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ABSTRACT

Off-policy learning ability is an important feature of reinforcement learning (RL)
for practical applications. However, even one of the most elementary RL algo-
rithms, temporal-difference (TD) learning, is known to suffer form divergence
issue when the off-policy scheme is used together with linear function approxi-
mation. To overcome the divergent behavior, several off-policy TD-learning al-
gorithms, including gradient-TD learning (GTD), and TD-learning with correc-
tion (TDC), have been developed until now. In this work, we provide a unified
view of such algorithms from a purely control-theoretic perspective, and propose
a new convergent algorithm. Our method relies on the backstepping technique,
which is widely used in nonlinear control theory. Finally, convergence of the pro-
posed algorithm is experimentally verified in environments where the standard
TD-learning is known to be unstable.

1 INTRODUCTION

Since Mnih et al. (2015), which has demonstrated that deep reinforcement learning (RL) outper-
forms human in several video games (Atari 2600 games), significant advances has been made in
RL theory and algorithms. For instance, Van Hasselt et al. (2016); Lan et al. (2020); Chen et al.
(2021) proposed some variants of the so-called deep Q-network (Mnih et al., 2015) that achieves
higher scores in Atari games than the original deep Q-network. An improved deep RL was devel-
oped in Badia et al. (2020) that performs better than average human scores across 57 Atari games.
Not only performing well in video games, but Schrittwieser et al. (2020) also have shown that an RL
agent can self-learn chess, Go, and Shogi. Furthermore, RL has shown great success in real world
applications, e.g., robotics (Kober et al., 2013), healthcare (Gottesman et al., 2019), and recommen-
dation systems (Chen et al., 2019).

Despite the practical success of deep RL, there is still a gap between theory and practice. One
of the notorious phenomena is the deadly triad (Sutton & Barto, 2018), the diverging issue of the
algorithm when function approximation, off-policy learning, and bootstrapping are used together.
One of the most fundamental algorithms, the so-called temporal-difference (TD) learning (Sutton,
1988), is known to diverge under the deadly triad, and several works have tried to fix this issue for
decades. In particular, the seminar works Sutton et al. (2008; 2009) introduced the so-called GTD,
gradient-TD2 (GTD2), and TDC, which are off-policy, and have been proved to be convergent with
linear function approximation. More recently, Ghiassian et al. (2020) suggested regularized version
of TDC called TD learning with regularized correction (TDRC), and showed its favorable features
under off-policy settings. Moreover, Lee et al. (2021) developed several variants of GTD based on
primal dual formulation.

On the other hand, backstepping control (Khalil, 2015) is a popular method in designing stable
controllers for nonlinear systems with special structures. The design technique offers a wide range
of stable controllers, and is proved to be robust under various settings. It has been used in various
fields including quadrotor helicopters (Madani & Benallegue, 2006), mobile robots (Fierro & Lewis,
1997), and ship control (Fossen & Strand, 1999). Using backstepping control technique, in this
paper, we develop a new convergent off-policy TD-learning which is a single time-scale algorithm.

In particular, the goal of this paper is to introduce a new unifying framework to design off-policy TD-
learning algorithms under linear function approximation. The main contributions are summarized
as follows:
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• We propose a systemic way to generate off-policy TD-learning algorithms including GTD2
and TDC from control theoretic perspective.

• Using our framework, we derive a new TD-learning algorithm, which we call backstepping
TD (BTD).

• We experimentally verify its convergence and performance under various settings including
where off-policy TD has known to be unstable.

In particular, most of the previous works on off-policy TD-learning algorithms (e.g., GTD2 and
TDC) are derived based on optimization perspectives starting with an objective function. Then,
the convergence is proved by proving stability of the corresponding O.D.E. models. In this paper,
we follow reversed steps, and reveal that an off-policy TD-learning algorithm (called backstepping
TD) can be derived based on control theoretic motivations. In particular, we develop stable O.D.E.
models first using the backstepping technique, and then recover back the corresponding off-policy
TD-learning algorithms. The new analysis reveals connections between off-policy TD-learning and
notions in control theory, and provides additional insights on off-policy TD-learning with simple
concepts in control theory. This sound theoretical foundation established in this paper can potentially
motivate further analysis and developments of new algorithms.

Finally, we briefly summarize TD learning algorithms that guarantee convergence under linear func-
tion approximation. GTD (Sutton et al., 2008), GTD2 and TDC (Sutton et al., 2009) have been de-
veloped to approximate gradient on mean squared projected Belllman error. Later, GTD and GTD2
has been discovered to solve minimax optimization problem (Macua et al., 2014; Liu et al., 2020).
Such sadde-point view point of GTD has led to many interesting results including Du et al. (2017);
Dai et al. (2018); Lee et al. (2021). TDRC (Ghiassian et al., 2020) adds an additional term similar to
regularization term to one-side of parameter update, and tries to balance between the performance
of TD and stability of TDC. TDC++ (Ghiassian et al., 2020) also adds an additional regularization
term on both sides of the parameter update. Even though TDRC shows good performance, it uses
additional parameter condition to ensure convergence, whereas TDC++ does not.

2 PRELIMINARIES

2.1 NONLINEAR SYSTEM THEORY

Nonlinear system theory will play an important role throughout this paper. Here, we briefly review
basics of nonlinear systems. Let us consider the continuous-time nonlinear system

ẋt = f(xt, ut), x0 ∈ Rn, (1)

where x0 ∈ Rn is the initial state, t ∈ R, t ≥ 0 is the time, xt ∈ Rn is the state, ut ∈ Rn is the
control input, and f : Rn × Rn → Rn is a nonlinear mapping. An important concept in dealing
with nonlinear systems is the equilibrium point. Considering the state-feedback law ut = µ(xt),
the system can be written as ẋt = f(xt, ut) = f(xt, µ(xt)) =: f(xt), and a point x = xe in the
state-space is said to be an equilibrium point of (1) if it has the property that whenever the state
of the system starts at xe, it will remain at xe (Khalil, 2015). For ẋt = f(xt), the equilibrium
points are the real roots of the equation f(x) = 0. The equilibrium point xe is said to be globally
asymptotically stable if for any initial state x0 ∈ Rn, xt → xe as t → ∞.

An important control design problem is to construct a state-feedback law ut = µ(xt) such that
the origin becomes the globally asymptotically stable equilibrium point of (1). To design a state-
feedback law to meet such a goal, control Lyapunov function plays a central role, which is defined
in the following definition.

Definition 2.1 (Control Lyapunov function (Sontag, 2013)). A positive definite function V : Rn →
R is called a control Lyapunov function (CLF) if for all x ̸= 0, there exists a corresponding control
input u ∈ Rm that satisfies the inequality, ∇xV (x)⊤f(x, u) < 0 for all x ̸= 0.

Once such a CLF is found, then it guarantees that there exists the control law that stabilizes the
system. Moreover, the corresponding state-feedback control law can be extracted from the CLF, e.g.,
µ(x) = argminu ∇xV (x)⊤f(x, u) provided that the minimum exists and unique. The concept of
control Lyapunov function will be used in the derivations of our main results. For the autonomous
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system, ẋt = f(xt), and Lypaunov function V : Rn → R, Lie derivative is defined as LfV (x) :=

∇xV (x)⊤f(x) so that V̇ (xt) = LfV (xt) along the solution.

2.2 STOCHASTIC APPROXIMATION AND O.D.E. APPROACH

Including Q-learning (Watkins & Dayan, 1992) and TD-learning (Sutton, 1988), reinforcement
learning algorithms can be considered as stochastic approximation (Robbins & Monro, 1951) de-
scribed by

xk+1 = xk + αk(f(xk) + ϵk), (2)

where f : Rn → Rn is a nonlinear mapping, and ϵk is an i.i.d. noise. Borkar and Meyn the-
orem (Borkar & Meyn, 2000) is a well-known method to bridge the asymptotic convergence of
stochastic approximation and the stability of its corresponding O.D.E. model, which can be ex-
pressed as

ẋt = f(xt), x0 ∈ Rn, (3)

where x0 ∈ Rn is initial state, and t ∈ R, t ≥ 0 is the time.

Borkar and Meyn theorem (Borkar & Meyn, 2000) states that under the conditions in Assumption 7.1
in the Appendix, global asymptotic stability of the O.D.E. (3) leads to asymptotic convergence of
the stochastic approximation update (2), which is formally stated in the following lemma.
Lemma 2.1 (Borkar and Meyn theorem (Borkar & Meyn, 2000)). Suppose that Assumption 7.1 in
the Appendix holds, and consider the stochastic approximation in (2). Then, for any initial x0 ∈ Rn,
supk≥0 ||xk|| < ∞ with probability one. In addition , xk → xe as k → ∞ with probability one,
where xe is the unique equilibrium point of the O.D.E. in (3).

The main idea of Borkar and Meyn theorem is as follows: iterations of a stochastic recursive al-
gorithm follow the solution of its corresponding O.D.E. in the limit when the step-size satisfies the
so-called Robbins-Monro condition (Robbins & Monro, 1951) in (33) in the Appendix. Therefore,
by proving asymptotic stability of the O.D.E., we can induce convergence of the original algorithm.
In this paper, we will use an O.D.E. model of TD-learning, which is expressed as a linear time-
invariant system.

