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APPENDIX

A DETAILS OF DATASET COLLECTION SYSTEM

A.1 HARDWARE AND CONFIGURATION

OptiTrack MoCap System. Following industry standards, we deploy multiple optical cameras in a
green screen environment (adjusting the number as needed for calibration) and transmitted motion
capture data to work stations via an Ethernet network.

Work Stations. We employ 2 work stations to balance the computational load (referred to as
Work Station 1 and 2, respectively). These two devices are also connected through Ethernet. Work
Station 1 primarily handles Motive and MotionBuilder, while the task of Work Station 2 is to run the
CARLA Dosovitskiy et al. (2017) simulation environment and other essential applications.

• Optitrack Motive 3.1. Motive is a compatible application for optical motion capture
hardware, providing real-time motion data with high accuracy which will be processed into
SMPL-X Loper et al. (2015) format.

• Autodesk MotionBuilder 2020. It is a 3D character animation software capable of capturing,
editing, and playing back intricate animations. Our utilization is specifically focused on its
powerful retargeting function.

• Tentacle Setup. To align the temporal information of the SMPL-X Loper et al. (2015)
ground truth derived from MoCap and other data recorded in Work Station 2, we synchronize
the time using Tentacle.

• OptiTrack OpenVR Driver. In terms of the VR HMD worn by the subjects, we use HTC
Vive and replace its matched trackers with the OpenVR Driver as the positioning system,
ensuring the normal operation of the HMD.

• SteamVR. It collaborates with the Unreal Engine to provide VR functionality, and directly
participates in the data transmission of HMD device.

• CARLA 0.9.14 on Unreal Engine 4. CARLA Dosovitskiy et al. (2017) is a distinguished
autonomous driving simulation research platform. On the CARLA platform, we construct
and execute specific scenarios through scripts, recording data that includes RGB videos
from third-person and egocentric perspectives, extrinsic of in-car cameras, and LiDAR data.

Construction of Virtual Scenarios and Scripts. We deploy specific traffic scenarios on
CARLA Dosovitskiy et al. (2017) by executing scripts. The subject puts on a HMD and starts
off as a pedestrian in an empty street. As the scripts are initiated, vehicles and sensors are generated
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Figure 1: Pipeline of Avatar MoCap, Motion Retargeting, and Modeling. In the retargeting step, it’s
recommended to ensure the best possible alignment of the two skeletons(the yellow one and the gray
one). The situation here is for illustration only.

at predetermined locations around the subject, capturing his/her actions and reactions. The script
includes:

• Actors Generating. Both vehicles and sensors are defined as actors in CARLA. Vehicles are
generated at specified locations around the pedestrians’ spawn points and range of activities
in the world. Sensors are placed on the vehicles at suitable positions and angles.

• World Ticking in Synchronous Mode. Once the vehicles and sensors are generated, the
entire world will run in synchronous mode. Vehicles operate following pre-defined programs.
The sensors capture data at the current timestamp on each tick and store it in files.

A.2 DATA ACQUISITION PIPELINE

Time Synchronizing. The initial step involves synchronizing the time between Work Station 2
and the MoCap system. Work Station 2 should first synchronize with Internet time to calibrate
the entire capture environment. Subsequently, the Tentacle device retrieves the time from Work
Station 2, and then connects to the OptiTrack MoCap Sync module, providing a 24Hz SMPTE
timecode, upsampled to 120Hz in MoCap system, and exports as ground truth. During the execution
of subsequent scripts, virtual world sensors record the system time of Work Station 2 by each tick.
This ensures synchronization between the ground truth timestamps exported from Work Station 1 and
timestamps of all other data exported from Work Station 2.

Character MoCap, Motion Retargeting and Streaming. We employ character templates with 41
markers or an extended version with 49 markers. The latter incorporates preliminary hand motion
capture. The 49-marker version enhances the realism and naturalness of contact and interaction
between characters and objects, as discussed later. After the creation of the subject’s skeleton in
Motive on Work Station 1, the skeleton stream is transmitted to MotionBuilder on the same device.
The Motive-based skeleton is then retargeted to the character skeleton in CARLA Dosovitskiy et al.
(2017) definition. Finally, the character skeleton is streamed to Work Station 2’s CARLA UE4,
serving as the animation source for the pedestrian character.

