
Under review as a conference paper at ICLR 2023

NEURAL DISCRETE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing effective action spaces for complex environments is a fundamental
and challenging problem in reinforcement learning (RL). Some recent works
have revealed that naive RL algorithms utilizing well-designed handcrafted dis-
crete action spaces can achieve promising results even when dealing with high-
dimensional continuous or hybrid decision-making problems. However, elabo-
rately designing such action spaces requires comprehensive domain knowledge.
In this paper, we systemically analyze the advantages of discretization for differ-
ent action spaces and then propose a unified framework, Neural Discrete Rein-
forcement Learning (NDRL), to automatically learn how to effectively discretize
almost arbitrary action spaces. Specifically, we propose the Action Discretization
Variational AutoEncoder (AD-VAE), an action representation learning method
that can learn compact latent action spaces while maintain the essential properties
of original environments, such as boundary actions and the relationship between
different action dimensions. Moreover, we uncover a key issue that parallel opti-
mization of the AD-VAE and online RL agents is often unstable. To address it, we
further design several techniques to adapt RL agents to learned action represen-
tations, including latent action remapping and ensemble Q-learning. Quantitative
experiments and visualization results demonstrate the efficiency and stability of
our proposed framework for complex action spaces in various environments.

1 INTRODUCTION

Recent advances in Reinforcement Learning have yielded many promising research achievements
Vinyals et al. (2019); Berner et al. (2019); Schrittwieser et al. (2019). However, the complexity
of action spaces still prevents us from directly utilizing advanced RL algorithms to real-world sce-
narios, such as high-dimensional continuous control in robot manipulation Lillicrap et al. (2016)
and structured hybrid action decision-making in strategy games Kanervisto et al. (2022). Complex
action spaces lead to extensive challenges in designs of policy optimization Xiong et al. (2018b),
efficiency of exploration Seyde et al. (2021b) and behaviour stability of learned agents Bester et al.
(2019).

To handle these issues, some existing work first elaborately design particular reinforcement learning
methods in original complex action spaces. Specifically, deterministic policy gradient methods Lil-
licrap et al. (2016); Fujimoto et al. (2018) are designed to handle continuous control problems. And
Xiong et al. (2018b); Fan et al. (2019b) propose some techniques to extract the relationship between
different action dimensions, which is important in hybrid action spaces. However, these designs of-
ten suffer from low exploration efficiency and unstable training due to the infinite action spaces and
interference between different sub-actions Bester et al. (2019), respectively. Action space shaping
Kanervisto et al. (2020) is another way to tackle these problems. Particularly, many RL applications
Kanervisto et al. (2022); Wei et al. (2022) design specific action discretization mechanisms to sim-
plify the decision-making spaces, leading to the promising performance improvement, but it requires
intensive investigations about the corresponding environments. Moreover, the combination of many
manually discretized sub-actions will result in the exponential explosion of action numbers, which
is incompatible with large action spaces. Recently, some works propose to learn abstract action
representations to boost RL training. HyAR Li et al. (2021) designs a special training scheme with
VAE Kingma & Welling (2014) to map the original hybrid action space to a continuous latent action
space. Some other methods Dadashi et al. (2022); Shafiullah et al. (2022); Jiang et al. (2022) build
prior sets of discrete actions to from expert demonstrations, and then deploy RL agents on this fixed
discrete action sets. To preserve the necessary attributes of environments, all the above discretiza-

1

Under review as a conference paper at ICLR 2023

tion techniques require related domain knowledge to discard redundant information about actions,
which means that they are unsuitable for different environments with arbitrary action spaces.

In this paper, we focus on how to learn a unified discrete action representations from scratch without
any domain knowledge. Based on previous analysis and our investigations (as shown in Figure 1),
we summarize the following advantages of discretization for the complexity of the action space:

• Unified action discretization provides a powerful and general approach to dealing with
reinforcement learning in complex action spaces. It is equivalent to split the entire pipeline
into two parts: (1). representation learning and (2). decision-making. The former focus
on intrinsic properties and data distributions of the action space, then transform various
action spaces into standard discrete action sets, while the latter only needs to solve core
decision-making problems.

• Effective discretization can improve sample efficiency by reducing the overhead in repeat-
ing sub-optimal, useless, and semantically similar actions. RL agent can just explore and
exploit the necessary subsets of the original action space during training.

Then, we introduce Neural Discrete Reinforcement Learning (NDRL) framework. Specifically,
inspired by VQ-VAE van den Oord et al. (2017), we propose a action representation method called
Action Discretization Variational Auto-Encoder (AD-VAE) to learn latent discrete action space from
the original environment, and conduct RL on the learned space utilizing any classical RL techniques
about the discrete action. It is essential to capture the intrinsic properties of the original action space,
which is beneficial to learn a compact latent action space while keeping necessary information of
the original action space. Therefore, we design a state-conditioned action encoder and decoder, and
utilize graph neural network (Kipf & Welling, 2016) and soft-argmax operation Luvizon et al. (2019)
to improve the capability of AD-VAE for the relationships between different action dimensions and
boundary action values. Furthermore, we find a core issue of parallel optimization of AD-VAE and
RL agents: the online updates of AD-VAE may lead to semantic changes of latent actions (i.e. the
non-stationary of decision spaces), resulting in severe data staleness and Q-value over-estimation.
To solve this problem, we introduce action remapping and ensemble Q-learning. Concretely, we
apply the classic DQN as an instance to our framework, named Action Discretization Q-learning
(ADQ), which can be deployed for most complex action spaces. Compared with pioneer works
(Chandak et al., 2019a; Zhou et al., 2020; Dadashi et al., 2022), to our best knowledge, our proposed
framework is the first online RL paradigm capable of employing in discrete action spaces learned
from different continuous and hybrid decision-making environments.

To demonstrate the efficiency and stability of our NDRL framework and AD-VAE method, we eval-
uate it on the classic continuous control benchmark MuJoCo Todorov et al. (2012), showing that
ADQ can achieve excellent performance operating in high-dimensional continuous space even with
a small number of actions. To evaluate the generality, we test it on the hybrid action environments
Gym Hybrid thomashirtz (2021), HardMove from HyAR and GoBigger Zhang (2021). The results
show that ADQ outperforms current state-of-the-art hybrid action algorithms in both sample effi-
ciency and final performance. Besides, we also conduct a series of ablation study experiments and
interpret more details about NDRL by visualization on the latent space.