2.3 BACKSTEPPING CONTROL

This section provides the concept of the backstepping control (Kokotovic, 1992; Khalil, 2015),
which will be the main tool in this paper to derive TD-learning algorithms. The backstepping tech-
nique is a popular tool for generating a CLF (control Lyapunov function) for nonlinear systems with
specific structures. In particular, let us start with the following general nonlinear system:

ẏt = f(yt) + g(yt)xt (4)
ẋt = ut,

where yt ∈ Rm, xt ∈ Rm are the states, ut ∈ Rm is the input, and f : Rm → Rm and g : Rm → R
are continuous functions. The first system is a nonlinear system with a particular affine structure,
and the second system is simply an integrator. It can be seen as a cascade interconnection of two
systems, where the second system’s state is injected to the input of the first system. The backstepping
control technique gives us a systematic way to generate a CLF for such particular nonlinear systems
provided that the first system admits a CLF independently. To this end, we suppose that the first
system admits a CLF. Through the backstepping approach, designing a stable control law for the
above system can be summarized in the following steps:

Step 1. Consider xt in (4) as virtual input x̃(yt) (state-feedback controller), and consider the fol-
lowing system: λ̇t = f(yt) + g(yt)x̃(yt). Design x̃(yt) such that the above system admits
a CLF V , i.e., it admits a positive definite and radially unbounded function V such that its
time derivative is negative definite, i.e.,V̇ (yt) < 0,∀yt ̸= 0.

Step 2. Denote the error between the virtual state-feedback controller x̃(yt) and state variable xt

as zt := xt − x̃(yt). Now, rewrite the original O.D.E. in (4) with the new variable (yt, zt):
d
dt

[
yt
zt

]
=

[
f(yt) + g(yt)x̃(yt) + g(yt)zt

ut − ˙̃x(yt)

]
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Step 3. Design the control input ut such that the above system is stable. One popular choice is to
consider the CLF Vc(yt, zt) := V (yt) + ||zt||2/2, where V (yt) is defined in Step 1. Then
choose ut such that the time derivative of Vc(yt, zt) to be negative definite.

A simple example of designing stabilizing control law by backstepping technique is given in Ap-
pendix Section 7.3.

2.4 MARKOV DECISION PROCESS

In this paper, we consider a Markov decision process (MDP) characterized by the tuple
(S,A,P, γ, r), where S := {1, 2, . . . , |S|} stands for the set of finite state space, |S| denotes
the size of S, A := {1, 2, . . . , |A|} denotes the set of finite action space, |A| is the size of A,
γ ∈ (0, 1) is the discount factor, P : S × A × S → [0, 1] denotes the Markov transition kernel,
and r : S × A × S → R means the reward function. In particular, if an agent at state s ∈ S , takes
action a ∈ A, then the current state transits to the next state s′ ∈ S with probability P(s, a, s′),
and the agent receives reward r(s, a, s′). Each element of the state to state transition matrix under
policy π, denoted by Pπ ∈ R|S|×|S| is [Pπ]ij :=

∑
a∈A

π(a|i)P(i, a, j), 1 ≤ i, j ≤ |S|, where

[Pπ]ij corresponds to i-th row and j-th column element of matrix Pπ . Moreover, the stationary
state distribution induced by policy µ, is denoted as dµ : S → [0, 1], i.e., dµ⊤Pµ = dµ⊤. With the
above setup, we define the following matrix notations:

Dµ :=

d
µ(1)

. . .
dµ(|S|)

 ∈ R|S|×|S|, Rπ =


Ea∼π[r(s, a, s

′)|s = 1]
Ea∼π[r(s, a, s

′)|s = 2]
...

Ea∼π[r(s, a, s
′)|s = |S|]

 ∈ R|S|,

where Dµ is a diagonal matrix of the state distribution induced by behavior policy µ, each
element of Rπ is the expected reward under policy π at the corresponding state. The pol-
icy evaluation problem aims to approximate the value function at state s ∈ S, vπ(s) :=
E
[∑∞

k=0 γ
kr(Sk, Ak, Sk+1)

∣∣S0 = s, π
]
, where the trajectory is generated under policy π : S ×

A → [0, 1]. In this paper, we consider the linear function approximation to approximate the
value function vπ(s). In particular, we parameterize the value function vπ(s) with ϕ⊤(s)ξ, where
ϕ : S → Rn is a pre-selected feature vector with ϕ(s) := [ϕ1(s) · · · ϕn(s)], ϕ1, . . . , ϕn : S → R
are feature functions, and ξ ∈ Rn is the learning parameter. The goal of the policy evaluation
problem is then to approximate the value function vπ(s) using this linear parameterization, i.e.,
ϕ⊤(s)ξ ≈ vπ(s). Moreover, using the matrix notation Φ := [ϕ(1), ϕ(2), · · · , ϕ(|S|)]⊤ ∈ R|S|×n,
called the feature matrix, the linear parameterization can be written in the vector form Φξ. We also
assume that Φ is full column rank matrix throughout the paper, which is a standard assumption (Sut-
ton et al., 2008; 2009; Ghiassian et al., 2020; Lee et al., 2021).

2.5 TEMPORAL DIFFERENCE LEARNING

This section provides a brief background on TD-learning (Sutton, 1988). Suppose that we have
access to stochastic samples of state sk from the state stationary distribution induced by the behav-
ior policy µ, i.e., sk ∼ dµ(·), and action is chosen under behavior policy µ, i.e., ak ∼ µ(·|sk).
Then, we observe the next state s′k following s′k ∼ P(·, ak, sk), and receive the reward rk :=
r(sk, ak, s

′
k). Using the simplified notations for the feature vectors ϕk := ϕ(sk), ϕ′

k = ϕ(s′k).
the TD-learning update at time step k with linear function approximation can be expressed as
ξk+1 = ξk+αkρkδk(ξk)ϕk, where αk > 0 is the step-size, δk(ξk) := rk+γϕ′⊤

k ξk−ϕ⊤
k ξk is called

the temporal difference or temporal difference error (TD-error), and ρk := ρ(sk, ak) = π(ak|sk)
µ(ak|sk)

is called the importance sampling ratio (Precup et al., 2001). The importance sampling ratio re-
weights the TD-error to handle the mismatch between the behavior policy µ and target policy π. It
is known that TD-learning with linear function approximation and off-policy learning scheme does
not guarantee convergence in general. The above stochastic approximation aims to find fixed point
of the following projected Bellman equation, which is, after some manipulations, expressed as:

Φ⊤DµΦξ∗ − γΦ⊤DµPπΦξ∗ = Φ⊤DµRπ. (5)
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To simplify the expressions, let use introduce one more piece of notations:

A := Es∼dµ(s),s′∼Pπ(s′|s)[ϕ(s)(ϕ(s)− γϕ(s′))⊤] = Φ⊤DµΦ− γDµPπΦ ∈ Rn×n,

b := Es∼dµ(s),a∼π(a|s),s′∼P (s′|s,a)[r(s, a, s
′)ϕ(s)] = Φ⊤DµRπ ∈ Rn×1.

Even though we can use arbitrary distribution, for simplicity we assume stationary distribution of µ.
Now, we can rewrite (5) compactly as

Aξ∗ = b. (6)

The corresponding O.D.E. for TD-learning can be written as ξ̇t = Aξt − b, ξ0 ∈ Rn. Using the
coordinate transform xk := ξk − ξ∗, we get the O.D.E. ẋt = Axt, x0 ∈ Rn, whose origin is
globally asymptotically stable equilibrium point if ρ(s, a) = π(a|s)

µ(a|s) = 1 for all (s, a) ∈ S × A.
Throughout the paper we will use the vector xk := ξk − ξ∗ to represent the coordinate transform of
ξk to the origin, and will use ξt and xt to denote the corresponding continuous-time counterparts of
ξk and xk, respectively.

2.6 GRADIENT TEMPORAL DIFFERENCE LEARNING

To fix the instability issue of off-policy TD-learning under linear function approximation, Sutton
et al. (2008) and Sutton et al. (2009) introduced various stable off-policy TD-learning algorithms,
called GTD (gradient TD-learning), GTD2, and TDC (temporal difference correction). The idea be-
hind these algorithms is to minimize the mean-square error of projected Bellman equation (MSPBE)
minξ∈Rn

1
2 ||Φ

⊤Dµ(Rπ+γPπΦξ−Φξ)||2(Φ⊤DµΦ)−1 , where ||x||D :=
√
x⊤Dx, and the global min-

imizer of MSPBE corresponds to the solution of (6). The core idea of the algorithms is to introduce
an additional variable λk ∈ Rn to approximate the stochastic gradient descent method for MSPBE
as an objective function. In particular, GTD2 update can be written as

λk+1 = λk + αk(−ϕ⊤
k λk + ρkδk(ξk))ϕk, ξk+1 = ξk + αk(ϕ

⊤
k λkϕk − ρkγϕ

⊤
k λkϕ

′
k).

We denote λt to denote continuous time part of λk. Since the fixed point for λk is zero, it doesn’t
require coordinate transformation. It is a single time-scale algorithm because it uses a single step-
size αk. The corresponding O.D.E. is expressed as λ̇t = −Cλt − Axt, ẋt = A⊤λt, where C :=
Es∼dµ(s)[ϕ(s)ϕ

⊤(s)] = Φ⊤DµΦ ∈ Rn×n. Similarly, TDC update can be written as

λk+1 = λk + αk(−ϕ⊤
k λk + ρkδk(ξk))ϕk (7)

ξk+1 = ξk + βk(−ρkγϕ
⊤
k λkϕ

′
k + ρkδk(ξk)ϕk), (8)

where the step-sizes, αk and βk, satisfy αk/βk → 0 as k → ∞ and the Robbins and Monro step-size
condition (Robbins & Monro, 1951) in (33) in Appendix. It is a two time-scale algorithm because it
uses two time-steps, αk and βk.

