebA-HQ),
although not perfect, is a close approximation of αgen, thereby making it appropriate to be utilized
with CLEAM.

Table 16: Comparing αval ( α measured during the classifier’s validation stage using real data),
against αgen ( α measured on the generated dataset). Notice that the αval measured during the
validation dataset is a close approximation of the generated dataset’s αgen.

StyleGAN2 StyleSwim

ResNet18 ResNet34 MobileNetv2 VGG16 ResNet18 ResNet34 MobileNetv2 VGG16

Gender

Validated α [0.947,0.983] [0.932,0.976] [0.938, 0.975] [0.801,0.919] [0.947,0.983] [0.932,0.976] [0.958, 0.975] [0.801,0.919]
αgen [0.940,0.984] [0.928,0.982] [0.948, 0.985] [0.815,0.922] [0.957,0.966] [0.944,0.981] [0.956, 0.977] [0.804,0.924]

Blackhair

Validated α [0.869,0.884] [0.834,0.919] [0.839,0.880] [0.850,0.836] [0.869,0.884] [0.834,0.919] [0.839,0.880] [0.850,0.836]
αgen [0.870,0,885] [0.830,0.914] [0.845,0.886] [0.837,0.824] [0.874,0.892] [0.824,0.930] [0.837,0.891] [0.847,0.821]

Table 17: Comparing the point estimates and interval estimates of Baseline and our proposed CLEAM
measurement framework in estimating p∗ of the GenData datasets sampled from (A) StyleGAN2
[6]. The p∗0 value for each GAN with a certain attribute is determined by manually hand-labeling
the generated data. We then utilize a Resnet-18 to classify attributes Gender to obtain p̂. Then with
different accuracy α, measured from the validation split (denoted by αval) and GenData datasets
(denoted by αgen), we apply CLEAM. Each p̂ utilizes n = 400 samples and is evaluated for a
batch-size of s = 30. We repeat this for 5 experimental runs and report the mean error rate, per Eqn.
1 from the main manuscript.

Point Estimate Interval Estimate
Classifier Baseline[2] CLEAM (Ours) with αval CLEAM (Ours) with αgen Baseline[2] CLEAM (Ours) with αval CLEAM (Ours) with αgen

µBase eµ(↓) µCLEAM eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρCLEAM eρ(↓) ρCLEAM eρ(↓)
(A) StyleGAN2

Gender with GT class probability p∗
0=0.642

R18 0.610 4.98% 0.638 0.62% 0.639 0.44% [0.602, 0.618] 6.23% [0.629, 0.646] 2.02% [0.629, 0.648] 2.02%
R34 0.596 7.17% 0.634 1.25% 0.635 1.06% [0.589, 0.599] 8.26% [0.628, 0.638] 2.18% [0.630, 0.640] 1.87%
MN2 0.607 5.45% 0.637 0.78% 0.636 0.86% [0.602, 0.612] 6.23% [0.632, 0.643] 1.56% [0.630, 0.642] 1.82%
V16 0.532 17.13% 0.636 0.93% 0.640 0.36% [0.526, 0.538] 18.06% [0.628, 0.644] 2.18% [0.632, 0.647] 1.53%
Avg Error 8.68% 0.90% 0.68% 9.70% 1.99% 1.81%
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Table 18: Comparing the approximate αval measured on CelebA-HQ versus CLIP’s αgen evaluated
on a fair distribution of GenData-SDM for each prompt w.r.t. Gender.

Dataset Stable Diffusion Model

CelebA-HQ "Somebody" "an individual" "a human being" "a person" "one person"

α [0.998,0.975] [1.0,0.970] [1.0,0.980] [1.0,0.970] [0.990, 0.970] [1.0, 0.980]

D.8 Comparing CLEAM with Classifier Correction Techniques (BBSE/BBSC)

In this section, we compare CLEAM against a few classifier correction techniques. We remark that
CLEAM, unlike the classifier correction techniques, does not aim to improve the sensitive attribute
classifier’s accuracy but instead accounts for its errors during fairness measurement. However, given
that classifier correction techniques may improve bias measurement, we found it useful to make a
comparison. Specifically, we look into Black-Box shift estimator/correction (BBSE/BBSC) [18],
methods previously proposed to address classifier inaccuracies due to label shift. We demonstrate
that even with BBSE/BBSC, errors in bias measurement still remain significant.