2 RELATED WORK

Action Discretization Discretization and continuity are like the relationship between 0 and 1 in
the binary world. All things, including time and space, are continuous, but for the convenience of
cognition, we will discretize all of them. Only then can we have measures, such as the concepts of
hours, minutes and meters. In RL, learning directly on a high-dimensional continuous action space
may present difficulties in exploration due to the uncountable set of actions. In addition, (Bjorck
et al., 2021) argues that the nonlinear function saturation caused by unstable network parameter-
ization will cause the well-known high variance problem. The most straightforward solution is
discretization, however, this usually suffers from the curse of dimensionality. To alleviate this prob-
lem, many assumptions about the action space have been proposed. For example, (Tang & Agrawal,
2020) verifies the feasibility of discretizing the action space in on-policy optimization by utilizing
the factorized distribution across action dimensions. In (Dadashi et al., 2022), the authors proposed
to circumvent the curse of dimensionality problem by learning a set of plausible discrete actions
from expert demonstrations. We argue that this algorithm can naturally be seen as a special case of

2

Under review as a conference paper at ICLR 2023

our NDRL framework. (Seyde et al., 2021a) explored the effect of extreme actions on continuous
action control, which also inspired the design of AD-VAE for maintaining boundary actions.
Hybrid Action Space Many real-world problems may have hybrid action spaces. For example,
in the GoBigger game, we need to select an action type first, and then give its corresponding con-
tinuous control arguments. The simplest idea is to map it onto a unified homogeneous action space,
like discretizing continuous actions or making discrete actions continuous, however this may cre-
ate scalability issues with the curse of dimensionality. Going a step further, recent work proposes
various hand-designed network structures to learn directly on the original hybrid action space. For
instance, Parameterized Action DDPG (Hausknecht & Stone, 2016) uses a modified DDPG actor-
critic structure and HPPO (Fan et al., 2019a) proposes different types of heads for different action
types. PDQN (Xiong et al., 2018a) and MPDQN (Bester et al., 2019) use a hybrid structure of DQN
and DDPG, explicitly modeling the dependencies between continuous and discrete sub-actions.
Action Representation Learning The concept of the latent space is widely used in various ele-
ments of reinforcement learning, such as latent state and dynamics. But in action space, (Chandak
et al., 2019b) proposes action representation learning in a large action space, leveraging the structure
in the space of actions and showing its importance for enhancing generalization over large action
sets in real-world large-scale applications. (Li et al., 2021) propose Hybrid Action Representation
(HyAR) to learn a compact and decodable latent representation space for the original hybrid action
space. HyAR constructs the latent space and embeds the dependence between discrete action and
continuous arguments via an embedding table and conditional Variational Auto-Encoder (VAE).

3 BACKGROUND
Markov Decision Process In reinforcement learning, we model a decision-making problem as a
Markov Decision Process (MDP) M=(S,A,P,R, γ, ρ0), where S and A represent the state space
and the action space, P is the transition function: S × A → S , R is the expected reward func-
tion: S × A → R, γ ∈ [0, 1) is the discounted factor, and ρ0 is the initial state distribution.
The objective of RL is to learn a policy π : S → A to maximize the expected discounted return
J(π) = Eπ,ρ0,P,R[

∑∞
t=0 γ

trt], where the expectation is taken with respect to the trajectory distri-
bution induced by π and environment dynamics.
Hybrid Action Space In decision-making problems, at each time t, the agent receives a state and
carries out an action, which can be divided into 3 types: discrete, continuous and hybrid action.
Here we give a general formalization. A hybrid action a contains N decision nodes (sub-actions).
At each decision node i and time step t, the agent needs to give a proto-action at,i with two attributes
including type and range of values; the type of value at,i,type indicates whether it is continuous or
discrete, and the range of value at,i,range indicates its corresponding executable action set. Thus, we
use an ordered tuple like a = (at,1, at,2, ..., at,N) to describe these basic nodes. Furthermore, the
relations between decision nodes can be defined by a adjacency matrix Ar,t in graph theory, called
action relation matrix. The value of the elements in the matrix is {0, 1}. If the element Ai,j in row
i and column j is equal to 1, it means that there is a directed edge from decision node i to j. If
equal to 0, there is no dependency between them. In many real-world problems, the dependencies
between the proto-action always are invariant, that is, the action relation matrix is independent of t.
Generally, hybrid action space can be defined as a tuple:

A = ({at,i,type, at,i,range | i ∈ [1, ..., N]}, Ar) (1)

The Parameterized Action Space defined in (Masson et al., 2016) is a special instance of our defi-
nition, specifically, which is equivalent to action a containing 2 decision nodes and at,0,type = 0,
at,0,range = K, at,1,type = 1, at,1,range = X. There is only a directed edge from decision node 1
to decision node 2, formally, the adjacency matrix Ar is:(

0 1
0 0

)
(2)

Action Transformed MDP Here we augment a MDP with action transformation, which can be
defined as M=(S,A,P,R, γ, ρ0, T), where T denotes the transformation operator on action space,
such as action discretization . Denote the transformed action as k, we can describe T as:

T : k = T (s, a) a = T−1(s, k) (3)

The other elements are consistent with the original definition of MDP. Through this transformation,
we can learn an RL agent more efficiently on this new, often reduced, latent action space.

3

Under review as a conference paper at ICLR 2023

0M 0.25M 0.5M 0.75M 1M 1.25M 1.5M
Env Steps

200

100

0

100

200

300

R
et

ur
n

TD3
DQN + expert cluster
ADQ

0M 0.25M 0.5M 0.75M 1M 1.25M 1.5M
Env Steps

0.0

0.2

0.4

0.6

0.8

1.0

N
oo

p
A

ct
io

n
R

at
io

TD3
DQN + expert cluster
ADQ

Figure 1: Top: Visualization analysis about different action spaces in the same LunarLander (Brock-
man et al., 2016) environment. ExpertCluster is discrete action obtained by clustering on TD3 expert
data). HandCrafted is obtained by the threshold of spaceship engine. Vertical engine only enables
when x is bigger than 0; And if y is smaller than -0.5, the left booster will fire, and if y is bigger than
0.5, the right booster will fire. Bottom: (left) Episode return of three algorithms on LunarLander:
TD3 (original continuous action space), DQN + expert cluster, ADQ (discrete action learned by
AD-VAE from scratch) ; (right) The ratio of some semantically same actions (no operation), more
no-op actions means greater redundancy during training, i.e., lower is better.

Vector Quantised Variational AutoEncoders Motivated by vector quantization (VQ) and Vari-
ational AutoEncoder, VQ-VAE van den Oord et al. (2017)) is designed to learn a discrete latent
representations to represent the original data distribution (e.g., text, image) in a unsupervised man-
ner. VQ-VAE mainly comprises of an encoder eϕ, an decoder dψ , and a learnable code table Vε.
The learnable code table maintains a set of embeddings {ek}K−1

k=0 .

Firstly, the encoder takes the data x as input, and outputs an embedding vector ze = f(x). Then
using the embedding vector ze to query the nearest (usually in Euclidean distance) code vector zd
in the code table and outputs an latent index k simultaneously. Thirdly, the decoder uses the code
vector ed as its input to produce reconstructions x̂. The whole objective is to minimize the following
loss function

L = Ld(x̂, x) + ∥sg [eϕ(x)]− ze∥22 + β ∥eϕ(x)− sg[ze]∥22 (4)

zd = ek, where k = argminj ∥ze − ej∥2 (5)

Where sg(·) is the stop gradient function. The first term of loss function is to reconstruct error in
certain distance metric, the second item and the third term is embedding loss and commitment loss
respectively. Please refer to van den Oord et al. (2017) for more details.