3 DESIGNING TD-LEARNING THROUGH BACKSTEPPING

We briefly explain the motivation for our algorithmic development. Borkar and Meyn the-
orem (Borkar & Meyn, 2000) in Lemma 2.1 is a typical tool to prove convergence of Q-
learning (Borkar & Meyn, 2000; Lee & He, 2019) and TD-learning (Sutton et al., 2009; Lee et al.,
2021). Most of the previous works on off-policy TD-learning algorithms (e.g., GTD2 and TDC)
first start with an objective function, and then derive GTD algorithms based on optimization per-
spectives. Then, the convergence is proved using the corresponding O.D.E. models and stability
theory of linear time-invariant systems. A natural question arises is, can we derive off-policy TD-
learning algorithms following a reversed step? In other words, can we develop a stable O.D.E. model
first using tools in control theory, and then recover back the corresponding off-policy TD-learning
algorithms? In this paper, we reveal that a class of off-policy TD-learning algorithms can be derived
based on purely control theoretic motivations following such a reversed process. By doing so, this
work provides additional insights on off-policy TD-learning algorithms and gives a sound theoretical
foundation on off-policy TD-learning algorithms for further developments of new algorithms.

Designing stabilizing control laws for continuous-time nonlinear system has been successful over
the past decades (Khalil, 2015). One such technique, so called backstepping, is a popular controller
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design method in non-linear control literature (Khalil, 2015). With the help of the backstepping
method (Khalil, 2015), we design stabilizing control laws for continuous-time systems, and then the
corresponding off-policy TD-learning algorithms are derived, and are shown to be convergent via
Borkar and Meyn theorem (Borkar & Meyn, 2000) in Lemma 2.1. The brief procedure is explained
in the following steps: Step 1) Choose an appropriate continuous-time dynamic model such that
(a) we can recover the TD-fixed point ξ∗ in (6) via its equilibrium point; (b) the corresponding
stochastic approximation algorithm can be implementable only through transitions of MDP and
accessible data.; Step 2) Using the backstepping method, design a control input to stabilize the
dynamic model chosen in Step 1).

3.1 BACKSTEPPING TD

Now, we introduce a new off-policy TD-learning algorithm, which we call Backstepping TD (BTD).
Firstly, we will develop a stabilizing control law for the following the continuous-time system:

λ̇t = (−C + ηA)λt −Axt (9)
ẋt = ut (10)

The idea stems from finding a control system for which we can easily apply the backstepping tech-
inque. In details, the backstepping techinqiue can be applied to the two interconnected systems
where one subsystem, namely (4), can be stabilized with xt in (4) as a control input. Therefore,
our first aim is to find such a system. To this end, we can try a natural choice of O.D.E. to solve
the TD problem, i.e., λ̇t = Aλt, which is however unstable in the off-policy case. Therefore, we
can develop a modified O.D.E. λ̇t = (−C + ηA)λt − Axt, where xt is the control input, the neg-
ative definite matrix −C is introduced to stabilize the system, and η > 0 is introduced to provide
additional degrees of freedom in design. Now, the constructed system can be stabilized through the
state-feedback controller xt = ηλt and admits the simple control Lypaunov function V (λ) = ||λ||2.
Moreover, A should be included in the right-hand side in order to implement the corresponding
algorithm without knowing the solution because xk = ξk − ξ∗ and ξ∗ should be removed using
Aξ∗ = b in the final step. Simply setting xt = ηλt may cancel out A in the right-hand side, the
O.D.E. becomes λ̇t = −Cλt, Therefore, as mentioned before, we can apply the backstepping tech-
nique by adding an additional dynamic controller. As the next step, the backstepping technique is
applied, and one needs to observe what would be the final form of the control system. In summary,
if we consist f(λt) with the combination of A and −C (not necessarily −C, it may be −I) , it
can be a reasonable candidate to apply the backstepping technique. Cancelling A with virtual input
only leaves −C, which guarantees stability from its negative definiteness. Therefore, (9) and (10)
is a reasonable candidate for the dynamics where we can apply the backstepping technique. In
particular, our aim is to design an appropriate control input ut for the above system such that the
origin is the unique asymptotically stable equilibrium point, i.e., (λt, xt) → 0 as t → ∞ for any
(λ0, x0) ∈ Rn × Rn. The overall procedure is depicted in Figure 1 in the Appendix, and we show
how to choose the control input ut in the following lemma.
Lemma 3.1. Consider the O.D.E. in (9) and (10). If we choose the control input ut := (A⊤+η2A−
ηC)λt − ηAxt, then the above O.D.E. has globally asymptotically stable origin, i.e., (λt, xt) →
(0, 0) as t → ∞ for any (λ0, x0) ∈ Rn × Rn.

Proof sketch. The proof follows the steps given in the backstepping scheme in Section 3. First,
substituting xt in (9) with a virtual controller x̃(λt), we will design a control law x̃(λt) that stabilizes
the following new virtual system:

λ̇t = (−C + ηA)λt −Ax̃(λt). (11)

One natural choice of the virtual controller is x̃(λt) = ηλt. Plugging it into (11) leads to λ̇t =
−Cλt, and we can verify the global asymptotic stability of the above system with the following
Lyapunov function:

V (λt) :=
||λt||22
2

. (12)

We now consider the original O.D.E. in (9) and (10). Applying simple algebraic manipulations yield
λ̇t = −Cλt − A(xt − ηλt), ẋt = ut. The error between xt and the virtual controller x̃(λt) can
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be expressed as new variable zt, which is zt := xt − x̃(λt) = xt − ηλt. Rewriting the O.D.E. in (9)
and (10) with (λt, zt) coordinates, we have

λ̇t = −Cλt −Azt (13)
żt = ut + ηCλt + ηAzt.

To prove the global asymptotic stability of the above system, consider the function Vc(λt, zt) :=
V (λt)+

1
2 ||zt||

2
2 where V (λt) is defined in (12). By taking ut as ut = A⊤λt−ηCλt−ηAzt, we can

apply LaSall’es invariance principle in Lemma 7.1. The full proof is in Appendix Section 7.4.1.

Using the relation zt := xt− ηλt, the control input in the original coordinate (λt, xt) can be written
as ut := A⊤λt − ηCλt − ηAzt = (A⊤ + η2A − ηC)λt − ηAxt. Plugging this input into the
original open-loop system in (9) and (10), the closed-loop system in the original coordinate (λt, xt)
can written as

λ̇t = (−C + ηA)λt −Axt (14)

ẋt = (A⊤ + η2A− ηC)λt − ηAxt, (15)

whose origin is also globally asymptotically stable according to Lemma 3.1. Recovering back from

xt to ξt, we have d
dt

[
λt

ξt

]
=

[
−C + ηA −A

A⊤ + η2A− ηC −ηA

] [
λt

ξt

]
+

[
b
ηb

]
. The corresponding stochastic

approximation of the O.D.E. in Theorem 3.1 becomes

λk+1 = λk + αk(((−1 + η)ϕ⊤
k − ηρkγϕ

′⊤
k )λk + ρkδk(ξk))ϕk (16)

ξk+1 = ξk + αk(((−η + η2)ϕ⊤
k − η2ρkγϕ

′⊤
k )λkϕk + ηρkδk(ξk)ϕk + (ϕ⊤

k λkϕk − ρkγϕ
⊤
k λkϕ

′
k)).
(17)

The equilibrium point of the above O.D.E. is (0, ξ∗). Hence, we only need to transform the coordi-
nate of ξt to xt = ξt−ξ∗, which results to the O.D.E. in (14) and (15). With the above result, we are
now ready to prove convergence of Algorithm 1. The proof simply follows from Borkar and Meyn
theorem in Lemma 2.1, of which the details can be found in Sutton et al. (2009).
Theorem 3.1. Under the step size condition (33) , with Algorithm 1 in Appendix, ξk → ξ∗ as
k → ∞ with probability one, where ξ∗ is the fixed point of (6).

Proof. The proof is done by checking Assumption 7.1 in Appendix.

Remark 3.1. Theorem 3.1 doesn’t require any condition on η. Therefore, we can set η = 0, which
results to GTD2 developed in Sutton et al. (2009).

3.2 RECOVERING SINGLE TIME-SCALE TDC

In this section, we derive a single-time scale version of TDC (Sutton et al., 2009) through the back-
stepping design in the previous section. TDC (Sutton et al., 2009) was originally developed as a
two-time scale algorithm in Sutton et al. (2009). Even though the two time-scale method provides
theoretical guarantee for a larger class of algorithms, the single time-scale scheme provides more
simplicity in practice, and shows faster convergence empirically. Subsequently, Maei (2011) pro-
vided a single-time scale version of TDC by multiplying a large enough constant η > 0 to the faster
time scale part (7), which leads to

λk+1 = λk + βkη(−ϕ⊤
k λk + ρkδk(ξk))ϕk (18)

ξk+1 = ξk + βk(−ρkγϕ
⊤
k λkϕ

′
k + ρkδk(ξk)ϕk), (19)

where

η > max
{
0,−λmin

(
C−1(A+A⊤)/2

)}
. (20)

Here, we derive another version of single-time TDC by multiplying a constant to the slower time-
scale part in (8), which results in

λk+1 = λk + αk(−ϕ⊤
k λk + ρkδk(ξk))ϕk (21)

ξk+1 = ξk + αkβ(ϕ
⊤
k λkϕk − ρkγϕ

⊤
k λkϕ

′
k + ρkδk(ξk)ϕk), (22)
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where β satisfies

0 < β < −λmin(C)

λmin(A)
if λmin(A) < 0, else β > 0. (23)

We can derive the above algorithm following similar steps as in Section 3.1. Let us first consider the
following dynamic model:

λ̇t = −Cλt −Axt (24)
ẋt = ut (25)

Using the backstepping technique, we can prove that the above system admits the origin as a global
asymptotically stable equilibrium point with the control input ut := β

(
(A⊤ − C)λt −Aξt

)
, which

is shown in the following lemma:

Lemma 3.2. Consider the O.D.E. in (24) and (25). Suppose that we choose the control input
ut := β

(
(A⊤ − C)λt −Aξt

)
), and β satisfies condition (23). Then, the above O.D.E. has globally

asymptotically stable origin, i.e., (λt, xt) → (0, 0) as t → ∞.