Setup. To determine the effectiveness of BBSE/BBSC in tackling the errors of fairness measurement
in generative models we evaluate it on the same setup as per Sec. 5.1 of the main manuscript on
GenData-StyleGAN and GenData-StyleSwin with ResNet-18. Specifically, for BBSE we follow
Lipton et al. [18] and first evaluate the confusion matrix for the trained ResNet-18 based on the
validation dataset. Then, utilizing the confusion matrix, we calculate the weight vector which accounts
for label shift of the generated data. With this weight vector, we now implement a variant of CLEAM
utilizing Algo.1 (with the weighted vector in-place of α) in the main manuscript to evaluate the PE
and IE. Similarly, for BBSC, we calculate the weight vector. However, unlike BBSE, we now utilize
the weighted vector and fine-tune the classifier on the generated samples [18].

Our results in Tab. 19 shows that BBSE helps to marginally reduce eµ and eρ for the PE and IE,
when compared against the baseline. However, these results still remain poor when compared to
our original CLEAM implementation. One reason for this difference may be that, unlike CLEAM
which is agnostic to the cause of the error, BBSE specifically corrects for label shifts while neglecting
other sources of error e.g. task hardness. Meanwhile, our results in Tab. 20 show that utilizing BBSC
makes no improvement in the improving the baseline fairness measurements. We hypothesize that
this is due to the strong assumption of invariant conditional input distribution p(x|y) used in BBSC,
which may not hold in our problem. Overall we conclude that while classifier correction techniques
may improve fairness measurements in some cases, they may not always generalize as they are often
tailored to a specific problem.

Table 19: Comparing BBSE and CLEAM in estimating p∗ on GenData-StyleGAN2 and GenData-
StyleSwin w.r.t. {Gender,BlackHair}. Here, we utilize a ResNet-18 trained on the CelebA-HQ
dataset.

Point Estimate Interval Estimate
Baseline BBSE CLEAM (Ours) Baseline BBSE CLEAM (Ours)

µBase eµ(↓) µBBSE eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρBBSE eρ(↓) ρCLEAM eρ(↓)
(A) StyleGAN2

Gender with GT class probability p∗
0=0.642

0.610 4.98% 0.621 3.38% 0.638 0.62% [0.602,0.618] 6.23% [0.613,0.628] 4.52% [0.629,0.646] 2.02%
BlackHair with GT class probability p∗

0=0.643
0.599 6.48% 0.630 2.02% 0.641 0.31% [0.591,0.607] 8.08% [0.622,0.638] 3.27% [0.631,0.652] 1.40%

(B) StyleSwin
Gender with GT class probability p∗

0=0.656
0.620 5.49% 0.628 4.27% 0.648 1.22% [0.612,0.629] 6.70% [0.620,0.634] 5.49% [0.639,0.658] 2.59%

BlackHair with GT class probability p∗
0=0.668

0.612 8.38% 0.640 4.20% 0.659 1.35% [0.605,0.620] 9.43% [0.633,0.647] 5.24% [0.649,0.670] 2.84%
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Table 20: Comparing fairness distribution with ResNet-18 trained with and without Black-Box Shift
Correction (BBSC) on the GenData dataset. Here we utilize the prior work’s fairness measurement
framework (Baseline) and our proposed CLEAM to evaluate the fairness distribution.