4 NEURAL DISCRETE REINFORCEMENT LEARNING

4.1 MOTIVATION

First, to motivate our proposed framework, we further discuss the advantages of reinforcement learn-
ing in discrete action spaces from the following 3 aspects: unity, efficiency and stability.

4

Under review as a conference paper at ICLR 2023

4.1.1 UNITY

In practice, researchers need to first transform the original decision-making problem into a standard
MDP form. Due to the different types of target action spaces, it is inevitable to utilize different
techniques for the corresponding action spaces, which brings non-negligible learning and tuning
costs beyond core RL optimization. But when we dive deeper into this problem, we find there are
obvious redundancies in most complex action space, e.g., only a few discrete actions/samples can
perform well in multi-dimensional continuous control Seyde et al. (2021b); Hubert et al. (2021).
In Figure 1(a), we also illustrate the entropy of different action spaces to show the effectiveness of
discretization. Therefore, learning compact action representations instead of repeating some dirty
work in the raw action space is a natural and powerful choice. Moreover, the decoupling of action
representation learning and RL allows researchers to concentrate on only one of the topics.

4.1.2 EFFICIENCY

Furthermore, we verify the efficiency of action discretization in online RL training. As shown in
Figure 1(a), we find the well-designed discrete action space shows lower entropy and more compact
representation. We also conduct a simple experiment to test the performance and the ratio of useless
action like excessive no operation in 1(b). Based on these observations, we design AD-VAE to
automatically learn the latent discrete action space from the original action space. On one hand,
this model can learn to approximate the necessary parts and ignore meaningless parts of the original
space, which is beneficial to improve exploration efficiency. On the other hand, some works Jiang
et al. (2022) show that the marginal distribution of each action dimension is often multi-modal, thus
using a discrete categorical distribution is more suitable than the simple regression in TD3.

4.1.3 STABILITY

However, previous methods Dadashi et al. (2022); Jiang et al. (2022) only succeed in deploying
action discretization on imitation learning and offline RL settings, which means that it needs to first
learn a latent space and then apply decision-making algorithms on the fixed discrete action space. We
tried to directly utilize AD-VAE on online settings but obtain unstable episode returns. Compared to
training on the frozen discrete action space, we find some abnormal indicators including unusually
high Q-values and obvious fluctuations in gradient scale and variance. Due to parallel optimization
about AD-VAE and RL agents, it would be a hazardous non-stationary MDP if the latent action
space changes too much. To figure out this problem, we propose action remapping and ensemble
Q-learning. Together with AD-VAE, these techniques form the entire NDRL framework.

4.2 NDRL FRAMEWORK

4.2.1 OVERVIEW

Motivated by the above analysis, we propose a framework that combines online RL training with
learnable action discretization on complex action spaces, named Neural Discrete Reinforcement
Learning (NDRL). At a high-level, this framework is a “meta-algorithm” that splits decision-making
in arbitrary complex action spaces into two parts: the part of representation learning mapping the
original action space to a new discrete action space and the reinforcement learning part built on
learned discrete representations. Based on this design, any reinforcement learning designed for
discrete space (e.g. DQN, PPO) can be potentially applied to different complex action spaces. The
overview of NDRL framework is described in Figure 1, and we will introduce the data collecting
phase and network training phase respectively:

Collecting Phase: This phase describes how to collect data used in the training of AD-VAE and RL
agents. Given the current state st, RL agents first select corresponding discrete latent action kt, then
utilizing AD-VAE decoder to transform it back to the original action space. Moreover, NDRL also
deploys some extra randomization operations (e.g. epsilon greedy in DQN) on the decoded action
to maintain sufficient exploration. The final action at interacts with the environment and it returns
reward rt and next state st+1. All necessary data will be packed into a transition and put into buffers.

Training Phase: The training phase is to execute two training pipelines with different data buffers
in parallel. (1) For action representation learning, NDRL follows the main training scheme of VQ-
VAE to reconstruct primitive actions with state conditions. (2) For RL training, it first remaps the

5

Under review as a conference paper at ICLR 2023

Neural Discrete Reinforcement Learning Framework

Collecting
Phase

Training
Phase

Agent
AD-VAE
Decoder

Normal RL Inference

Normal RL Training

Agent

Latent Action Remapping

i

......

AD-VAE Code Table

e0 e2e1 eK-1

AD-VAE
Training

RL
Training

AD-VAE
Encoder

AD-VAE
Code Table AD-VAE

Decoder

Action Representation Learning

Hybrid
Action SpaceDiscrete

Action Space

......

AD-VAE
Encoder

AD-VAE
Code Table

Data Action Discretization (AD-VAE) RL Agent Process

Figure 2: Overview of NDRL framework. Collect Phase: Given the current state st, the RL
agent gives latent discrete action kt, and utilizes AD-VAE code table and decoder to obtain the
raw action at, then interacts with the environment. Train Phase: First remap the sampled transition
(st, at, rt, st+1) with latest AD-VAE encoder and table to kt, then deploy the normal RL training.
Note the AD-VAE is also trained with state condition in parallel. Black round means continuous
action space, while grey round means discrete, the whole tree structure means hybrid action.

original action in the sampled transition with AD-VAE encoder to obtain the latest latent action kt,
then conduct normal policy optimization on transformed data.

Besides, for the better initialization of off-policy RL algorithms, we also design a pretrain stage at
the beginning of the entire algorithm. The full pseudo-code of NDRL is provided in Algorithm 1. If
there are some expert demonstrations, a promising set of discrete action candidates can be learned
from it. Otherwise, we can collect data with random policy to train the AD-VAE and learn some
basic properties of the original action space for subsequent parallel learning. After pretrain stage,
data collecting and two parts of training can be executed asynchronously, so the computational cost
of NDRL can be easily optimized and show the same efficiency as other methods.

4.2.2 AD-VAE

In this section, we first analyze the problem of directly using the original VQ-VAE, then introduce
the specific design about our proposed Action Discretization Variational AutoEncoders (AD-VAE).

Modeling Intrinsic Properties of Action Spaces In online RL training, there are both necessary
and redundant subsets of the original action space. For instance, Seyde et al. (2021b) pointed out
that in some continuous action tasks, the optimal action may be at some extreme boundary values
(e.g. -1 and 1), which is a common phenomenon in several physical simulation environments. Also,
Bester et al. (2019) revealed that effective combinations between different action parts is significant
for the optimization in hybrid action space. Therefore, it is wise to pay more attention to those
actions that are more beneficial to the optimal policy, and ignore some useless even harmful actions.
Otherwise, trivial action reconstruction with the same weights and distance metrics can only obtain
some over-smooth actions. Besides, we also can take advantages of the value function to focus on
those actions with higher future return, saving the cost of agent exploration and exploitation.