Object MoCap and Streaming. We introduce interactive objects into the virtual scenes (e.g.,
suitcases and stools), each of which has a corresponding physical counterpart in the real world. The
purpose is to allow subjects to be engaged in diverse and authentic actions while interacting with
these objects. Specifically, we obtain 3D models of some objects from the OmniObject3D dataset Wu
et al. (2023) and their physical counterparts. Reflective markers are attached to these physical
objects, and rigid bodies are created for them in Motive on Work Station 1. The transformation
data is then streamed to Work Station 2’s CARLA UE4 Dosovitskiy et al. (2017). To improve
MoCap accuracy, markers should be attached asymmetrically to the object’s surface, and the resulting
rigid body coordinates represent the centroids of these marker combinations instead of the model
center. To mitigate deviations from the object model center, we simulate marker placement on the
object, designate the object’s center as the centroid, and configure markers accordingly (refer to
Fig. 2). Translation and rotation of characters and objects are accomplished by considering the
subjects’ transformation relative to the origin of the scene in MoCap. As characters and objects are
composited into the scene independently through various methods, we align their model spaces to
the coincident origin and coordinate system of the world space. This alignment precisely mirrors
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Figure 2: Simulating marks and adjusting models’ centers to facilitate reflecting transformations of
real objects in the virtual environment accurately.

Figure 3: Visualization of collected sample sequence.(a)-(b). Two different third-person perspectives
from cameras on the vehicle. (c) Egocentric perspective of the pedestrian. (d) SMPL-X groundtruth
obtained from MoCap.

real-world interactions between characters and objects into the CARLA Dosovitskiy et al. (2017)
environment.

Interfacing with the HMD. Similar to the process of adding objects, we create a rigid body for
HMD in Motive. Then, the rigid body is streamed to the OpenVR Driver on Work Station 2 to convey
data. To improve the recording effect of the pedestrian’s egocentric perspective, we consider it as
a prerequisite for the HMD’s proper functionality during most of the collection. The slot at the
midpoint of two eyes on the character’s skeleton serves as the actual source of positioning.

Scenario Running and Data Recording. With all the aforementioned preparations in place, the
scenario script can be executed, initiating the data recording process. Initially, the subject will appear
as a constructed pedestrian model in an empty street simulated by CARLA Dosovitskiy et al. (2017).
As the script begins, vehicles are generated at specific locations around the subject, some equipped
with sensors and others without. The vehicles follow preset logic, and sensors continuously record
data. The subject is notified to commence activities based on common sense(e.g., in a scenario
involving reversing into a parking space, the subject assists in vehicle reversing, employing gestures
and movements akin to real-life, all of which are recorded by in-car sensors).

B DATASET DETAILS

In our research, 54 volunteers are recruited to participate in our data collection. Each volunteer
is expected to choose several scenes we designed and react with our motion capture suit and VR
HMD. The data acquisition protocol involved the recording of 9 sequences for each chosen scene,
encompassing 3 distinct weather conditions and 3 specific car modes within the selected scene. Each
recorded sequence contains 6 third-view RGB videos (with different perspectives and camera speeds),
1 egocentric video, and 2 LiDAR point sequences, as well as real-time annotation-free accurate
labels (i.e., (SMPL-X Loper et al. (2015), 3D/2D skeletons and bounding boxes, third-view camera
extrinsic, semantic LiDAR labels, and LiDAR parameters) from MoCap and CARLA simulator. Our
PMR dataset is characterized by remarkable diversity, spanning across different characters, weather
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Figure 4: The characters used in our Pedestrian Motion Reconstruction (PMR) dataset.

conditions, and scenes, making it a valuable resource for exploring a wide range of scenarios and
applications. For details:

• Characters: As depicted in Fig. 4, our virtual scenes feature a total of 8 distinct characters
embodying pedestrians. Tailoring each character to the volunteer’s appearance, body shape,
and gender, we tend to retarget the volunteer’s motion to one of the eight characters.