The proof of Lemma 3.2 is given in Appendix Section 7.4.2. By Borkar and Meyn theorem
in Lemma 2.1, we can readily prove the convergence of Algorithm 2 in Appendix, which uses
stochastic recursive update (21) and (22).

Theorem 3.2. Consider Algorithm 2 in Appendix. Under the step size condition (33), and if β
satisfies (23), ξk → ξ∗ as k → ∞ with probability one, where ξ∗ is the fixed point of (6).

We will call the Algorithm 4 as TDC-slow, and single-time version of TDC suggested by Maei
(2011) as TDC-fast. Other than the multiplication of a constant reflecting two-time scale property,
we can make TDC into a single-time algorithm, which we call a single time-scale TDC2, while the
original version in Maei (2011) will be called the single time-scale TDC. The derivation is given in
Appendix Section 7.5. The performance of such versions of TDC are evaluated in Appendix Sec-
tion 7.9.1. Even though not one of the algorithms outperforms each other, TDC-slow and TDC2
shows better performance in general.

3.3 GENERALIZING TDC++

This section provides versions of TDC++ (Ghiassian et al., 2020), which is variant of TDC. With
an additional regularization term ξk on both updates of TDC in (7) and (8), the update is written as
follows:

λk+1 = λk + αkη(−ϕ⊤
k λk + ρkδk(ξk))ϕk − βλk) (26)

ξk+1 = ξk + αk(−ρkγϕ
⊤
k λkϕ

′
k − βλk + ρkδk(ξk)ϕk), (27)

where η > 0 satisfies (20) and β > 0 is a new parameter. Note that TDC++ can be simply viewed
as variant of TDC by adding the term βλk in the update, which can be seen as a regularization term.
Therefore, letting β = 0 yields the original TDC. In this paper, we prove that our controller design
leads to the following update:

λk+1 = λk + αkη(−ϕ⊤
k λk + ρkδk(ξk))ϕk − βλk) (28)

ξk+1 = ξk + αk(−ρkγϕ
⊤
k λkϕ

′
k + (1− κη)ϕ⊤

k λkϕk − κβηλk + ρkκηδk(ξk)ϕk), (29)

where κ and β are new parameters and when κ = 1/η it becomes TDC++. The difference with
the original TDC++ can be seen in their corresponding O.D.E. forms. The corresponding O.D.E.

for (26) and (27) (original TDC++) can be expressed as: d
dt

[
λt

xt

]
=

[
−η(C + βI) −ηA
A⊤ − C − βI −A

] [
λt

xt

]
.

Meanwhile, the O.D.E. corresponding to (28) and (29) (new TDC++) becomes d
dt

[
λt

xt

]
=[

−η(C + βI) −ηA
A⊤ − κη(C + βI) −κηA

] [
λt

xt

]
. We experiment under different of κ and η to examine the

behavior of new TDC++. The result shows that in general, smaller κ leads to better performance.
The results are given in Appendix Section 7.9.
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Lemma 3.3. Consider the following O.D.E.:

λ̇t = −η(C + βI)λt − ηAxt (30)
ẋt = ut. (31)

Suppose that we choose the control input ut := (A⊤ − κη(C + βI))λt − κηAxt. Assume η > 0
and β and κ satisfies the following condition: β + κλmin(A) > λmin(C). Then, the above O.D.E.
has globally asymptotically stable origin, i.e., (λt, xt) → (0, 0) as t → ∞.

The proof is given in Appendix Section 7.4.3. With Lemma 2.1, we can prove the convergence of
stochastic update with (28) and (29) whose pseudo code is given in Algorithm 5 in Appendix.

Theorem 3.3. Consider Algorithm 5 in Appendix. Under the step-size condition (33) and if η
satisfies (20), then ξk → ξ∗ as k → ∞ with probability one, where ξ∗ is the TD fixed point in (6).

Remark 3.2. We can replace the regularization term with nonlinear terms satisfying certain condi-
tions. The details are given in Appendix Section 7.6.

4 EXPERIMENTS

We verify the performance and convergence of the proposed BTD under standard benchmarks
to evaluate off-policy TD-learning algorithms, including Baird environment (Baird, 1995), Ran-
domWalk (Sutton et al., 2009) with different features, and Boyan chain (Boyan, 2002). The details
about the environments are given in Appendix Section 7.7. From the experiments, we see how
BTD behaves under different coefficients η ∈ {−0.5,−0.25, 0, 0.25, 0.5}. We measure the Root
Mean-Squared Projected Bellman Error (RMSPBE) as the performance metric, and every results
are averaged over 100 runs. From Table 1, the result with η = 0.5 shows the best performance
except at Baird, where η = 0, corresponding to GTD2 performs best. There exist two aspects on the
role of η. First of all, it can be thought of as a parameter that can mitigate the effect of instability
coming from matrix A in (9). For example, a smaller η can stabilize the system. However, as a
trade off, if η is too small, then the update rate might be too small as well. As a result, the overall
convergence can be slower. Furthermore, η also controls the effect of −C in (13) in the BTD update
rules, where −C corresponds to (−η + η2)ϕ⊤

k λkϕk in (17). Note that the role of η in the final BTD
update rule in (17) shows different perspectives compared to that in (9). In particular, η = 1/2
maximizes the effect of −C in (17). From Table 1, it leads to reasonably good performances in most
domains. Another natural choice is to multiply η to −C instead of A. However, in such cases, we
need to introduce another constrain η > 0, whereas in the current BTD, convergence is guaranteed
for all η ∈ R. Finally, we note that simply multiplying −C by a large positive constant does not
lead to good results in general. This is because in this case, it may increase variance, and destabilize
the algorithm. Overall results are given in Appendix Section 7.8.

Table 1: Backstepping TD, step-size = 0.01

Env
η -0.5 -0.25 0 0.25 0.5

Boyan 1.51± 0.66 1.481± 0.656 1.452± 0.647 1.428± 0.64 1.408± 0.635
Dependent 0.11± 0.19 0.097± 0.163 0.086± 0.142 0.079± 0.128 0.076± 0.122

Inverted 0.21± 0.25 0.173± 0.218 0.151± 0.193 0.139± 0.177 0.136± 0.172
Tabular 0.17± 0.28 0.147± 0.238 0.133± 0.208 0.124± 0.191 0.122± 0.188
Baird 0.1± 0.64 0.09± 0.629 0.085± 0.625 0.087± 0.628 0.092± 0.637

5 CONCLUSION

In this work, we have proposed a new framework to design off-policy TD-learning algorithms from
control-theoretic view. Future research directions would be extending the framework to non-linear
function approximation setting.
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7 APPENDIX

7.1 TECHINICAL DETAILS

We elaborate the conditions for the Borkar and Meyn Theorem (Borkar & Meyn, 2000). Consider
the stochastic approximation in (2).

Assumption 7.1. 1. The mapping f : Rn → Rn is globally Lipschitz continuous, and there exists a
function f∞ : Rn → Rn such that

lim
c→∞

f(cx)

c
= f∞(x), ∀x ∈ Rn. (32)

2. The origin in Rn is an asymptotically stable equilibrium for the O.D.E.: ẋt = f∞(xt).

3. There exists a unique globally asymptotically stable equilibrium xe ∈ Rn for the ODE
ẋt = f(xt) , i.e., xt → xe as t → ∞.

4. The sequence {mk, k ≥ 1} where Gk is sigma-algebra generated by {(xi,mi, i ≥ k)},
is a Martingale difference sequence. In addition , there exists a constant C0 < ∞ such that for any
initial x0 ∈ Rn , we have E[||mk+1||2|Gk] ≤ C0(1 + ||xk||2),∀k ≥ 0.

5. The step-sizes satisfies the Robbins-Monro condition (Robbins & Monro, 1951) :

∞∑
k=0

αk = ∞,

∞∑
k=0

α2
k < ∞. (33)

Furthermore, we introduce an important tool to prove stability of O.D.E..

Lemma 7.1 (LaSall’es Invariance Principle (Khalil, 2015)). Let the origin be an equilibrium point
for (3). Let V : Rn → R be a continuously differentiable and positive definite function satisfying
the below conditions:

1. V (x) is raidally unbounded function , i.e., ||x|| → ∞ implies V (x) → ∞,

2. Consider the Lie derivative LfV (x) := ∇xV (x)⊤f(x) so that V̇ (xt) = LfV (xt) along
the solution, and it is negative semi-definite, i.e., LfV (x) ≤ 0 for all x ∈ Rn.

Let S := {x ∈ Rn | LfV (x) = 0}, and suppose that no solution can stay identically in S other
than trivial solution x ≡ 0, where we say that a solution stays identically in S if x(t) ∈ S, ∀t ≥ 0 .
Then, the origin is globally asymptotically stable.

Definition 7.1 (Invariant set (Khalil, 2015)). A set M is an invariant set with respect to ẋ = f(x) if
x0 ∈ M → xt ∈ M for all t ≥ 0.

7.2 OMIITTED PSEUDO CODES AND DIAGRMAS

Algorithm 1 Backstepping TD

1: Initialize ξ0, λ0 ∈ Rn.
2: Set the step-size (αk)

∞
k=0, and the behavior policy µ.

3: for iteration k = 0, 1, . . . do
4: Sample sk ∼ dµ and ak ∼ µ
5: Sample s′k ∼ P (sk, ak, ·) and rk+1 = r(sk, ak, s

′
k)

6: Update λk and ξk using (16) and (17)
7: end for

12
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Algorithm 2 TDC-slow

1: Initialize ξ0, λ0 ∈ Rn.
2: Set the step-size (αk)

∞
k=0, and the behavior policy µ.