Information Completion in AD-VAE We first introduce the technique of information completion
in AD-VAE. In some complex environments, the set of optimal actions could be large and vary in
different training stages. If we reconstruct actions without state information, AD-VAE must maintain
a large discrete action sets and RL agents needs to learn decisions on a great number of actions,
which can easily make it overwhelming and cause training instability. On the contrary, properly use
of state-conditioned input in both encoder and decoder of AD-VAE can increase the representational

6

Under review as a conference paper at ICLR 2023

power and diversity, and reduce the burden of action reconstruction and RL training. Moreover, the
relationship between different action parts, i.e. the action relation matrix mentioned in Section 3,
can assist AD-VAE to learn more efficiently and reasonably, so we can represent this information as
the connections of nodes with a graph neural network. Besides, AD-VAE is not designed to learn the
entire action space but to properly model the subsets required by current RL optimization, thus we
customize sampling method and training scheme for AD-VAE, including sampling a mixture of stale
data in replay buffer and latest collected data as a training mini-batch, validating the reconstruction
error of actions to indicate the update frequency.

Continuous Action Regression in AD-VAE Another important intrinsic property of original ac-
tion spaces is some special action values, such as the extreme actions mentioned in Seyde et al.
(2021b) or thresholds of engine dynamics in LunarLander. It is critical for action representation
networks to restore these continuous value accurately. Therefore, in AD-VAE, we adopt the soft-
argmax operation to automatically reconstruct these special actions. Assuming the range of original
action is [Amin, Amax], and it is divided into N + 1 bins on average, the predicted action is:

â =

N∑
j=0

sj ∗ pj (si) , sj = Amin + j ∗ (Amax −Amin)/N (6)

When evaluation, we directly output the corresponding support value if the probability of the support
is greater than a threshold (e.g. 0.9). In some environments like Hopper/Halfcheetah, we find this
design can help a simple DQN agent achieve a comparable performance with TD3.

Other parts of AD-VAE follow the design of VQ-VAE, the whole training procedure is to minimize
the loss function described in Equation 4.

4.2.3 ADAPTING RL TO LATENT ACTION SPACES

In this section, we continue to analyze why and how to adapt online RL to latent discrete action
spaces, and then illustrate an instance of our NDRL framework on the value-based RL algorithm
DQN, Action Discretization Q-learning (ADQ).

Semantic Inconsistency In online RL, Double DQN (van Hasselt et al., 2016) pointed out that
Q-value over-estimation problems caused by the function approximation error and the max operator
in the bootstrap target often lead to performance deterioration. Furthermore, this problem may be
exacerbated in NDRL. On one hand, latent action stored in replay buffer will be stale and biased due
to updates of AD-VAE. On the other hand, since AD-VAE is dynamically and simultaneously up-
dated together with RL agents, for a particular latent action, the corresponding action in the original
action space could often change, which is more likely to lead to the overestimation of Q-value.

Latent Action Remapping Similar to the reanalyze operation in MuZero Schrittwieser et al.
(2019), we design a latent action remapping operation to solve the problem of stale data. In the
collected mini-batch {st, at, koldt , rt, st+1}, the latent action is determined by the old version of
AD-VAE. When updating RL agents, we remap the original action to the corresponding latent ac-
tion via the latest action encoder eϕ: kt = eψ(st, at), and then executes RL training on the remapped
samples {st, sg[knewt], rt, st+1} (sg means the stop gradient operation).

Ensemble Q-learning To further alleviate the Semantic Inconsistency problem, inspired by pre-
vious work Anschel et al. (2017); An et al. (2021), we propose an ensemble Q-learning method for
more stable Q-value updates for latent action space, reducing the uncertainty of approximation error
and over-estimation, which greatly improves the stability of parallel optimization of AD-VAE and
RL agents. Specifically, we utilize a shared state encoder and N ensemble Q-value heads, i.e., the
penultimate layer of the Q network is connected to N linear layers and outputs N Q-value, then we
adjust the update equation of Double DQN as follows:

Li =
[
Q(st, at; θk)− [rt + γminkQ(st+1, at+1; θ̂k)]

]2
(7)

at+1 = argmax
1

N

∑
k

Q(st+1, at+1; θk) (8)

Where Li means the loss function of i-th Q head. Detailed experiments can be found in Section 5.3.

7

Under review as a conference paper at ICLR 2023

Figure 3: Training curves of ADQ against other baseline algorithms in environments with complex
action spaces. Top: In four continuous action environments of MuJoCo, ADQ significantly outper-
forms DQN with manually discretized action space, and is basically comparable to the classic TD3
algorithm. Bottom: In four hybrid action environments in Gym-Hybrid, HardMove and GoBigger,
ADQ outperforms the baseline MPDQN and HPPO in both performance and stability. Curves and
shadings denote the mean and standard deviation over 5 seeds.

Figure 4: Visualization of the latent action space of LunarLander games. Details is in 5.2.

5 EXPERIMENTS

For the evaluation of our NDRL framework, we ask and answer the following questions: 1) Is
it efficient and stable to employ online RL training on discretization action spaces for different
decision problems, especially in high-dimensional continuous and hybrid action spaces? (Section
5.1); 2) How do we interpret the training of the latent action space? Can we further verify some
observations mentioned in introduction parts? (Section 5.2); 3) How do various designs improve the
NDRL framework, including AD-VAE and other RL adaption techniques? (Section 5.3).

5.1 MAIN RESULTS

In this section, we investigate the performance and efficiency of NDRL in various continuous and hy-
brid action environments against previous algorithms designed specifically for these action spaces.
Firstly, we evaluate our methods on MuJoCo, a classic continuous control benchmark, including
two high-dimensional continuous domains (Ant and Humanoid with 8 and 17 dimensions respec-
tively). Note we also add a few redundant dimensions in original action spaces. We set up two
comparison groups for our ADQ, one is the popular continuous action space algorithm TD3, and
the other is naive DQN deployed in the manually discretized action space, i.e., equally dividing the
original continuous action into 3 bins at each dimension and using their Cartesian product to obtain
handcrafted discrete actions. In Figure 3, ADQ can acquire comparable results to TD3 and show a
obvious improvement over naive DQN in all four domains on the top. Secondly, we leverage Gym-
Hybrid, HardMove and GoBigger to verify the effectiveness of ADQ in more complex hybrid action
spaces. This requires to deal with the relationship between different actions parts (e.g., the value
of action arguments depend on the choice of action type) and more complex environment dynamics
(GoBigger). At the bottom of Figure 3, we compare ADQ with two types of hybrid action space al-
gorithms, MPDQN and HPPO, suggesting that ADQ can automatically learn the intrinsic properties
of discrete action type and continuous action arguments, and performs excellent performance and
solid stability. All the detailed settings are shown in Appendix A.1 and A.2 respectively.