• Weathers: Fig. 6 provides a comprehensive display of the 15 unique weather conditions
included in our PMR dataset. To emphasize the variety of our scenes, we highlight 6
representative kinds of weather in Fig. 10.

• Scenes: We devised a set of 12 scenarios, intending to elicit diverse reactions from
volunteers within various environmental and traffic contexts. Notably, two vehicles within
these scenes are equipped with a comprehensive array of sensors, including three RGB
sensors and one LiDAR sensor for each car. Each scenario is characterized by three distinct
car modes, such as maintaining a constant speed, braking, stopping, and others, with the
aim of capturing pedestrians from various viewpoints and observing a range of reactions.
Detailed visual representations of each scene and car mode are provided in Table 3, Table 4.
Additionally, we have curated one representative sequence for each scene, presenting our
recorded data in Fig. 6.

This detailed construction of characters, weather conditions, and urban scenarios in the PMR dataset
not only enriches the dataset’s diversity but also ensures a realistic approximation of urban pedestrian
dynamics, providing a robust foundation for advancing research in human pose estimation and
interaction modeling.

Data Statistics: In Fig. 9, we provide a comprehensive statistical overview of our PMR dataset. The
plots depict the distribution of the number of frames categorized by weather, scene, and individual ID.
Additionally, distributions are showcased for the duration and frames per sequence, camera speed,
and the count of human LiDAR points. Notably, our dataset accounts for occlusion-aware pose
estimation, and we depict the distribution of the quantities of visible keypoints in Fig. 9 (g).

Extreme Cases: These cases primarily include the following: 1) Pedestrians falling down; 2) Serious
traffic accidents; 3) Extreme weather conditions, such as dense fog and thunderstorms; 4) Pedestrians
carrying bulky objects. Datasets captured in real-world conditions typically contain few samples of
these low-probability scenarios. Human motions may behave abnormally in such situations, which
can lead to challenges when applying current human detection and pose estimation methods. Our
dataset is designed to explore these cases more comprehensively. We provide additional examples of
extreme scenarios in Fig. 7.
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Human Intention In our work, we have designed quantified basic modes to enable the pedestrians
to interact with the cars, from which we can investigate more about the human intention and the
interaction paradigm between vehicles and perdestrians. Pedestrians may act differently under the
same scene. Therefore, we leverage GPT4-o to generate detailed decriptions about the human
intention from image sequences. Examples are shown in Fig. 8.

C MULTI-VIEW SLAHMR

The Multi-View SLAHMR extends the original single-view framework to incorporate inputs from
multiple perspectives. In contrast to the single-view SLAHMR, Multi-View SLAHMR leverages
simultaneous video feeds from various angles. This approach enriches the dataset with diverse
observational data, enhancing the model’s ability to reconstruct human motion accurately in world
coordinates.

Single-View Setting: We first review the original single-view SLAHMRYe et al. (2023). The
original SLAHMR takes as input a video with T frames of a scene with N people. The goal is
to recover the global motion of all detected people in the world coordinates system in the form of
SMPL model which represent each person i at timestamp t via global orientation ϕi

t ∈ R3, body pose
θi
t ∈ R22×3, shape βi ∈ R16, shared over all timestamps t, and root translation γi

t ∈ R3, described
in:

Pi
t = {ϕi

t,θ
i
t,β

i,γi
t}. (1)

The SMPL model uses these parameters to generate human joints J i
t ∈ R3×22 of a human body

through the differentiable function M :

J i
t =M(ϕi

t,θ
i
t,β

i) + γi
t . (2)

Body pose θi
t, shape βi

t is from body-centric, while root orientation ϕi
t and root translation γi

t are
different under different coordinates. To describe each person i at timestamp t in world and camera
coordinate respectively, we define wPi

t and cPi
t be:

wPi
t = {wϕi

t,θ
i
t,β

i,wγi
t}. (3)

cPi
t = {cϕi

t,θ
i
t,β

i, cγi
t}. (4)

Before the main optimization process, SLAHMR estimates camera pose (camera-to-world transform)
{wc Rt,

w
c Tt} by state-of-the-art SLAM system Teed & Deng (2021), as well as each person’s per-

frame pose in the camera coordinate cP̂i
t by SOTA 3D tracking system, PHALP Rajasegaran et al.