Point Estimate Interval Estimate
Setup α Avg α Baseline CLEAM (Ours) Baseline CLEAM (Ours)

µBase eµ(↓) µCLEAM eµ(↓) ρBase eρ(↓) ρCLEAM eρ(↓)
(A) StyleGAN2

Gender with GT class probability p∗
0=0.642

Original Classifier {0.947,0.983} 0.97 0.610 4.98% 0.638 0.62% [0.602,0.618] 6.23% [0.629,0.646] 2.02%
Adapted Classifier w. BSSC {0.932,0.980} 0.96 0.609 5.28% 0.645 0.46% [0.601,0.616] 6.53% [0.635,0.655] 2.02%

BlackHair with GT class probability p∗
0=0.643

Original Classifier {0.869,0.885} 0.88 0.599 6.48% 0.641 0.31% [0.591,0.607] 8.08% [0.631,0.652] 1.40%
Adapted Classifier w. BSSC {0.854,0.875} 0.86 0.588 8.55% 0.635 1.24% [0.581,0.596] 9.64% [0.627,0.643] 2.49%

(B) StyleSwin
Gender with GT class probability p∗

0=0.656
Original Classifier {0.947,0.983} 0.97 0.620 5.49% 0.648 1.22% [0.612,0.629] 6.70% [0.639,0.658] 2.59%

Adapted Classifier w. BSSC {0.932,0.980} 0.96 0.617 5.94% 0.655 0.15% [0.610,0.614] 7.01% [0.649,0.661] 1.06%

BlackHair with GT class probability p∗
0=0.668

Original Classifier {0.869,0.885} 0.88 0.612 8.38% 0.659 1.35% [0.605,0.620] 9.43% [0.649,0.670] 2.84%
Adapted Classifier w. BSSC {0.854,0.875} 0.86 0.608 8.98% 0.663 0.75% [0.600,0.616] 10.18% [0.655,0.671] 1.95%
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D.9 Applying CLEAM to Re-evaluate Bias Mitigation Algorithms

Importance-weighting [2] is a simple and effective method for bias mitigation. However, its per-
formance in fairness improvement is measured by the Baseline, which could be erroneous. In this
section, we re-evaluate the performance of importance-weighting with CLEAM, which has shown
better accuracy in fairness estimation.

Following Choi et al. [2], we utilize the original source code to train two BIGGANs [19] on CelebA
[8]: for the first GAN, without applying any bias mitigation (Unweighted), while in the second,
we apply importance re-weighting (Weighted). We do this for the originally proposed sensitive
attribute Gender, and extend the experiment to BlackHair. For a fair comparison, we follow [2]
and similarly use a ResNet-18 with a reasonably high average accuracy of 88% and 97% for sensitive
attributes BlackHair and Gender. Our results in Tab. 21 show that Baseline measures a µBase of
0.727 and 0.680 for Unweighted and Weighted, with SA Gender (similar to reported results in [2]).
Meanwhile, CLEAM’s results show that µCLEAM > µBase, implying that previous work could have
underestimated the bias of the GANs. This could lead to an erroneous evaluation of a bias mitigation
technique, or comparison across different bias mitigation techniques. Then, when analyzing bias
mitigation techniques using IE of CLEAM (as per Tab. 22), since the IE of unweighted and weighted
GANs do not overlap, we are provided with some statistical guarantees that the bias mitigation
techniques, importance-weighting, is indeed effective.

Table 21: Re-evaluating the point estimates of previously proposed bias mitigation method,
importance-weighting (imp-weighting) [2] with CLEAM. We first evaluate the bias of a BIGGAN
[19] with and without imp-weighting i.e. unweighted and weighted, with the Baseline. Then, we
apply CLEAM to obtain a more accurate measurement. We do this for both Gender and BlackHair
sensitive attributes.

Setup Baseline Diversity CLEAM (Ours)
µBase µDiv µCLEAM

α=[0.976,0.979], Gender

Unweighted 0.727 0.711 0.738
Weighted 0.680 0.671 0.690

α=[0.881,0.887], BlackHair

Unweighted 0.729 0.716 0.803
Weighted 0.716 0.706 0.785

Table 22: Re-evaluating the interval estimates of previously proposed bias mitigation method,
importance-weighting (imp-weighting) [2] with CLEAM. To do this, we first evaluate the bias of a
BIGGAN [19] with and without implementing imp-weighting i.e. unweighted and weighted, with the
Baseline. Then, we apply CLEAM to obtain more accurate measurements, which we use to compare
against the Baseline. We do this for both Gender and BlackHair sensitive attributes.