8

Under review as a conference paper at ICLR 2023

Figure 5: Ablating results of ADQ in two types of environments (continuous and hybrid) over 5
seeds. When we remove any one of the proposed techniques, the performance of ADQ will drop
significantly, which verifies the effectiveness of our proposed techniques. ADQ w/o AR is especially
important for improving ADQ performance in environments such as HalfCheetah-v3.
5.2 VISUALIZATION ANALYSIS OF LATENT ACTION SPACE

Furthermore, we demonstrate the learned latent action representation in LunarLander environment
for 2-dimensional continuous control. Figure 4 first shows the status of the spaceship when it is about
to land (left), i.e., launching both horizontal and vertical engines to control speed and position, then
uniformly samples points in original continuous space and transforms them with AD-VAE encoder
to find their nearest discrete indexes (middle). Also, we directly send the corresponding embeddings
in code table to decoder to acquire their counterparts in the raw space (right). We can observe that
the learned latent space is similar to the intrinsic mechanisms of this environment, highlighted by
red line: only using one discrete action to represent less important actions in this state like no-op,
mapping several different actions to the bottom right corner.

5.3 ABLATION STUDIES

We also empirically evaluate the specific impacts of our proposed AD-VAE and RL adaption tech-
niques on two example environments respectively: HalfCheetah-v3 (continuous), and HardMove-
v0-n10 (hybrid). The ablation results are shown in Figure 5. Concretely, we have the following five
ablation variants in total, and their brief descriptions are as follows:

ADQ w/o remapping: ADQ variant that does not remap latent actions during RL training.

ADQ w/o ensemble: A variant of ADQ that doesn’t utilizing the Ensemble Q-Learning technique.

ADQ w/o warmup: ADQ variant that starts training without any warmup pretraining.

ADQ w/o AR: ADQ variant with traditional VQ-VAE reconstruction head.

ADQ w/o AR + hand-crafted action: Built on ADQ w/o AR, this variant adds manually selected
boundary actions (i.e. the Bernoulli extreme actions) to latent discrete action spaces for RL training.

Figure 5 show that when we remove either of the proposed techniques, the performance of ADQ
drops significantly in both two environments, verifying the effectiveness of our proposed techniques.
Due to the semantic inconsistency problem, the ADQ w/o ensemble agent suffers from severe over-
estimation issues and finally show poor performance. The ADQ w/o remapping agent meets the
same problem, but in some cases the over-estimation problem can be partially alleviated by Ensem-
ble Q-learning technique. The ADQ w/o warmup agent shows much slow learning progress due
to lack of good starting points. Note that in environments with boundary optimal actions such as
HalfCheetah-v3, ADQ w/o AR is especially important for improving ADQ performance, even bet-
ter than the variant using extra hand-crafted actions. Other ablation results like pretraining on expert
demonstrations and the sensity of hyper-parameters can also be found in Appendix.

6 CONCLUSIONS AND LIMITATIONS
Starting from comprehensive analysis for action discretization, we introduce a general and efficient
paradigm named Neural Discrete Reinforcement Learning, including our proposed AD-VAE and
RL adaption techniques. We empirically evaluate the efficiency and stability of our framework.
Although our method achieve superior performance in different benchmark environments, there
are still some challenging action spaces in multi-agent games, such as variable-length actions in
episodes. Besides, combining latent discrete actions with MCTS is also a valuable attempt. We will
continue to pursue ultimate solution for action space shaping in future work.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based of-
fline reinforcement learning with diversified q-ensemble. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
7436–7447, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
3d3d286a8d153a4a58156d0e02d8570c-Abstract.html.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 176–185. PMLR,
2017. URL http://proceedings.mlr.press/v70/anschel17a.html.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. CoRR, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

Craig J. Bester, Steven D. James, and George Dimitri Konidaris. Multi-pass q-networks for deep
reinforcement learning with parameterised action spaces. CoRR, abs/1905.04388, 2019. URL
http://arxiv.org/abs/1905.04388.

Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Is high variance unavoidable in rl? a case
study in continuous control. arXiv preprint arXiv:2110.11222, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Y. Chandak, G. Theocharous, J. Kostas, S. M. Jordan, and P. S. Thomas. Learning action represen-
tations for reinforcement learning. In ICML, volume 97, pp. 941–950, 2019a.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learning
action representations for reinforcement learning. In International conference on machine learn-
ing, pp. 941–950. PMLR, 2019b.

Robert Dadashi, Léonard Hussenot, Damien Vincent, Sertan Girgin, Anton Raichuk, Matthieu Geist,
and Olivier Pietquin. Continuous control with action quantization from demonstrations. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 4537–4557. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/dadashi22a.html.

Z. Fan, R. Su, W. Zhang, and Y. Yu. Hybrid actor-critic reinforcement learning in parameterized
action space. In IJCAI, pp. 2279–2285, 2019a.

Zhou Fan, Rui Su, Weinan Zhang, and Yong Yu. Hybrid actor-critic reinforcement learning in
parameterized action space. In Sarit Kraus (ed.), Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp.
2279–2285. ijcai.org, 2019b. doi: 10.24963/ijcai.2019/316. URL https://doi.org/10.
24963/ijcai.2019/316.

S. Fujimoto, H. v. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In ICML, volume 80, pp. 1582–1591, 2018.

M. Hausknecht and P. Stone. Deep reinforcement learning in parameterized action space. ICLR,
2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

10

https://proceedings.neurips.cc/paper/2021/hash/3d3d286a8d153a4a58156d0e02d8570c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/3d3d286a8d153a4a58156d0e02d8570c-Abstract.html
http://proceedings.mlr.press/v70/anschel17a.html
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1905.04388
https://proceedings.mlr.press/v162/dadashi22a.html
https://doi.org/10.24963/ijcai.2019/316
https://doi.org/10.24963/ijcai.2019/316

Under review as a conference paper at ICLR 2023

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Re-
search, pp. 4476–4486. PMLR, 2021. URL http://proceedings.mlr.press/v139/
hubert21a.html.

Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktäschel, Edward Grefen-
stette, and Yuandong Tian. Efficient planning in a compact latent action space. CoRR,
abs/2208.10291, 2022. doi: 10.48550/arXiv.2208.10291. URL https://doi.org/10.
48550/arXiv.2208.10291.

Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. Action space shaping in deep rein-
forcement learning. In IEEE Conference on Games, CoG 2020, Osaka, Japan, August 24-
27, 2020, pp. 479–486. IEEE, 2020. doi: 10.1109/CoG47356.2020.9231687. URL https:
//doi.org/10.1109/CoG47356.2020.9231687.