(2022). Then, SLAHMR initializes wPi
t using {wc Rt,

w
c Tt} and cP̂i

t :

wϕi
t =

w
c Rt · cϕ̂

i

t, βi = β̂i

wγi
t =

w
c Rt · cγ̂i

t + α · wc Tt, θi
t = θ̂i

t,
(5)

where α is also an optimization variable and initialized with 1, referring to the relative scale between
the displacement of the camera and that of people.

Joint reprojection loss is the main loss during the whole optimization process, which is defined using
the image observations (i.e., the detected 2D keypoints xit and confidence ψi

t) and projected 3D joints
estimates:

Edata =

N∑
i=1

T∑
t=1

ψi
tρ(ΠK(wc R

−1
t · wJ i

t − α · wc R−1
t · wc Tt)− xit), (6)

wJ i
t =M(wϕi

t,θ
i
t,β

i) + wγi
t, (7)

where ΠK is pespective camera projection with camera intrinsics matrix K ∈ R2×3, and ρ is the
robust Geman-McClure function.

SLAHMR divides the optimization process into three stages (i.e., root optimization, smooth opti-
mization, and motion chunks optimization) to gradually introduce additional optimization variables
and constraints. In the first stage, SLAHMR aligns the parameters of people in the world with the
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observed 2D keypoints by optimizing only the human orientation and translation in world coordinate
{wϕi

t,
wγi

t} of the human pose parameters using Edata:

min
{{wϕi

t,
wγi

t}T
t=1}N

i=1

λdataEdata. (8)

In the second stage, several priors Ye et al. (2023) (i.e., smoothness prior Esmooth, shape prior Eβ , and
pose prior Epose) are added and the optimization objectives has become the entire wPi

t and camera
scale α. The overall loss function is defined as:

min
α,{{wPi

t}T
t=1}N

i=1

λdataEdata + λβEβ + λposeEpose + λsmoothEsmooth. (9)

In the final stage, SLAHMR introduces a learned motion prior that better captures the distribution
of plausible human motions from HuMoR Rempe et al. (2021) Eprior and also the environment
constraints Eenv = λskateEskate + λconEcon to prevent unrealistic foot-skate. The optimization for this
stage is:

min
α,{{wPi

t}T
t=1}N

i=1

λdataEdata + λβEβ + λposeEpose + Eprior + Eenv (10)

Multi-View Setting: In our multi-view setting, the input turns to be C videos (captured from
arbitrary perspectives), each with T synchronized frames of the same scene with N people. The
objective remains to recover the global motion of all detected people in the world coordinates system.
Transitioning SLAHMR to accommodate inputs from multi-view videos faces two key problems:
(1) the “world coordinate” in SLAHMR is defined by the coordinate of camera motions estimated
by SLAM; (2) most SLAM systems struggle to predict multiple independent cameras extrinsic in a
consistent coordinate system. Consequently, the extrinsic estimated for multiple cameras exist under
disparate coordinates, impeding our ability to ascertain the relative positions of these cameras.

In order to leverage the reprojection constraints on varied views, we need to align C camera motions
under w1, . . . , wC into a consistent world coordinate system w1. Estimated human tracks are the only
commonality of theC views and therefore become the only possible anchor to perform transformation.

The motion of the j-th camera cj at time t under the j-th “world coordinate” wj is (here we also use
camera-to-world transform to denote camera motion):

{wj
cj Rt,

wj
cj Tt,

wjα}. for j = 1, 2 . . . C, (11)

We first go through the root optimization stage and smoothness optimization stage underC coordinates
separately and derive human motions wjPi

t = {wjϕi
t,θ

i
t,β

i,wjγi
t} by 8 and 9, as well as human

joints wjJ i
t by 7. Then we assume:

Assumption C.1 The estimated human motions wjPi
t for j = 1, 2 . . . C are relatively accurate.