3: for iteration k = 0, 1, . . . do
4: Sample sk ∼ dµ and ak ∼ µ
5: Sample s′k ∼ P (sk, ak, ·) and rk+1 = r(sk, ak, s

′
k)

6: Update λk and ξk using (18) and (19) respectively
7: end for

Algorithm 3 TDC++2

1: Initialize ξ0, λ0 ∈ Rn.
2: Set the step-size (αk)

∞
k=0, and the behavior policy µ.

3: for iteration k = 0, 1, . . . do
4: Sample sk ∼ dµ‘ and ak ∼ µ
5: Sample s′k ∼ P (sk, ak, ·) and rk+1 = r(sk, ak, s

′
k)

6: Update λk and ξk using (28) and (29) respectively
7: end for

∫
−A +

∫

−C + ηA

u x λ

∫
+

−ηλ

−A +
∫

−C

u x λ

+
∫

−ηλ̇

−A +
∫

−C

u z λ

Figure 1: Backstepping diagram

7.3 EXAMPLE OF BACKSTEPPING

Here, we provide a simple example to design control law using backstepping control.
Example 7.1. Consider the following two-dimensional system:

λ̇t = −λ3
t − λt + xt (34)

ẋt = ut,

13
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where λt, xt ∈ R are the states, and ut ∈ R is control input. First, considering xt in (34) as virtual
input xs(λt), it is easy to check that xs(λt) = λt satisfies the condition in Step 1 in Section 2.3.
Substituting xt in (34) with xs(λt), we have

λ̇t = −λ3
t .

The globally asymptotically stability of the above system cab be established with the following Lya-
punov function:

V (λt) =
λ2
t

2
.

Let zt := xt − xs(λt). Expressing the O.D.E. in (34) with (λt, zt), we have

λ̇t = −λ3
t + zt

ẋt = ut + λ3
t − zt.

Suppose we choose a candidate Lyapunov function:

Vc(λt, zt) = V (λt) +
z2t
2

The time derivative of Vc(λt, zt) becomes

V̇c(λt, zt) = −λ4
t + λtzt + zt(ut + λ3

t − zt).

To make the time derivative negative definite, we can design the control law as:

ut := −λt − λ3
t ,

which leads to the following inequality:

V̇c(λt, zt) ≤ −λ4
t − z2t

Now, we can conclude that the origin of the system becomes globally asymptotically stable.

7.4 OMITTED PROOFS

7.4.1 PROOF OF LEMMA 3.1

Proof. In this proof, we follow the steps given in the backstepping scheme in Section 3. First,
substituting xt in (9) with a virtual controller x̃(λt), we will design a control law x̃(λt) that stabilizes
the following new virtual system:

λ̇t = (−C + ηA)λt −Ax̃(λt). (35)

Even though matrix C is positive definite, due to matrix A, the system may be unstable. One natural
choice of the virtual controller is x̃(λt) = ηλt. Plugging into (35) leads to λ̇t = −Cλt. The
system now has a globally asymptotically stable origin due to the positive definiteness of matrix C.
It is straightforward to verify the global asymptotic stability of the above system with the following
Lyapunov function:

V (λt) :=
||λt||22
2

. (36)

With this result in mind, we now consider the original O.D.E. in (9) and (10). Applying simple
algebraic manipulations yield λ̇t = −Cλt −A(xt − ηλt), ẋt = ut. The error between xt and the
virtual controller x̃(λt) can be expressed as new variable zt, which is zt := xt − x̃(λt) = xt − ηλt.
Rewriting the O.D.E. in (9) and (10) with (λt, zt) coordinates, we have

λ̇t = −Cλt −Azt (37)
żt = ut + ηCλt + ηAzt.
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To prove the global asymptotic stability of the above system, consider the function Vc(λt, zt) :=
V (λt) +

1
2 ||zt||

2
2 where V (λt) is defined in (36) . The time derivative of the Lyapunov function

along the system’s solution becomes

V̇c(λt, zt) = λ⊤
t (−Cλt −Azt) + z⊤t (ut + ηCλt + ηAzt)

= −||λt||2C + z⊤t (−A⊤λt + ut + ηCλt + ηAzt).

By taking ut as ut = A⊤λt − ηCλt − ηAzt, the corresponding closed-loop system is d
dt

[
λt

zt

]
=[

−C −A
A⊤ 0

] [
λt

zt

]
=: f(λt, zt), and we have V̇c = −||λt||2C ≤ 0 for all (λt, zt) ̸= (0, 0).

Since the inequality is not strict, Lyapunov theory cannot be directly applied. Therefore, we will use
LaSall’es invariance principle in Lemma 7.1 in Appendix. Define the Lie derivative LfV (λ, z) :=

−∥λ∥2C so that V̇c(λt, zt) = LfV (λt, zt) along the solution. Consider a solution (λt, zt), t ≥ 0
and the set S := {(λ, z) | LfV (λ, z) = 0} = {(λ, z) | λ = 0}. Suppose that the solution,
(λt, zt), t ≥ 0, is inside S, i.e., (λt, zt) ∈ S, t ≥ 0. Then, we should have λ ≡ 0, which implies
from (37) that z ≡ 0. Therefore, S can only contain the trivial solution (λ, z) ≡ (0, 0). Therefore,
from LaSall’es invariance principle in Lemma 7.1 and noting that Vc is radially unbounded, the
closed-loop system admits the origin as a globally asymptotically stable equilibrium point. Using
the relation zt := xt − ηλt, we can also easily conclude that the closed-loop system in the original
coordinate (λt, xt) admits the origin as a globally asymptotically stable equilibrium point.

7.4.2 PROOF OF LEMMA 3.2

Proof. One simple option is to set the virtual controller x̃(λt) := 0, which would result to GTD2
as in Section 3.1. Instead, we take the virtual controller as x̃(λt) := βλt, and plug into xt in (24),
which results to

λ̇t = −Cλt − βAλt = (−C − βA)λt.

The above system is globally asymptotically stable since

−C − βA ≺ 0,

which results from the condition on β in (23). Using change of coordinates, we introduce the new
variable zt,

zt := xt − x̃(λt) = xt − βλt.

The O.D.E. in (24) and (25) can be rewritten as

λ̇t = (−C − βA)λt −Azt (38)

żt = ut + (βC + β2A)λt + βAzt.

Now consider the following candidate Lyapunov function:

Vc(λt, zt) =
β

2
||λt||2 +

1

2
||zt||2.

The time derivative of the Lyapunov function along the system’s solution becomes,

V̇c = βλT
t ((−C − βA)λt −Az) + z⊤t (ut + (βC + β2A)λt + βAzt)

= βλT
t ((−C − βA)λt) + z⊤t (ut − βATλt + (βC + β2A)λt + βAzt).

By taking ut = βA⊤λt−(βC+β2A)λt−βAzt, the corresponding closed-loop system is d
dt

[
λt

zt

]
=[

−C − βA −A
βA⊤ 0

] [
λt

zt

]
:= f(λt, zt), and we have V̇c = −β||λt||2−C+βA ≤ 0 for all (λt, zt) ̸=

(0, 0). We will again use LaSall’es invariance principle in Lemma 7.1 in Appendix. Define the
Lie derivative LfV (λ, z) := −β||λ||2C+βA so that V̇c(λt, zt) = LfV (λt, zt) along the solution.
Consider a solution (λt, zt), t ≥ 0 and the set S := {(λt, zt)|LfV (λ, z) = 0} = {(λ, z)|λ =
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0}. Suppose that the solution (λt, zt), t ≥ 0, is inside S, i.e., (λt, zt) ∈ S, t ≥ 0. Then, we
should have λ ≡ 0, wchih implies from (38) that z ≡ 0. Therefore, S can only contain the trivial
solution (λ, z) ≡ (0, 0). Therefore, from LaSall’es invariance principle in Lemma 7.1 and noting
that Vc is radially unbounded, the closed-loop system admits the origin as a globally asymptotically
stable equilibrium point. Using the relation zt = xt − βλt, we can also conclude that the clsoed-
loop system in the original coordinate (λt, xt) admits the origin as a globally asymptotically stable
equilibrium point.

Using the relation zt := xt−βλt , the control input in the original coordinate (λt, xt) can be written
as

ut = βA⊤λt − (βC + β2A)λt − βAzt

= βA⊤λt − (βC + β2A)λt − βA(xt − βλt)

= (βA⊤ − βC)λt − βAxt.

Plugging this input into the original open-loop system in (24) and (25), the closed-loop system in
the original coordinate (λt, zt) can be written as

λ̇t = −Cλt −Axt, (39)

ẋt = β(A⊤ − ηC)λt − βAxt, (40)

whose origin is also globally asymptotically stable according to Lemma 3.2. Recovering back from
xt to ξt, we have

λ̇t = −Cλt −Aξt + b,

ξ̇t = β(A⊤ − ηC)λt − βAξt + βb,

whose corresponding stochastic approximation is (21) and (22)

7.4.3 PROOF OF LEMMA 3.3

Proof. The proof is similar to Lemma 3.1, hence we breifly explain the procedure. Let the virtual
controller x̃(λt) = κλt. We first need to check −ηC − κηA − ηβI is negative definite. From the
condition that β + κλmin(A) > λmin(C), −ηC − κηA− ηβI becomes negative definite.

Using coordinate transform , we define the new variable zt,

zt = xt − x̃(λt) = xt − κλt.

Expressing (30) and (31) in (λt, zt), we have

λ̇t = −η(C + βI + κA)λt − ηAzt

żt = ut + ηκ(C + βI + κA)λt + ηκAzt.