Anssi Kanervisto, Stephanie Milani, Karolis Ramanauskas, Nicholay Topin, Zichuan Lin, Junyou
Li, Jianing Shi, Deheng Ye, Qiang Fu, Wei Yang, Weijun Hong, Zhongyue Huang, Haicheng
Chen, Guangjun Zeng, Yue Lin, Vincent Micheli, Eloi Alonso, François Fleuret, Alexander
Nikulin, Yury Belousov, Oleg Svidchenko, and Aleksei Shpilman. Minerl diamond 2021 com-
petition: Overview, results, and lessons learned. CoRR, abs/2202.10583, 2022. URL https:
//arxiv.org/abs/2202.10583.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/
abs/1312.6114.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
Li Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
representation. arXiv preprint arXiv:2109.05490, 2021.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1509.02971.

Diogo C. Luvizon, Hedi Tabia, and David Picard. Human pose regression by combining indirect
part detection and contextual information. Comput. Graph., 85:15–22, 2019. doi: 10.1016/j.cag.
2019.09.002. URL https://doi.org/10.1016/j.cag.2019.09.002.

W. Masson, P. Ranchod, and G. D. Konidaris. Reinforcement learning with parameterized actions.
In AAAI, pp. 1934–1940, 2016.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. CoRR,
abs/1911.08265, 2019. URL http://arxiv.org/abs/1911.08265.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Wulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous control with
bernoulli policies. Advances in Neural Information Processing Systems, 34:27209–27221, 2021a.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin A. Ried-
miller, Markus Wulfmeier, and Daniela Rus. Is bang-bang control all you need? solv-
ing continuous control with bernoulli policies. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances

11

http://proceedings.mlr.press/v139/hubert21a.html
http://proceedings.mlr.press/v139/hubert21a.html
https://doi.org/10.48550/arXiv.2208.10291
https://doi.org/10.48550/arXiv.2208.10291
https://doi.org/10.1109/CoG47356.2020.9231687
https://doi.org/10.1109/CoG47356.2020.9231687
https://arxiv.org/abs/2202.10583
https://arxiv.org/abs/2202.10583
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://doi.org/10.1016/j.cag.2019.09.002
http://arxiv.org/abs/1911.08265

Under review as a conference paper at ICLR 2023

in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 27209–
27221, 2021b. URL https://proceedings.neurips.cc/paper/2021/hash/
e46be61f0050f9cc3a98d5d2192cb0eb-Abstract.html.

Nur Muhammad (Mahi) Shafiullah, Zichen Jeff Cui, Ariuntuya Altanzaya, and Lerrel Pinto. Be-
havior transformers: Cloning k modes with one stone. CoRR, abs/2206.11251, 2022. doi:
10.48550/arXiv.2206.11251. URL https://doi.org/10.48550/arXiv.2206.11251.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
In Proceedings of the aaai conference on artificial intelligence, volume 34, pp. 5981–5988, 2020.

thomashirtz. Gym hybrid. https://github.com/thomashirtz/gym-hybrid, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete repre-
sentation learning. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
6306–6315, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Dale Schuurmans and Michael P. Wellman (eds.), Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pp.
2094–2100. AAAI Press, 2016. URL http://www.aaai.org/ocs/index.php/AAAI/
AAAI16/paper/view/12389.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P.
Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu
Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McK-
inney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver. Grandmaster level in starcraft II using multi-agent reinforce-
ment learning. Nat., 575(7782):350–354, 2019. doi: 10.1038/s41586-019-1724-z. URL
https://doi.org/10.1038/s41586-019-1724-z.

Hua Wei, Jingxiao Chen, Xiyang Ji, Hongyang Qin, Minwen Deng, Siqin Li, Liang Wang, Weinan
Zhang, Yong Yu, Lin Liu, Lanxiao Huang, Deheng Ye, Qiang Fu, and Wei Yang. Honor of kings
arena: an environment for generalization in competitive reinforcement learning. In Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks, 2022.

J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H. Fu, T. Zhang, J. Liu, and H. Liu.
Parametrized deep q-networks learning: Reinforcement learning with discrete-continuous hybrid
action space. CoRR, abs/1810.06394, 2018a.

Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo Fu, Tong
Zhang, Ji Liu, and Han Liu. Parametrized deep q-networks learning: Reinforcement learning
with discrete-continuous hybrid action space. CoRR, abs/1810.06394, 2018b. URL http://
arxiv.org/abs/1810.06394.

Ming Zhang. Gobigger: A scalable platform for cooperative-competitive multi-agent reinforcement
learning. https://github.com/opendilab/GoBigger, 2021.

W. Zhou, S. Bajracharya, and D. Held. PLAS: latent action space for offline reinforcement learning.
CoRR, abs/2011.07213, 2020.

12

https://proceedings.neurips.cc/paper/2021/hash/e46be61f0050f9cc3a98d5d2192cb0eb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e46be61f0050f9cc3a98d5d2192cb0eb-Abstract.html
https://doi.org/10.48550/arXiv.2206.11251
https://github.com/thomashirtz/gym-hybrid
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://doi.org/10.1038/s41586-019-1724-z
http://arxiv.org/abs/1810.06394
http://arxiv.org/abs/1810.06394
https://github.com/opendilab/GoBigger

Under review as a conference paper at ICLR 2023

(a) HardMove-v0 (b) GoBigger

Figure 6: Benchmarks with complex actions: (a) The objective of the agent is to reach the target
area. The agent has n equally spaced actuators. It can choose whether each actuator should be on
or off and determine the corresponding continuous parameter for each actuator simultaneously. (b)
The objective of the agent is to increases its size by colliding and merging with other balls within a
bounded rectangular area in a limited time.

A APPENDIX

A.1 BENCHMARK ENVIRONMENTS

In this section, we provide the brief descriptions for the benchmark environments used in our exper-
iments.

MuJoCo stands for Multi-Joint dynamics with Contact. It is a general-purpose physics engine
designed to aid research and development in robotics, bio-mechanics, graphics and animation, ma-
chine learning, and other fields that require the rapid and precise modeling of articulated structures
interacting with their surroundings Todorov et al. (2012). Features of MuJoCo environment include
continuous action spaces and reward representations comprised of many components which usually
include penalization of actions corresponding to bad control. We test our proposed ADQ and other
baseline algorithms in four MuJoCo environments specifically: Hopper-v3, HalfCheetah-v3, Ant-v3,
Humanoid-v3.

Gym-Hybrid is a set of sandbox environments for parameterized action-space algorithms. The
goal of the agent is to stop inside the target area. The field is a square with a side length of 2. The
target area is a circle with radius 0.1. There are three discrete actions: turn, accelerate, and brake.
In addition to the action, there are 2 possible complementary parameters: acceleration and rotation.
We also utilize the HardMove-v0-n proposed in (Li et al., 2021): The agent has n equally spaced
actuators. Agent must choose whether each actuator be on or off (thus 2n in total) and determine
the corresponding continuous parameter for each actuator (moving distance) to reach the target area.
The larger n means the larger action space, and the harder it is for the agent to explore and learn. In
all our experiments, we set n=10.