Setup Baseline Diversity CLEAM(Ours)
ρBase ρDiv ρCLEAM

α=[0.976,0.979], Gender

Unweighted [0.721, 0.732] [0.697, 0.722] [0.733, 0.744]
Weighted [0.674, 0.685] [0.658, 0.684] [0.686, 0.693]

α=[0.881,0.887], BlackHair

Unweighted [0.725, 0.733] [0.704, 0.729] [0.798, 0.809]
Weighted [0.710, 0.722] [0.696, 0.716] [0.778, 0.792]
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E Details on Applying CLIP as a SA Classifier

CLIP as a Sensitive Attribute classifier. To utilize CLIP as a sensitive attribute classifier (with the
VIT-B/32 architecture), we follow the best practices suggested by Radford et al. [20]. Here, we first
input two different prompts, describing the respective classes, to the CLIP text-encoder, as seen in
Tab. 23. As suggested by Radford et al. we utilize the prompt starting with "A photo of a" i.e. a scene
description, followed by our sensitive attribute’s classes e.g. female/male. Next, we also encode the
generated images with the CLIP image encoder. Finally, for each encoded generated image and the
two encoded text-prompt, we take the cosine similarities followed by the argmax. The argmax
output provides us with the respective hard label of the generated image.

Generated Image pre-processing. We remark that as the stable diffusion model produces a mixture
of colored and greyscale images, for a fair comparison, we transform all images from RGB to
greyscale before feeding into CLIP for classification.

Table 23: Prompts for using CLIP [20] for sensitive attribute classification .
Sensitive Attribute Class 0 prompt Class 1 prompt

Gender "A photo of a female" "A photo of a male"
Smiling "A photo of a face not smiling" "A photo of a face smiling"
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F Ablation Study: Details of Hyper-Parameter Settings and Selection

Sensitive Attribute Classifier Cu. In our experiments, we utilized a Resnet-18/34 [7], Mo-
bileNetv2 [12] and VGG-16. The respective datasets i.e. CelebA, [8] CelebA-HQ [21] and AFHQ [9]
datasets are then segmented into {Train, Test, Validation} with respect to the ratio {80%,10%,10%},
where each segmentation of the dataset contains uniform distribution w.r.t. the queried sensitive
attribute. The classifiers are then trained with the training datasets and the α are evaluated with the
validation dataset. Each classifier is trained with an Adam optimizer[22] with a learning rate=1e−3,
Batch size=64 and input dim=64x64 from the CelebA dataset [8], dim=64x64 from the AFHQ dataset
and dim=128x128 from the CelebA-HQ dataset [21]. Tab. 24 details the α of the ResNet-18 utilized
in Sec.6 of our main manuscript.

Table 24: Accuracy of ResNet-18 trained and evaluated on CelebA-HQ.
Sensitive Attribute Accuracy, α

NoBeard [0.968,0.898]
HeavyMakeup [0.925,0.883]

Bald [0.930,0.972]
Chubby [0.838,933]

Mustache [0.925,0.896]
Smiling [0.933, 0.877]
Young [0.871, 0.857]

BlackHair [0.869,0.885]
Gender [0.947,0.983]

Generator Gϕ used in sec.D.9. As mentioned in sec. D.9, we utilized the setup in Choi et al.
[2]2 for the training of our imp-weighted and unweighted GANs. With this, we replicate their
hyperparameter selection of 64 x 64 celebA [8] images with a learning rate=2e−4, β1 = 0, β2 = 0.99
and four discriminator steps per generator step. We utilize a single RTX3090 for the training of our
models.