We claim the first view under the first “world coordinate” w1 as the primary view and other views as
secondary views. Convert each of the secondary camera j(j > 1) under its own “world coordinates”
wj to the primary coordinates w1 by applying Umeyama alignment Umeyama (1988) to joints w1J
and wjJ : [

w1
wj
R, w1

wj
T, w1

wj
s
]
= U(wjJ ,w1J) (12)

w1
cj Rt =

w1
wj
R · wj

cj Rt, (13)

w1α · w1
cj Tt =

w1
wj
s · w1

wj
R · wjα · wj

cj Tt +
w1
wj
T, (14)

where U denotes the Umeyama alignment algorithm.

Till now, all cameras motions wj
cj Rt,

wj
cj Tt for time t = 1, . . . , T and view j = 1, . . . , C are converted

to the primary coordinate w1, denoted as w1
cj Rt,

w1
cj Tt. Before we apply the reprojection loss under

different views to the human motion, we add a camera optimization stage to align the human motion
estimated from w1 and the motion of camera cj(j > 1) since Ass. C.1 is a rough assumption. In this
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Table 1: Optimization process comparison between the single-view SLAHMR and our modified
multi-view SLAHMR.

Input Stages Loss Optimization Variable

single-view
Root Optimization Edata

wϕi
t,
w γi

t

Smooth Optimization Edata, Eβ , Epose, Esmooth
wPi

t , α
Motion Chunks Optimization Edata, Eβ , Epose, Eprior , Eenv

wPi
t , α

multi-view

Root Optimization
w1E

(1)
data

w1ϕi
t,
w1 γi

t
... ...

wCEC
data

wCϕi
t,
wC γi

t

Smooth Optimization 1
w1E

(1)
data, w1Eβ , w1Epose, w1Esmooth

w1Pi
t , w1α

... ...
wCEC

data, wCEβ , wCEpose, wCEsmooth
wCPi

t , wCα

Camera Optimization
E

(2)
data, Ec2

CamSmooth
w1
c2 Rt, w1

c2 Tt
... ...

EC
data, EcC

CamSmooth
w1
cCRt, w1

cCTt
Smooth Optimization 2 E

(1)
data,...,EC

data, Eβ , Epose, Esmooth
w1Pi

t , w1α

Motion Chunks Optimization E
(1)
data,...,EC

data, Eβ , Epose, Eprior , Eenv
w1Pi

t , w1α

Initialization Root 
Optimization

Smooth 
Optimization1

Motion Chunks 
Optimization

initialization Root 
Optimization

Smooth 
Optimization1

Motion Chunks 
Optimization

Initialization Root 
Optimization

Smooth 
Optimization1

Initialization Root 
Optimization

Smooth 
Optimization1

Camera 
Optimization

Camera 
Optimization

Smooth 
Optimization2

Camera 
Optimization

Video 1

Video 1

Video c

Video C C
oo

rd
in

at
e 
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ig

nm
en

t

...

...

...

...

...

...

...

...

...

...

Figure 5: Optimization pipeline of single-view SLAHMR Ye et al. (2023) (top) and our modified
multi-view SLAHMR(bottom). Different colors refer to different coordinates.

stage, for camera cj(j > 1), we optimize w1
cj Rt, w1

cj Tt by the reprojection loss under view j, Ej
data

and camera smoothness loss Ej
camSmooth:

min
{{w1

cj
Rt,

w1
cj

Tt}T
t=1}C

j=2

C∑
j=2

(λjdataE
j
data + λ

cj
camSmoothE

cj
camSmooth),

Ej
data =

N∑
i=1

T∑
t=1

ψi,j
t ρ(Π

cj

K(w1
cj R

−1
t · w1J i

t −w1 α · w1
cj R

−1
t · w1

cj Tt)− xi,jt ),

(15)

where the subscript j means the variable is of view j, the subscript cj means the variable is of camera
j, the subscript wj means the variable is under the j-th “world coordinate”. Subsequently, we apply
the smooth optimization again, as well as the motion chunks optimization, with the 2D reprojection
loss from all views:

min
w1α,{{w1Pi

t}T
t=1}N

i=1

C∑
j=1

λjdataE
j
data + λβEβ + λposeEpose + λsmoothEsmooth,

min
w1α,{{w1Pi

t}T
t=1}N

i=1

C∑
j=1

λjdataE
j
data + λβEβ + λposeEpose + Eprior + Eenv.