GoBigger TODO(pu): zhenjie is a multi-agent reinforcement learning environment that empha-
sizes cooperation and competition. Each agent, which is represented by one or more balls (dubbed
clone ball), increases its size by colliding and merging with other balls within a bounded rectangular
area in a limited time. The larger the size of clone balls, the higher the player’s score. In GoBigger,
the observation space includes information about all units in the agent’s local field of view. The re-
ward is to take the difference of the sizes in two consequent timesteps. The action space is a hybrid
action space (x, y, action type) same as Gym-Hybrid. As multi-agents rapidly develop or eliminate
opponents through continuous cooperation, cooperation usually requires fine actions to accomplish.
So action representation is a great challenge for GoBigger. GoBigger has multiple sub-environments
that researchers can design for different tasks. Commonly used environments are t2p2, t3p2, t4p3.
Among them, the number behind t (team) means that there are t teams in a game, and the number
behind p (player) means that each team contains p agents. In our experiments, we set t=p=2.

A.2 IMPLEMENTATION DETAILS

In this section, we provide extensive implementation details for our experimental setup, including the
architecture of AD-VAE and Ensemble Q network, hyperparameters, as well as the computational
cost in our experiments. Our algorithm pseudocode is shown in .

13

Under review as a conference paper at ICLR 2023

Algorithm 1: Neural Discrete Reinforcement Learning
1 Initialize (state-conditioned) AD-VAE: Encoder eϕ, Decoder dψ , Action embedding table Vε
2 Initialize action representation (AR) buffer DAR, reinforcement learning (RL) buffer DRL
3 Initialize RL agent networks (such as Qθ and/or πω)
4 repeat Stage 1
5 repeat
6 Collect data using random/expert policy and store {st, at, rt, st+1} in buffer DAR
7 until reaching maximum warm-up collecting steps;
8 repeat
9 Sample mini-batch {st, at} from DAR

10 Update ϕ, ψ and ε using the sampled mini-batch
11 until reaching maximum warm-up AT training steps;
12 until reaching maximum warm-up environment steps;
13 clear AR buffer DAR

14 repeat Stage 2
15 // agent interacting phase
16 for t← 1 to T do
17 // select latent action in latent action space
18 kt = χRL(agent(st)) ▷ agent represents the value or policy network associated with the RL

algorithm.
19 // decode into original action space
20 at = χAR(āt)
21 Execute original action at, observe reward rt and next state st+1

22 Store (st, at, rt, st+1) in DRL and DAR

23 // AR phase
24 repeat
25 Sample mini-batch {st, at, rt, st+1} from DAR
26 Update ϕ, ψ and ε using the sampled mini-batch
27 until reaching maximum AR training steps;
28 // RL phase
29 repeat
30 Sample mini-batch {st, at, rt, st+1} from DRL
31 // latent action remapping
32 kt = eψ(st, at)
33 Update agent networks using {st, sg[kt], rt, st+1}
34 until reaching maximum RL training steps;
35 until reaching maximum interacting environment steps;

Network Architecture The Structure of our AD-VAE for hybrid action spaces is shown in 7.
As discussed in 4.2.2, the input of the action encoder of AD-VAE includes the embedding of state
and action. According to the inspiration of (He et al., 2016), we also add a skip connection of the
state embedding to the action decoder. The output of the action decoder is divided into 2 heads
to reconstruct the continuous part and the discrete part of the original hybrid action respectively.
Specifically, for Gym-Hybrid, the original hybrid action is (action type, action arguments), where,
the action type is the discrete action that decides the type of the hybrid action, e.g. {Accelerate,
Turn, Break}, the action arguments is the two dimensional continuous action that decides the argu-
ments of the hybrid action. We could use a graph neural network to model the relationship between
the parts of the original hybrid action to get action embedding. Without loss of generality, we sim-
ply take the one-hot encoding of action type and concatenate it with action arguments as our final
action embedding.

For the ensemble Q network, we utilize a common shared state encoder but have N ensemble Q-
value heads, i.e., the penultimate layer of the Q network is connected to N linear layers and outputs
N Q-value, then our Q update equation is shown in modified from Double DQN.
Hyper-Parameters In this subsection, we provide the hyper-parameters of our proposed ADQ
method in We adopt the same hyper-parameters of the continuous action space baseline algorithm
TD3, and the hybrid action space algorithm MPDQN, HPPO from their original paper.
Computational Cost All our experiments are performed on the NVIDIA V100 GPU. The ex-
periments on MuJoCo environments with continuous action space taken approximately 8 hours to
achieve training iterations on 3M env steps in each seed. The experiments on Gym-Hybrid environ-

14

Under review as a conference paper at ICLR 2023

Figure 7: The Model Structure of our VD-VAE for hybrid action spaces. The input of the action
encoder of AD-VAE includes the embedding of state and action. According to the inspiration of the
paper, we also add a skip connection of the state embedding to the action decoder.

Hyper-parameter Value
RL Hyper-parameter Value
Discount factor 0.99
TD-step 3
Learning rate 3e-4
RL replay buffer size 1e6 (transitions)
AD-VAE replay buffer size 1e6 (transitions)
Hidden size List of Q network [256, 256, 128]
Ensemble Number (N) 20
N sample per collect 256 (transitions)
Batch Size 512
Update per collect 50
AD-VAE Hyper-parameter Value
Learning rate 3e-4
Hidden size List of encoder [256, 256,256]
Batch Size 512
Size of embedding table (i.e. latent action shape) 128 (64 for Hopper-v3)
Dimension of embedding table 256
commitment loss weight β 0.25
reconstruct loss weight 10
Warmup data size 5e4
Warmup update steps 1e4

Table 1: Key Hyperparameters of ADQ used in (continuous action space) MuJoCo Environment.

ments with hybrid action space taken approximately 3 hours to achieve training iterations on 3M
env steps in each seed. The experiments on GoBigger environments with hybrid action space taken
approximately 8 hours to achieve training iterations on 3M env steps in each seed.

A.3 THE EFFECT OF EXPERT DATA WARMUP

In this section, we investigate the effect of different mechanisms of warmupin ADQ on Hopper-v3
(continuous). The comparison curves are shown in Figure 8.

Concretely, we have the following two variants in total, and their brief descriptions are as follows:
Collection of Expert Data First, we train the TD3 agent until convergence, then use the best TD3
agent interact with the environment to collect 1000 episodes, then we only select the episodes whose
return is larger than 3500 as the expert warmup dataset, in total, about 269800 transitions. When we
pre-training AD-VAE, we set the epoches=20.

ADQ-expert-warmup: the ADQ variant agent pretrain the AD-VAE utilizing the expert data.

ADQ-expert-warmup w/o AR: the ADQ variant agent don’t use Continuous Action Regression in
AD-VAE, and AD-VAE is pretrained utilizing the expert data.