Evaluating CLEAM with Different n. Utilizing the same setup in Sec. 5.1 of our main manuscript
– with the GenData-StyleGAN and GenData-StyleSwin datasets, we repeated the experiment with
ResNet-18 and n ∈ [100, 600]. Our results in Fig.5 show that there is a marginal increase in error for
both the Baseline and CLEAM as n approaches 100, while the converse occurs when n approaches
600. However, given the diminishing improvements for n > 400, we found n = 400 to be ideal- a
balance between computational cost and measurement accuracy.

Batch Size s. In our experiments, we utilized s batches of data each of which contains n images
to approximate p∗ with the Baseline and CLEAM methods. In the previous experiment, we found
n = 400 samples to be the ideal balance between computational time and minimizing fairness
measurement error. Here, we repeat the same hyper-parameter search, utilizing the real generator
setup in Sec 5.1 of the main paper with ResNet-18, but instead varied the number of batches, s. Our
results in Fig. 6 found s = 30 to be the optimal value when approximating p∗. Increasing s did not
result in significant improvements by both baseline and CLEAM. However, decreasing s did observe
some significant degradation in performance i.e. increase in eµ.

Computational Time. In our main paper, we note that CLEAM is a lightweight correction to the
existing baseline method, that requires no additional parameter to be computed during evaluation.
To support this, we evaluated the computational time for the Baseline, Diversity, and our proposed
CLEAM. Our results in Tab. 25 show that there is only a small difference in computational time
(≈ 0.1s) between the Baseline and our proposed CLEAM. This difference is solely to facilitate the
computation of Algo. 1. See Tab. 26 for discussion on carbon emission.

2https://github.com/ermongroup/fairgen
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Figure 5: Comparing the point error eµ for Baseline and CLEAM when evaluating the bias of
GenData with ResNet-18, with varying sample size, n.

a) StyleGAN (Gender) b) StyleGAN (Blackhair)

c) StyleSwin (Gender) d) StyleSwin (Blackhair)

x CLEAMBaseline

Er
ro

r,
 𝑒
𝜇

Er
ro

r,
 𝑒
𝜇

Er
ro

r,
 𝑒
𝜇

Er
ro

r,
 𝑒
𝜇

0

5

10

10 20 30 40s

0

5

10

10 20 30 40s

0

5

10

10 20 30 40s

0

5

10

10 20 30 40s

Figure 6: Comparing the point error eµ for Baseline and CLEAM when evaluating the bias of the
generated data with ResNet-18, for varying sample the number of batches, s.

Table 25: Average computation time for estimating p∗ with s=30 and n=400 for Baseline [2],
Diversity [5] and our proposed CLEAM with a single RTX3090 for 5 consecutive runs.

Baseline [2] Diversity [5] CLEAM (Ours)

CelebA, 64x64 , s 99.9 600.4 100.0
AFHQ, 64x64 , s 99.8 601.2 99.9

CelebA-HQ, 128x128, s 135.9 820.4 136.0

Table 26: Estimated Computation time. The carbon emission values are computed using https:
//mlco2.github.io/impact.

Experiment Hardware GPU Hours Carbon emitted (kg)

Training of SA Classifiers RTX3090 2.0 0.39
Comparing CLEAM on GANs, Main Paper Tab. 1 RTX3090 4.8 0.94
Comparing CLEAM on DGN, Main Paper Tab. 2 RTX3090 0.3 0.1

Inferring with CLEAM on DGN, Main Paper Fig. 3a RTX3090 0.3 0.1
Inferring CLEAM on GANs, Main Paper Fig. 3b RTX3090 0.52 0.15
Comparing CLEAM on PsuedoG, Supp Tab 11 RTX3090 4.5 0.88

Comparing CLEAM on PsuedoG Additional SA, Supp Tab 12 RTX3090 3 0.59
Comparing CLEAM on PsuedoG Additional classifier, Supp Tab 13 RTX3090 4.5 0.88

Comparing CLEAM on DGN with CLIP, Supp Tab. 14 RTX3090 0.15 0.05
Comparing CLEAM with BBSE/BBSC, Supp Tab. 19 RTX3090 0.25 0.07
Applying CLEAM on Bias mitigation, Subb Tab 21 RTX3090 0.88 0.17