(16)

We summarize the difference between the original single-view SLAHMR and our modified multi-view
SLAHMR in Table 1 and Fig. 5.
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Table 2: cross-dataset evaluation on hmr using different training data.

Training
data

Test on H36M
(Ionescu et al., 2014) Test on PMR Test on 3DPW

(von Marcard et al., 2018)
Test on mpi-inf-3dhp

(Mehta et al., 2017)
MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓

100% H36M 35.287 25.069 346.068 151.195 342.373 159.088 416.254 222.917
60% H36M + 40% PMR 83.836 55.692 134.570 75.687 261.466 131.233 287.729 159.462

D CROSS-DATASET EVALUATION ON HMR

We first train BEV on 300,000 frames from the Human3.6M (H36M) dataset (Ionescu et al., 2014).
Then, we randomly replace 40%of the training data with our PMR dataset to train a new model from
scratch. We test the results on the test sets of both H36M and our PMR dataset, as well as two other
unseen realistic datasets. The results, summarized in Table 2, indicate that the gap between different
realistic datasets is also non-negligible compared to the gap between realistic and virtual datasets.
Our PMR dataset can effectively enhance the diversity of datasets and reduce the gap to unseen data.
The results on both BEVStereo in Section 4.4 and hmr indicate that the gap between the domain gap
is actually acceptable. Our PMR dataset can effectively enhance the diversity of datasets and reduce
the gap to unseen data.

E LIMITATIONS AND POTENTIAL IMPACTS

Limitations: Although we have conducted a wide range of tasks and evaluations on our dataset, there
still remains scope for further exploration. A notable gap is the lack of a thorough connection between
third-view and first-view perspectives, which could serve as an invaluable resource for investigating
interactions between vehicles and pedestrians in autonomous driving scenarios. Moreover, an
optimization-based multi-view human reconstruction pipeline is too complex and time-consuming.
This is because of the inherently challenging nature of reconstructing human motion from multiple
independently moving cameras, despite the optimization-based method being a direct approach
leveraging state-of-the-art single-view techniques. Learning-based methods are much faster, but
recovery of human motions even from a single moving camera is still an area with limited viable
learning-based solutions, largely due to the scarcity of training data. Therefore, our large-scale
PMR dataset can benefit future both single-view and multi-view learning-based human motion
reconstruction.

Potential Impacts: Our proposed PMR database, a large-scale and annotation-free database aimed at
autonomous driving scenarios, holds the potential to promote prosperity and development in the field
of autonomous driving. However, it also introduces several considerable risks: (1) The widespread
adoption of autonomous vehicles could lead to job losses in industries such as transportation and
logistics. Drivers of taxis, trucks, and delivery vehicles may find themselves unemployed as au-
tonomous technology replaces human operators. (2) The introduction of autonomous vehicles raises
complex legal and regulatory questions. Determining liability in the event of accidents, establish-
ing uniform safety standards, and adapting existing laws to accommodate autonomous technology
present significant challenges. (3) While autonomous vehicles have the potential to reduce traffic
congestion and emissions through optimized routing and platooning, they may also contribute to
increased vehicle miles traveled if people choose to use them more frequently, leading to greater
energy consumption and environmental damage.

F FUTURE WORK

Our data collection process is highly flexible and can be extended to other simulators, such as
AirSim Shah et al. (2017). To support community efforts, we will open-source the configuration files
as prior works Wang et al. (2022); Riaz et al. (2023), enabling replication of the collected scenarios
and facilitating contributions to this dataset. Additionally, by integrating these simulated scenarios
with real human motion dataset, we aim to further enhance the diversity and representativeness of the
PMR dataset.