Now, consider the following positive definite function V (λt, zt), and its time derivative:

V (λt, zt) =
1

2η
||λt||22 +

1

2
||zt||22,

V̇ = −λ⊤
t (C + βI + κA)λt −Azt) + (z⊤t )(ut + ηκ(C + βI + κA)λt + κηAzt)

= −λ⊤
t (C + βI + κA)λt + (z⊤t )(−A⊤λt + ut + κη(C + βI + κA)λt + κηAzt)

Taking ut = A⊤λt−ηκ(C+βI+κA)λt−κηAzt, the corresponding closed-loop system becomes
d
dt

[
λt

zt

]
=

[
−η(C + βI + κA) −ηA

A⊤ 0

] [
λt

zt

]
:= f(λt, zt), and we have V̇c = −||λt||2C+βI+κA ≤

0. To use LaSall’es invariance principle in Lemma 7.1 given in Appendix, first define the Lie deriva-
tive LfV (λ, z) := −||λ||2C+βI+κA along the solution. Consider the solution (λt, zt), t ≥ 0 and the
set S := {(λ, z)|LfV (λ, z) = 0} = {(λ, z)|λ = 0}. Suppose that the solution (λt, zt), t ≥ 0 is
inside S, i.e., (λt, zt) ∈ S, t ≥ 0. Therefore, S can only contain the trivial solution (λ, z) ≡ (0, 0).
Applying Lasall’es invariance principle in Lemma 7.1, we can conclude that the original coordinate
(λt, xt) admits the origin as globally asymptotically stable equilibrium point.
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Using the relation zt := xt−κλt, the control input in the original coordinate (λt, xt) can be written
as

ut = ATλt − ηκ(C + βI + κA)λt − κηAzt

= ATλt − ηκ(C + βI + κA)λt − κηA(xt − κλt)

= (AT − κηβI − κηC)λt − κηAxt.

Plugging this input into the original open-loop system in (30) and (31), the closed-loop system in
the original coordinate (λt, xt) can be written as

λ̇t = −η(C + βI)λt − ηAxt

ẋt = (A⊤ − κη(C + βI))λt − κηAxt.

Recovering back from xt to ξt we have

λ̇t = −η(C + βI)λt − ηAξt + b

ξ̇t = (A⊤ − κη(C + βI))λt − κηAξt + κηb,

whose corresponding stochastic approximation is (28) and (29).

7.5 DERIVATION OF SINGLE TIME-SCALE TDC2

In Section 3.2, we discussed turning TDC into single-time scale algorithm reflecting the two-time
scale property. Other than multiplication of constant reflecting two-time scale property, we can make
TDC into single-time scale algorithm as follows:

λk+1 = λk + αk(−ηϕ⊤
k λk + ρkδk(ξk))ϕk) (41)

ξk+1 = ξk + αk((ϕ
⊤
k λkϕk − ρkγϕ

⊤
k λkϕ

′
k)− ηϕkλkϕk + ρkδk(ξk)ϕk) (42)

It can be shown that the above stochastic update follows from stabilizing controller design in the
following lemma:
Lemma 7.2. Consider the following O.D.E.:

λ̇t = −ηCλt −Axt (43)
ẋt = ut (44)

Suppose we choose the control input ut := (A⊤ − ηC)λt − Axt, and η satisfies condition (20).
Then, the above O.D.E. has globally asymptotically stable origin, i.e., (λt, xt) → (0, 0) as t → ∞.

Proof. Considering xt in (43) as virtual controller xs(λt), one possible option is to take xs(λt) := 0.
Using backstepping method as in Section 3, it results to O.D.E. corresponding to GTD2 (Sutton
et al., 2009). Instead, we choose the virtual controller xs(λt) := λt. Substituting xt with xs(t)
in (43), we can rewrite (43) as follows:

λ̇t = −ηCλt −Axs(t) = (−ηC −A)λt.

Since −ηC − A ≺ 0 due to the condition on η in (20), the origin of the above system is globally
asymptotically stable. Now, denote the error between the virtual controller xs(t) and xt as zt :=
xt − xs(λt) = xt − λt . Using change of coordinates, we can rewrite the O.D.E. in (43) and (44) as
follows:

λ̇t = (−ηC −A)λt −Azt (45)
żt = ut + (ηC +A)λt +Azt

Now, let us define the following positive definite function:

V (λt, zt) =
1

2
||λt||2 +

1

2
||zt||2

The time derivative of the above function becomes,

V̇ = λ⊤
t ((−ηC −A)λt −Azt) + z⊤t (ut + (ηC +A)λt +Azt)

= λ⊤
t (−ηC −A)λt + z⊤t (ut −A⊤λt + (ηC +A)λt +Azt).
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Take ut := A⊤λt − (ηC + A)λt − Azt, the corresponding closed-loop system is d
dt

[
λt

zt

]
=[

−ηC −A −A
A⊤ 0

] [
λt

zt

]
:= f(λt, zt), and we have V̇c = −||λt||2ηC+A ≤ 0. To use LaSall’es in-

variance principle in Lemma 7.1 given in Appendix, first define the Lie derivative LfV (λ, z) :=
−||λ||2ηC+A along the solution. Consider the solution (λt, zt), t ≥ 0 and the set S :=

{(λ, z)|LfV (λ, z) = 0} = {(λ, z)|λ = 0}. Suppose that the solution (λt, zt), t ≥ 0 is inside
S, i.e., (λt, zt) ∈ S, t ≥ 0. Therefore, S can only contain the trivial solution (λ, z) ≡ (0, 0). Ap-
plying Lasall’es invariance principle in Lemma 7.1, we can conclude that the original coordinate
(λt, xt) admits the origin as globally asymptotically stable equilibrium point.

Using the relation zt := xt − λt, the control input in the original coordinate (λt, xt) can be written
as

ut = A⊤λt − (ηC +A)λt −Azt

= A⊤λt − (ηC +A)λt −A(xt − λt)

= (A⊤ − ηC)λt −Axt.

Plugging this input into the original open-loop system in (43) and (44), the closed-loop system in
the original coordinate (λt, xt) can be written as

λ̇t = −ηCλt −Axt

ẋt = (A⊤ − ηC)λt −Axt.

Recovering back from xt to ξt we have

λ̇t = −ηCλt −Aξt + b

ξ̇t = (A⊤ − ηC)λt −Aξt + b,

whose corresponding stochastic approximation is (41) and (42).

Remark 7.1. The difference from the update in Algorithm 2 can be seen in their corresponding
O.D.E. respectively. Multiplying large constant η to C is enough to make the origin of the O.D.E.
stable.

By Borkar and Meyn theorem in Lemma 2.1, we can readily prove the convergence of Algorithm 4.

Theorem 7.1. Consider Algorithm 4 given in the Appnedix, which uses stochastic recursive up-
date (41) and (42). Under the step-size condition (33) and if η satisfies (20), then ξk → ξ∗ as
k → ∞ with probability one, where ξ∗ is the TD fixed point in (6).

Algorithm 4 Single-time scale TDC2

1: Initialize ξ0, λ0 ∈ Rn.
2: Set the step-size (αk)

∞
k=0, and the behavior policy µ.

3: for iteration k = 0, 1, . . . do
4: Sample sk ∼ dµ and ak ∼ µ
5: Sample s′k ∼ P (sk, ak, ·) and rk = r(sk, ak, s

′
k)

6: Update λk and ξk using (41) and (42) respectively
7: end for

Comparison on performance on versions of TDC are given in Section 7.9.1.

7.6 TDC++ WITH NONLINEAR TERMS

This section provides replacing the so-called regularization term in TDC++ with nonlinear term
including ReLU and Leaky ReLU. The basic motiviation is that treating the regularization term
as known disturbance, we can cancel the nonlinear term through backstepping. The condition on
nonlinear function f : Rn → Rn are as follows:
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Assumption 7.2. 1. f : Rn → Rn is Lipschitz continuous.

2. For some positive constant c > 0,

||f(λk)||22 ≤ c||λk||22.

3. f is zero at origin.

4. limc→∞ f(cλk)/c → 0 or limc→∞ f(cλk)/c → f(λk).

Remark 7.2. Such nonlinear terms include ReLU and Leaky ReLU.

Overall we can prove that the below stochastic recursive update is convergent:

λk+1 = λk + αkη(−ϕ⊤
k λk + ρkδk(ξk))ϕk − βf(λk)) (46)

ξk+1 = ξk + αk(−ρkγϕ
⊤
k λkϕ

′
k + (1− κη)ϕ⊤

k λkϕk − κβηf(λk) + κρkηδk(ξk)ϕk), (47)

where fk := f(λk). It has the following corresponding O.D.E. form:

λ̇t = −ηCλt − ηβdt − ηAxt

ẋt = (A⊤ − κηC)λt − κηβf(λt)− κηAxt.

The global asymptotic stability of the above O.D.E. is stated in the following lemma:
Lemma 7.3. Consider the following O.D.E.:

λ̇t = −ηCλt − ηβf(λt)− ηAxt (48)
ẋt = ut. (49)

Suppose we choose the control input ut := (AT −κηβf(λt)− ηC)λt−κηAxt. Assume η > 0 and
κ and β satisfies the following condition:

1. 0 < κ < −λmin(C)λmin

(
A+A⊤

2

)
if λmin

(
A+A⊤

2

)
< 0

0 < κ if λmin

(
A+A⊤

2

)
≥ 0

(50)

2.

β <
1

c
λmax(C + κA) (51)

Then, the above O.D.E. has globally asymptotically stable origin, i.e., (λt, xt) → (0, 0) as t → ∞.