Total: 21.2 4.32

25

https://mlco2.github.io/impact
https://mlco2.github.io/impact


G Related Work

Fairness in Generative Models. Fairness in machine learning is mostly studied for discriminative
learning, where usually the objective is to handle a classification task independent of a sensitive
attribute in the input data, e.g. making a hiring decision independent of the applicant Gender.
However, the definition of fairness is quite different for generative learning, where it is considered
as equal representation/generation probability w.r.t. a sensitive attribute. Because of this difference,
the conventional fairness metrics used for classification, like Equalised Odds, Equalised Opportunity
[23] and Demographic Parity [24], cannot be applied to generative models. Instead, the similarity
between the probability distribution of the generated sample w.r.t. a sensitive attribute (p∗) and a
target distribution p̄ (a uniform distribution) [2] is utilized as fairness metric. See sec. A.3 for details.

Existing Works on Fair Generative Models. Existing works focus on bias mitigation in generative
models. The importance reweighting algorithm is proposed by Choi et al. [2] where a re-weighting
algorithm favours a reference fair dataset w.r.t. the sensitive attribute in-place of a larger biased
dataset. Frankel et al. [16] introduces the concept of prior modification, where an additional smaller
network is added to modify the prior of a GAN to achieve a fairer output. Tan et al. [25] learns the
latent input space w.r.t. the sensitive attribute, which they can later sample accordingly to achieve
a fair output. MaGNET [26] demonstrates that enforcing uniformity in the latent feature space of
a GAN, through a sampling process, improves fairness. Um et al. [4] improves fairenss through
the utilization of total variation distance which quantifies the unfairness between a small reference
dataset and the generated samples. Teo et al. [3] introduces fairTL++, which utilizes a small fair
dataset to implement fairness adaptation via transfer learning. In all of these works, the focus is on
improving fairness of the generative model (where the performance of the model is measured with a
framework, in which the inaccuracies in the sensitive attribute classifier has been ignored). However,
our proposed CLEAM method focuses on improving fairness measurement, by compensating for
the inaccuracies in the sensitive attribute classifier through a statistical model. Therefore, it can be
used to evaluate the bias mitigation algorithms more accurately.

Equal Representation. Some literature also use a similar notion of equal representation (used in
generative models) to address fairness. For example, fair clustering variation [27] is proposed by
enforcing the clusters to represent each attribute equally, and fair data summarization [28] is used to
mitigate the bias in creating a representative subset for a given dataset, while handling the trade-offs
between fairness and diversity during sampling. However, unlike our setup, these works assume
to have access to the attribute labels. Meanwhile, in data mining, a similar problem was recently
studied. Given a large dataset of unlabelled mined data, the objective is to evaluate the disparity of
the dataset w.r.t. an attribute. To do this, an evaluation framework called diversity [5] was introduced.
To measure this, a pre-trained classifier is used as a feature extractor. The unlabelled dataset is then
compared against a controlled reference dataset (with known labels) via a similarity algorithm.

Biases in Text-Image generation. Some literature have attempted to look into the biases in text-to-
image generators [29]. Specifically, Bianchi et al. study existing biases in occupations-based prompts
for popular text-to-image generators e.g. stable diffusion models. They found the biases to exasperate
existing occupation stereotypes, e.g. nurses being over-represented as non-Caucasian females. To
measure these biases, [29] has a simple approach utilizing a pre-trained feature extractor to assign
the sensitive attribute labels to a small batch of generated images (100 samples). We remark that
this approach is similar to Diversity, a method which we found to also demonstrate significant errors
due to the lack of consideration for the classifier’s error. Furthermore, we emphasize the difference
between our study and Bianchi et al. . Specifically, in our application of CLEAM (Sec. 6 of the
main manuscript), we examine the impact of using prompts with indefinite pronouns/nouns that
are synonymous to each another. Our objective, unlike Bianchi et al. ’s work, is to investigate the
influence of subtle changes in the prompts on bias, which is studied on a large dataset (≈ 2k samples).
Our results are the first to demonstrate that even subtle changes to the prompt (which are semantically
unchanged), could result in drastically different biases.