Moreover, incorporating personality-based behavior generation could significantly enhance the depth
of human motion modeling. As part of our future research, we plan to disentangle attribute-related and
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Figure 6: Weather diversity in the proposed Pedestrian Motion Reconstruction (PMR) dataset.

attribute-unrelated features from pedestrian behavior using a Semantics-Guided Neural Network as
the feature extractor. Specifically, a disentangled bottleneck is employed to separate attribute-related
and attribute-unrelated features, guided by an attribute classifier. Novel pose sequences are then
generated by combining the specific attribute embeddings from one sequence with the embeddings
representing the remaining attributes from another sequence. For example, if we have subject a’s
motion under scene 1 and subject b’s motion under scene 2, we are curious about how subject 1
will react under scene 2. Preliminary results, presented in Fig. 11, demonstrate the feasibility of
this approach. We believe this work has the potential to create more diverse and realistic pedestrian
motion patterns.
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(a) Scene 1 (Carmode 2): Crossing the bridge.

(b) Scene 2 (Carmode 0): Crossing the bent road.

(c) Scene 3_2 (Carmode 2): Idling in the roundabout.

(d) Scene 3_3 (Carmode 2): Crossing the slopped intersection.

(e) Scene 4 (Carmode 0): Witnessing collision.

(f) Scene 4_2 (Carmode 2): Assisting in reversing.

Bird eye’s view of each scene 3rd-view image sequence from Sensors 1 Ego-view image sequence
3rd-view image sequence from Sensors 2 Annotations
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(g) Scene 5 (Carmode 1): Appearing from the blind spot.

(h) Scene 5_2 (Carmode 0): Flagging down vehicles at the roadside.

(i) Scene 5_3 (Carmode 2): Walking along the lane.

(j) Scene 6 (Carmode 1): Seeking help.

(k) Scene 7 (Carmode 2): Crossing the intersection.

(l) Scene 7_2 (Carmode 0): Exiting the parking space.

Bird eye’s view of each scene 3rd-view image sequence from Sensors 1 Ego-view image sequence
3rd-view image sequence from Sensors 2 Annotations

Figure 6: Contents and data schematics of 12 Scenes. The bird’s eye view is for illustrative purposes
only. We selected 2 frames from synchronized videos of each perspective, as showcased in the image.
Sensors 1 and Sensors 2 denote various sensors (multi-view RGB sensors and LiDAR sensors) in Car
1 and Car 2, respectively. Here, we have marked only one sensor in each car for clarity.
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Figure 7: Examples of extreme cases.
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Figure 8: Examples of human intention descriptions generated from GPT4-o.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 9: PMR dataset statistics. In (a), (b), and (c), we show the number of frames for different
weathers, scenes, and participants(id), respectively. (d) and (e) exhibit the distribution of the duration
and number of frames for a single third-view sequence. (f) shows the distribution of the height of 2D
human bounding box in our captured images with a total height of 640 pixels. In (g), we statistically
analyzed the distribution of visible keypoints quantities in situations where individuals were partially
obscured. In (h) and (g), we shows the distribution of camera speed and number of human LiDAR
points for our third-view data and LiDAR data respectively. (j) shows the distribution of pedestrians’
shape in terms of SMPL-X. (k) shows the distribution of the speed of pedestrians’ joints (the overall
pedestrian’s speed can be represented by the speed of Pelvis), from which we can also find that the
motion of limbs are much more flexible than other human parts. Note that we calculate the shape in
(j) by sequences and the speed in (k) by frames, leading to distinct levels on the frequency.
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Figure 10: Examples of scene variety under the same weather conditions.

Figure 11: The first two rows show interactions with vehicles seeking help (scene 6) by Subject 1
and Subject 2 under different weather conditions from the PMR dataset. The third row presents the
generated pose sequence for Subject 1 under the weather condition of Subject 2.
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