Proof. The proof is similar to Lemma 3.1, hence we briefly explain the procedure. Let the virtual
controller x̃(λt) = κλt. We first need to check that

λ̇t = −ηCλt − ηβf(λt)− ηκAλt

has globally asymptotically stable origin. Consider the candidate Lyapunov function

V (λt) =
||λt||22
2

,

which leads to

V̇ (λt) = −η(C + κA)||λt||22 − ηβf(λt)
⊤λt ≤ −η(C + κA− cβI)||λt||22.

V̇ becomes negative definite function due to (50) and (51).

Now, using coordinate transform , we define the error variable zt,

zt = xt − x̃(λt) = xt − κλt.
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Expressing (30) and (31) in (λt, zt), we have

λ̇t = −η(C + κA)λt − ηβf(λt)− ηAzt

żt = ut + κη(C + κA)λt + κηβf(λt) + κηAzt.

Now, consider the following positive definite function V (λt, zt), and its time derivative:

V (λt, zt) =
1

2η
||λt||22 +

1

2
||zt||22

V̇ = λ⊤
t (−(C + κA)λt − βf(λt)−Az) + (z⊤t )(ut + κη(C + κA)λt + κηβf(λt) + κηAzt)

= −λ⊤
t ((C + κA)λt − βf(λt)) + (z⊤t )(−A⊤λt + ut + κη(C + κA)λt + κηβf(λt) + κηAzt)

To achieve V̇ ≤ 0, we can choose ut as follows:

ut = A⊤λt − κη(C + βf(λt) +A)λt − κηAzt

= A⊤λt − κη(C + βf(λt) +A)λt − κηA(xt − λt)

= (A⊤ − κηC)λt − κηβf(λt)− κηAxt

Using Lasall’es Invariance Principle in Lemma 7.1 and similar arguments as before, we can show
that the origin is globally asymptotically stable. The proof is complete.

By Borkar and Meyn theorem in Lemma 2.1, we can readily prove the convergence of Algorithm 5.

Theorem 7.2. Consider Algorithm 5. Under the step-size condition (33) and if η satisfies (20), then
ξk → ξ∗ as k → ∞ with probability one, where ξ∗ is the TD fixed point in (6).

Algorithm 5 TDC++ with nonlinear terms

1: Initialize ξ0, λ0 ∈ Rn.
2: Set the step-size (αk)

∞
k=0, and the behavior policy µ.

3: for iteration k = 0, 1, . . . do
4: Sample sk ∼ dµ‘ and ak ∼ µ
5: Sample s′k ∼ P (sk, ak, ·) and rk+1 = r(sk, ak, s

′
k)

6: Update λk and ξk using (46) and (47) respectively
7: end for

Here, we present experimental results on TDC++ with nonlinear terms. As shown in below,
replacing simple regularization term λk with Relu function increases the performance. We set
κ = 1, η = 1, β = 1 and step-size a s 0.01. When f is Relu and LeakyRelu, we call it TDCRelu
and TDCLeaky respectively.

Table 2: Best case comparison

Env
Algorithms TDCRelu TDCLeaky TDC++

Boyan 1.392± 0.558 1.423± 0.55 2.381± 0.256
Dependent 0.138± 0.143 0.139± 0.143 0.201± 0.192

Inverted 0.358± 0.21 0.36± 0.211 0.493± 0.243
Tabular 0.178± 0.174 0.179± 0.175 0.25± 0.245
Baird 0.078± 0.624 0.078± 0.624 0.087± 0.627

7.7 EXPERIMENT ENVIRONMENTS

7.7.1 BARID COUNTER-EXAMPLE

Baird’s counter-example (Baird, 1995) is a well-known example where TD-learning diverges with
over-parameterized linear function approximation. The environment consists of seven states. There
are two actions for each state, namely solid and dash action. Solid action leads to the seventh state

20



Published as a conference paper at ICLR 2023

deterministically, and dash action leads to state other than seventh state with probability 1/6 and no
transition occurs with probability 5/6. The behavior policy selects dashed action with probability
1/7, and solid action with 6/7. As in Baird (1995), we set the initial parameters as [1, . . . , 10, 1]. The
target policy π only selects solid action at every state.

Φ :=



2 0 0 0 0 0 0 1
0 2 0 0 0 0 0 1
0 0 2 0 0 0 0 1
0 0 0 2 0 0 0 1
0 0 0 0 2 0 0 1
0 0 0 0 0 2 0 1
0 0 0 0 0 0 1 2

 ∈ R7×8, Pπ =



0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1

 ∈ R7×7,

Dµ :=


1
7

. . .
1
7

 ∈ R7×7, Rπ = 0 ∈ R7,

where 0 denotes zero column vector with appropriate dimension.

7.7.2 BOYAN CHAIN

Boyan Chain (Boyan, 2002) has thirteen states with four features and was designed as on-policy
problem. There are two actions and except at state one, where the reward is minus two, each ac-
tion occurs reward minus three. The behavior policy selects each action under same probability.
For states one, five, nine, and 13, the feature vectors are [0,0,0,1],[0,0,1,0],[0,1,0,0], and [1,0,0,0]
respectively. The other states are averages over its neighbouring states.

Φ :=



1 0 0 0
3/4 1/4 0 0
1/2 1/2 0 0
1/4 3/4 0 0
0 1 0 0
0 3/4 1/4 0
0 1/2 1/2 0
0 1/4 3/4 0
0 0 1 0
0 0 3/4 1/4
0 0 1/2 1/2
0 0 1/4 3/4
0 0 0 1



∈ R13×4,

[Pπ]ij =

{
1
2 if i = j + 1 or j = i+ 1 for 1 ≤ i ≤ 11, 1 ≤ j ≤ 13

1 if i = 12, j = 13 or i = 13, j = 13
,

Dµ :=


1
13

. . .
1
13

 ∈ R13×13,

Rπ := [−3 −3 · · · −3 −2 0]
⊤ ∈ R13

7.7.3 RANDOM WALK

Random walk (Sutton et al., 2009) has five states and two terminal states. Zero rewards occurs except
at the last state with a plus one reward. The behavior policy µ selects each action with same probabil-
ity. Following Sutton et al. (2009), we use three different representations, namely tabular, dependent,
and inverted features. The diagonal terms are all zero, and off-diagonal terms have a value 1/2, i.e.,
the feature map of the first state becomes [0, 1/2, 1/2, 1/2, 1/2]. For the dependent feature case, we
have [1/

√
3, 1/

√
3, 1/

√
3], [1/

√
2, 1/

√
2, 0], [1/

√
3, 1/

√
3, 1/

√
3], [0, 1/

√
2, 1/

√
2] for each state.
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Φtabular :=



0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

 , Φinverted :=



0 0 0 0 0
0 1/2 1/2 1/2 1/2

1/2 0 1/2 1/2 1/2
1/2 1/2 0 1/2 1/2
1/2 1/2 1/2 0 1/2
1/2 1/2 1/2 1/2 0
0 0 0 0 0

 ,

Φdependent :=



0 0 0
1 0 0

1/
√
2 1/

√
2 0

1/
√
3 1/

√
3 1/

√
3

0 1/
√
2 1/

√
2

0 0 1
0 0 0


, Pπ :=



1 0 0 0 0 0 0
0.6 0 0.4 0 0 0 0
0 0.6 0 0.4 0 0 0
0 0 0.6 0 0.4 0 0
0 0 0 0.6 0 0.4 0
0 0 0 0 0.6 0 0.4
0 0 0 0 0 0 1

 .

7.8 EXPERIMENT ON BTD

Table 3: Backstepping TD, step-size = 0.1

Env
η -0.5 -0.25 0 0.25 0.5

Boyan 0.336± 0.475 0.327± 0.466 0.321± 0.457 0.317± 0.45 0.317± 0.443
Dependent 0.041± 0.073 0.037± 0.065 0.035± 0.06 0.034± 0.057 0.036± 0.057

Inverted 0.05± 0.105 0.044± 0.092 0.041± 0.083 0.04± 0.079 0.041± 0.078
Tabular 0.075± 0.117 0.068± 0.109 0.064± 0.104 0.063± 0.102 0.065± 0.101
Baird 0.07± 0.596 0.063± 0.593 0.06± 0.594 0.06± 0.597 0.063± 0.602

7.9 EXPERIMENT ON VERSIONS OF TDC++

Table 4: new TDC++, step-size = 0.01, η = 1/2, β = 1

Env
κ 1/8 1/4 1/2 1 2

Boyan 2.404± 0.242 2.4± 0.241 2.393± 0.243 2.382± 0.255 2.374± 0.302
Dependent 0.166± 0.16 0.163± 0.156 0.165± 0.156 0.191± 0.182 0.296± 0.27

Inverted 0.366± 0.18 0.369± 0.183 0.39± 0.194 0.478± 0.233 0.726± 0.342
Tabular 0.217± 0.216 0.214± 0.209 0.215± 0.206 0.238± 0.227 0.342± 0.315
Baird 0.101± 0.681 0.098± 0.679 0.094± 0.677 0.096± 0.681 0.127± 0.711

Table 5: new TDC++, step-size = 0.01, η = 1, β = 1

Env
κ 1/8 1/4 1/2 1 2

Boyan 2.402± 0.241 2.398± 0.241 2.391± 0.243 2.381± 0.256 2.374± 0.306
Dependent 0.163± 0.156 0.163± 0.155 0.168± 0.161 0.201± 0.192 0.31± 0.285

Inverted 0.367± 0.181 0.373± 0.186 0.4± 0.199 0.493± 0.243 0.746± 0.356
Tabular 0.213± 0.204 0.213± 0.203 0.218± 0.21 0.25± 0.245 0.36± 0.343
Baird 0.078± 0.625 0.076± 0.623 0.076± 0.622 0.087± 0.627 0.122± 0.655
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Table 6: new TDC++, step-size = 0.01, η = 2, β = 1

Env
κ 1/8 1/4 1/2 1 2

Boyan 2.401± 0.24 2.397± 0.24 2.39± 0.243 2.38± 0.256 2.374± 0.307
Dependent 0.163± 0.156 0.163± 0.156 0.17± 0.164 0.206± 0.198 0.317± 0.293

Inverted 0.368± 0.182 0.376± 0.187 0.405± 0.202 0.502± 0.248 0.757± 0.363
Tabular 0.213± 0.203 0.214± 0.205 0.222± 0.216 0.257± 0.256 0.37± 0.358
Baird 0.073± 0.609 0.073± 0.609 0.076± 0.61 0.089± 0.618 0.125± 0.651

7.9.1 COMPARISON BETWEEN TDC

In this section we compare single time version of TDC suggested by Maei (2011), which we denote
it as TDC-fast for convenience. We call Algorithm 2 as TDC-slow, and Algorithm 4 as TDC2. Under
step-size set as 0.01 and 0.1, we swept over η ∈ [0.01, 0.1, 0.5, 1, 2, 4] and report best performance.
The experiment shows that depending on hyper-parameters and step-size, the performance differs.
In general, TDC-slow and TDC2 shows better performance than TDC-fast.