Classifier Calibration. The proposed CLEAM can be seen from a classifier calibration point of view
as it refines the output of the classifier. However, CLEAM should not be mistaken with conventional
calibration algorithms, e.g. temperature scaling [30], Platt Scaling [31] and Isotonic regression [32].
Unlike these algorithms that concern themselves with the confidence of prediction, CLEAM focuses
on sensitive attribute distribution, thereby making these algorithms ineffective.
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More specifically, conventional classifier calibration methods usually work on soft labels (probabili-
ties). Note that in our framework, the argMax is applied to the output probabilities to determine the
hard label. Therefore, in our application that deals with hard labels, regular classification techniques
are less effective. To investigate this, we conduct a few calibration experiment by applying some
popular classifier calibration techniques; temperature scaling(T-scaling) [30], Isotonic Regression[32]
and Platt Scaling[31] on a pre-trained ResNet-18[7] senstive attribute classifier. In Fig. 7, we see that
T-scaling is the most effective in correcting the calibration curve to the ideal Ref line. Note that, this
Ref line indicates that the classifier is perfectly calibrated w.r.t. the soft labels.

Next, using the pseudo-generator from Sec. D.3, we utilised the calibrated sensitive attribute classifiers
earlier and compare them against CLEAM (which was applied on an uncalibrated model). In our
results, seen in Fig. 8, we observe that these traditional calibration methods are less effective in
correcting the sensitive attribute distribution error. In fact, methods like Platt scaling worsen the error,
and T-scaling —which is shown in [30] and our experiment to be one of the most effective traditional
calibration methods— does not change class predictions (hard labels), but merely perturb the soft
labels. This demonstrates that traditional calibration technique are not direct correlation to hard label
calibration, which CLEAM aims to address.

Figure 7: Calibration Curve on ResNet-18 for Attractive sensitive attribute. We observe that the
T-scaling is the most effective technique in improving soft label calibration and Isotonic regression
the worst. However, this same trend does not follow in the hard label errors of Fig 8.
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Figure 8: Comparing Calibration Techniques: Using the pseudo-generator, we compare CLEAM
against well known calibration techniques, overall we observe that previous techniques are signifi-
cantly less effective, achieving an average error of; T-Scaling: 12.4%, Isotonic Regression: 10.1%,
Platt Calibration: 14.5% and uncalibrated (baseline): 12.4% against CLEAM: 2.0%
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H Details of the GenData: A New Dataset of Labeled Generated Images

In this section, we provide more information on our new dataset, containing generated samples labeled
based on sensitive attributes from StyleGAN23 [6] and StyleSwin 4 [11] trained on CelebA-HQ
[21], and a Stable Diffuson Model(SDM)[14]. More specifically, our dataset contains ≈9k randomly
generated samples based on the original saved weights and codes of the respective GANs, and ≈2k
samples for four different prompts inputted in the SDM. These samples are then hand labeled w.r.t. the
sensitive attributes. More specifically, Gender and BlackHair for both the GANs and Gender for
the SDM. Then with these labeled datasets, we can approximate the ground-truth sensitive attribute
distribution, p∗, of the respective GANs.

Dataset Labeling Protocol. To ensure high-quality samples and labels in our dataset, we passed
the dataset through Amazon Mechanical Turk, where labelers were given detailed guidelines and
examples for identifying the individual sensitive attributes. In addition to the sensitive attribute option
e.g. Gender(Male) or Gender(Female), labelers were also given an “unidentifiable” option which
they were instructed to select for low-quality samples, as per Fig, 9 and 13. We repeated this process
for 4 runs s.t. each sample had the opinions of four independent labelers. Finally, each sample was
assigned the label that the majority had selected.