Table 7: Best case comparison, step-size = 0.01

Env
Algorithms TDC-fast TDC-slow TDC2

Boyan 0.89± 0.637 0.874± 0.615 0.533± 0.587
Dependent 0.059± 0.088 0.051± 0.083 0.043± 0.098

Inverted 0.084± 0.115 0.074± 0.106 0.077± 0.123
Tabular 0.095± 0.124 0.078± 0.159 0.069± 0.159
Baird 0.057± 0.585 0.074± 0.614 0.074± 0.614

Table 8: Best case comparison, step-size = 0.1

Env
Algorithms TDC-fast TDC-slow TDC2

Boyan 0.323± 0.439 0.286± 0.321 0.268± 0.33
Dependent 0.031± 0.046 0.028± 0.053 0.031± 0.047

Inverted 0.032± 0.056 0.032± 0.058 0.032± 0.058
Tabular 0.052± 0.088 0.05± 0.092 0.052± 0.088
Baird 0.053± 0.607 0.05± 0.591 0.052± 0.609

The full results are given in Appendix Section 7.9.2.

7.9.2 RESULTS ON VERSIONS OF TDC

Here, we give the full results on the experiments on versions of TDC. We marked ’-’ in the table if
the algorithm diverges.

Table 9: TDC-fast, step-size = 0.01

Env
η 0.01 0.1 0.5 1 2

Boyan 0.89± 0.637 1.049± 0.546 1.353± 0.511 1.393± 0.557 1.414± 0.586
Dependent 0.578± 0.318 0.251± 0.177 0.084± 0.101 0.065± 0.09 0.059± 0.088

Inverted 0.575± 0.337 0.274± 0.179 0.12± 0.128 0.094± 0.12 0.084± 0.115
Tabular 0.496± 0.211 0.235± 0.172 0.107± 0.139 0.096± 0.13 0.095± 0.124
Baird - - 0.133± 0.752 0.074± 0.614 0.057± 0.585
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Table 10: TDC-fast, step-size = 0.1

Env
η 0.01 0.1 0.5 1 2

Boyan 0.533± 0.352 0.338± 0.356 0.327± 0.414 0.324± 0.43 0.323± 0.439
Dependent 0.314± 0.274 0.059± 0.103 0.033± 0.052 0.031± 0.047 0.031± 0.046

Inverted 0.321± 0.25 0.075± 0.112 0.036± 0.064 0.032± 0.058 0.032± 0.056
Tabular 0.343± 0.239 0.092± 0.126 0.053± 0.09 0.052± 0.088 0.053± 0.087
Baird - - 0.064± 0.623 0.054± 0.608 0.053± 0.607

Table 11: TDC-slow, step-size = 0.01

Env
β 0.01 0.1 0.5 1 2

Boyan 2.804± 0.145 2.574± 0.17 1.898± 0.413 1.393± 0.557 0.874± 0.615
Dependent 0.474± 0.213 0.222± 0.156 0.094± 0.108 0.065± 0.09 0.051± 0.083

Inverted 0.612± 0.207 0.299± 0.193 0.132± 0.142 0.094± 0.12 0.074± 0.106
Tabular 0.771± 0.343 0.272± 0.243 0.128± 0.153 0.096± 0.13 0.078± 0.116
Baird 1.844± 2.12 0.218± 1.011 0.084± 0.665 0.074± 0.614 0.084± 0.638

Table 12: TDC-slow, step-size = 0.1

Env
β 0.01 0.1 0.5 1 2

Boyan 2.588± 0.168 1.433± 0.613 0.452± 0.571 0.324± 0.43 0.286± 0.321
Dependent 0.223± 0.154 0.058± 0.087 0.028± 0.053 0.031± 0.047 0.042± 0.047

Inverted 0.295± 0.183 0.08± 0.109 0.032± 0.068 0.032± 0.058 0.041± 0.055
Tabular 0.273± 0.236 0.097± 0.12 0.05± 0.092 0.052± 0.088 0.064± 0.085
Baird 0.215± 0.951 0.055± 0.584 0.05± 0.591 0.054± 0.608 -

Table 13: TDC2, step-size = 0.01

Env
η 0.01 0.1 0.5 1 2

Boyan 0.73± 0.574 0.533± 0.587 0.883± 0.652 1.393± 0.557 1.894± 0.41
DependentRep 0.051± 0.106 0.043± 0.098 0.045± 0.086 0.065± 0.09 0.104± 0.11

InvertedRep 0.109± 0.14 0.093± 0.134 0.077± 0.123 0.094± 0.12 0.137± 0.133
TabularRep 0.083± 0.166 0.069± 0.159 0.076± 0.134 0.096± 0.13 0.133± 0.149
BairdRep - - 0.125± 0.72 0.074± 0.614 0.076± 0.62

Table 14: TDC2, step-size = 0.1

Env
η 0.01 0.1 0.5 1 2

Boyan 0.324± 0.313 0.275± 0.274 0.268± 0.33 0.324± 0.43 0.456± 0.569
DependentRep 0.049± 0.052 0.043± 0.049 0.034± 0.046 0.031± 0.047 0.032± 0.055

InvertedRep 0.053± 0.067 0.046± 0.063 0.035± 0.058 0.032± 0.058 0.036± 0.067
Tabular 0.068± 0.095 0.062± 0.091 0.053± 0.087 0.052± 0.088 0.055± 0.093
Baird - - 4.492± 57.657 0.054± 0.608 0.052± 0.609
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7.9.3 OVERALL COMPARISON BETWEEN THE ALGORITHMS

Table 15: Overall comparison, step-size = 0.01

Algorithms
Env Boyan Dependent Inverted Tabular Baird

TD 0.536± 0.699 0.016± 0.029 0.03± 0.041 0.028± 0.036 -
GTD2 1.452± 0.647 0.086± 0.142 0.151± 0.193 0.133± 0.208 0.085± 0.625

BTD (η = 0.5) 1.408± 0.635 0.076± 0.122 0.136± 0.172 0.122± 0.188 0.092± 0.637
TDC-fast 0.89± 0.637 0.059± 0.088 0.084± 0.115 0.095± 0.124 0.057± 0.585
TDC-slow 0.874± 0.615 0.051± 0.083 0.074± 0.106 0.078± 0.159 0.074± 0.614

TDC2 0.533± 0.587 0.043± 0.098 0.077± 0.123 0.069± 0.159 0.074± 0.614
ETD 0.469± 0.599 0.019± 0.023 0.032± 0.035 0.021± 0.028 -

Even though TD and ETD ( Emphatic Temporal-Difference learning) (Mahmood et al. (2015))
shows good performance in several domains, it shows unstable behavior in Baird’s counter example.
TDC-fast shows better performance than other algorithms in Baird’s counter example, but in other
domains it shows worse performance than TDC-slow or TDC2 as can be seen in Table 7. Moreover,
when η = 0.5, BTD shows better performance than GTD2 except at Baird’s counter example.

7.10 O.D.E. RESULTS

In this section, we see how each O.D.E. dyanmics of TD-learning algorithm dynamics behave in
Baird counter example.

(a) TD (b) GTD2

(c) TDC-fast, η = 1 (d) BTD, η = 0.5

Figure 2: O.D.E. dynamics of first element of λt in Baird counter example

As can be seen in (a), the O.D.E. behavior of TD shows divergence, whereas other algorithms
including GTD2, TDC-fast, and BTD show stable behavior. GTD2 and BTD, compared to TDC,
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show some oscillatory behavior, which may cause slow convergence compared to TDC in Baird
counter example.

7.11 BACKGROUND ON GTD2 AND TDC

Sutton et al. (2009) introduced GTD2 and TDC to find the global minimizer of MSPBE:

1

2

∥∥Φ⊤DµΦθ − γΦ⊤DµPπΦθ − Φ⊤DR
∥∥2
C−1 .

Taking gradient fo the above equation with respect to θ, we get

(Φ⊤DµΦ− γΦ⊤DµPπΦ)⊤C−1
(
Φ⊤DµΦθ − γΦ⊤DµPπΦθ − Φ⊤DR

)
.

The above gradient is equal to E[(γϕ′
k−ϕk)ϕ

⊤
k ]E[ϕkϕ

⊤
k ]

−1E[(rk+γϕ′⊤
k ξk−ϕ⊤

k ξk)ϕk], and due to
the inverse operation and double sampling issue (dependency of ϕ′

k in the first term and last term),
stochastic samples would lead to significant biases. Hence, GTD2 and TDC try to approximate the
stochastic gradient of MSPBE, i.e., the term (Φ⊤DµΦ− γΦ⊤DµPπΦ)⊤C−1.
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