Overall, the GANs and SDM received 97% and 99% unanimous agreement rates. This for example
includes male, female, or unidentifiable, for the sensitive attribute Gender. We discard the samples
that had been labeled unidentifiable and were left with a high-quality dataset as per Fig. 10, 11 and
12. We remark that the discarded samples consist only a small portion of the generated samples
i.e. 3% of the GANs, and 1% of the SDM. Upon further evaluation, we found that the sensitive
attribute classifiers appear to uniformly assign these (rejected) ambiguous samples a random class
with low confidence. As a result, we can assume that the impact of disregarding these samples was
insignificant to CLEAM’s evaluation.

(a) StyleGAN2 (b) StyleSwin

Figure 9: Examples of rejected samples during hand-labeling due to poor quality.

3https://github.com/NVlabs/stylegan2-ada-pytorch
4https://github.com/microsoft/StyleSwin
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(a) Gender (Female) Samples (b) Gender (Male) Samples

Figure 10: Examples of samples w.r.t. Gender sensitive attribute in our proposed GenData dataset.

(a) no-BlackHair Samples (b) BlackHair Samples

Figure 11: Examples of samples w.r.t. BlackHair sensitive attribute in our proposed GenData dataset.
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a) “A photo with the face of an individual”

b) “A photo with the face of a human being”

Female Male

c) “A photo with the face of one person”

d) “A photo with the face of a person”

Figure 12: Examples of randomly generated samples based on the prompts "A photo with the face of
an individual" and "A photo with the face of a human being" w.r.t. the sensitive attribute Gender.

Figure 13: Examples of rejected samples from the SDM.
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I Limitations and Considerations

Ethical consideration. In general, we note that our work does not introduce any social harm
but instead improves on the existing fairness measurement framework to better gauge progress.
However, we stress that it is important to consider the limitations of the existing fairness measurement
framework, which we discuss in the following.

Sensitive Attribute Labels. Certain sensitive attributes may exist on a spectrum e.g. Young.
However, given that this work aims to improve fairness measurement, and the current widely used
definition is based on binary outcomes, we utilize the same setup in our work. Additionally, it is
also important to be aware that certain sensitive attributes may be ambiguous e.g. Big Nose (which
exist in popular datasets like CelebA-HQ), but definitions could differ based on different cultural
expectations. In our work, we try to select less ambiguous sensitive attributes e.g., BlackHair.

Human and Auto Labelling. Labeling sensitive attributes in generative models is essential to better
understand the possible biases that may exist in some proposed generative model algorithms. To do
this, researchers often utilize either human labelers or machines for automated labeling. However,
when utilizing such labeling procedures it is important to consider ethical implications, especially in
many cases where sensitive information such as gender is involved. One particular concern is that
there could be potential discrimination in the assignment of labels such as gender. For example, if
only certain facial features are considered when assigning gender labels, some individuals may be
inaccurately labeled due to their unique characteristics that deviate from traditional notions of male
and female identity.

Human labelers may bring their own biases, subjectivity, and cultural background to the labeling
process, which can lead to inaccuracies or reinforce stereotypes. Additionally, it is important to
ensure that the labelers represent a diverse range of backgrounds and perspectives, particularly if the
samples being labeled are from a diverse population. This can help mitigate potential discrimination
against some social identities and improve the accuracy of the labeling process.

In the case when utilizing machines for labeling, it is important to be aware that labeling algorithms
may be biased, depending on the data set it was trained on. If the data set is not diverse or balanced,
the algorithm may produce inaccurate or biased results that reinforce stereotypes or discrimination
against certain social identities.

Utilizing Zero Shot Classifiers. When utilizing pre-trained classifiers it is important to carefully
select proxy validation dataset with a similar domain to the generated images. A significant mismatch
in these two domains could result in an inaccurate approximation of α, resulting in poor performance
by CLEAM. Then similar to our previous discussion, we would also refrain from ambiguous sensitive
attributes, as this may result in a mismatch between the proxy validation dataset and the pre-trained
sensitive attribute classifier.
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