A.4 DIFFERENT MECHANISMS OF EXPLORING THE ORIGINAL ACTION SPACE

There are two places in our NDRL framework that need to introduce exploration mechanisms,
namely exploration in latent action space χRL and exploration in original action space χAR. Our

15

Under review as a conference paper at ICLR 2023

0M 0.5M 1M 1.5M 2M 2.5M 3M
Env Steps

0

500

1000

1500

2000

2500

3000

3500

R
et

ur
n

Hopper-v3

ADQ
ADQ-expert-warmup
ADQ-expert-warmup w/o AR

Figure 8: The Effect of different mechanisms of warmup in our VD-VAE. The x- and y-axis denote
the environment steps (×106) and average episode return over 10 episodes, respectively. Curves and
shading denote the mean and standard deviation over 3 seeds.

0M 0.5M 1M 1.5M 2M 2.5M 3M
Env Steps

0

2000

4000

6000

8000

10000

R
et

ur
n

HalfCheetah-v3

ADQ w/ AR + extreme noise
ADQ w/ AR + guassian noise
ADQ w/o AR + extreme noise

Figure 9: The Effect of different mechanisms of Exploring the Original Action Space in our VD-
VAE. The x- and y-axis denote the environment steps (×106) and average episode return over 10
episodes, respectively. Curves and shading denote the mean and standard deviation over 3 seeds.

16

Under review as a conference paper at ICLR 2023

Hyper-parameter Value
RL Hyper-parameter Value
Discount factor 0.99
TD-step 3
Learning rate 3e-4
RL replay buffer size 1e6 (transitions)
AD-VAE replay buffer size 1e6 (transitions)
Hidden size List of Q network for HardMove-v0-n10 and GoBigger [256, 256, 128]
Hidden size list of Q network for Moving-v0 and Sliding-v0 [128, 128, 64]
Ensemble Number (N) 20
N sample per collect 256 (transitions)
Batch Size 512
Update per collect 50
AD-VAE Hyper-parameter Value
Learning rate 3e-4
Hidden size list of encoder [256, 256, 256]
Batch Size 512
latent action shape for Moving-v0 and Sliding-v0 16
latent action shape for HardMove-v0-n10 and GoBigger 64
Dimension of embedding table 64
commitment loss weight β 0.25
reconstruct loss weight 10
Warmup data size 5e4
Warmup update steps 1e4

Table 2: Key Hyper-parameters of ADQ on (hybrid action space) Gym-Hybrid and GoBigger Envi-
ronment.

instance method ADQ is essentially value-based, thus naturally, we adapt the usual epsilon-greedy
exploration mechanism as χRL, i.e. kt = ϵ − Greedy(Q(st, at)). Another core problem is how to
efficiently explore the original action space without affecting the stability of the NDRL framework.

Motivated by (Seyde et al., 2021b), we propose a special noise mechanism, namely, with a small
probability (e.g. 0.1), we execute the random Bernoulli extreme action instead of the decoded orig-
inal action. And we also experiment the usually Guassian noise mechanism proposed in (Fujimoto
et al., 2018).

In this section, we investigate the effect of different mechanisms of exploring the original action
space χAR on HalfCheetah-v3 (continuous). The comparison curves are shown in Figure 9.

Concretely, we have the following three variants in total: ADQ w/ AR + extreme noise: the normal
ADQ agent use Continuous Action Regression in AD-VAE, and when collecting data, we execute
the random Bernoulli extreme action distribution with a small probability (e.g. 0.1).

ADQ w/ AR + guassian noise: the ADQ variant agent use Continuous Action Regression in AD-
VAE, and when collecting data, we first add a Guassian noise into the decoded continous action
same as in (Fujimoto et al., 2018), then use the noised action interacting with the environment.
Specifically, the Guassian distribution is N (µ, σ2), and the clipped noise range = [-0.5, 0.5].

ADQ w/o AR + extreme noise: the ADQ variant agent don’t use Continuous Action Regression in
AD-VAE, and when collecting data, we execute the random Bernoulli extreme action distribution
with a small probability (e.g. 0.1).

Figure 9 shows that when collecting data, if we add a guassian noise action into the decoded original
continuous action, the performance of ADQ drops significantly. We conjecture that the reason for
this is the normal action representation learning process is severely hindered by the continuous
noise injection. And the performance of ADQ w/o AR + extreme noise is better than ADQ w/ AR
+ extreme noise verifying the effectiveness of Continuous Action Regression discussed in Section
4.2.2.

This results remind us that the exploration mechanism in the NDRL framework should be specially
considered and designed.

17

Under review as a conference paper at ICLR 2023

0M 0.5M 1M 1.5M 2M 2.5M 3M
Env Steps

0

2000

4000

6000

8000

10000

R
et

ur
n

HalfCheetah-v3

ADQ-K64
ADQ-K128
ADQ-K256

(a) latent action shape K

0M 0.5M 1M 1.5M 2M 2.5M 3M
Env Steps

1.0

0.5

0.0

0.5

1.0

1.5

2.0

R
et

ur
n

HardMove-v0-n10

ADQ-K16
ADQ-K64
ADQ-K128

(b) latent action shape K

0M 0.5M 1M 1.5M 2M 2.5M 3M
Env Steps

0

2000

4000

6000

8000

10000
R

et
ur

n

HalfCheetah-v3

ADQ-N1
ADQ-N3
ADQ-N5
ADQ-N10
ADQ-N20
ADQ-N25
ADQ-N30
ADQ-N40

(c) ensemble head N

0M 0.5M 1M 1.5M 2M 2.5M 3M
Env Steps

1.0

0.5

0.0

0.5

1.0

1.5

2.0

R
et

ur
n

HardMove-v0-n10

ARQ-N1
ARQ-N3
ARQ-N10
ARQ-N20

(d) ensemble head N

Figure 10: The effect of latent action shape K and the number of head in ensemble Q network N .
Top: The comparison curves for different latent action shape. Bottom: The comparison curves for
different number of heads in ensemble Q network.

A.5 EXPERIMENTAL ANALYSIS OF KEY HYPER-PARAMETERS

In our framework, there are two core hyper-parameters: the latent action shape K and the head
number of ensemble Q network N , which largely determines the performance and stability of the
algorithm.

In this section, we investigate the effect of these two key hyper-parameters in ADQ on HalfCheetah-
v3 (continuous) and HardMove-v0-n10 (hybrid). The comparison curves are shown in Figure 10.

It seems that the head number of ensemble Q network N needs to be moderate for different envi-
ronments. When N is too small, such as N=1, that is, when using the usual Q network, due to the
over-estimation problem, the performance will diverge. When N increases, the stability of ADQ
gradually increases. But N is not the bigger the better. When N increases to a certain value, it
will become unstable due to the increased learning burden of the Q network. We found that for
different environments, due to the difference in state shape and action shape, the best number of N
often varies, e.g. 20 for HalfCheetah-v3, 10 for HardMove-v0-n10 in our setting. The very similar
phenomenon also occurs on the latent action shape. The best performing latent action shape is 128
for HalfCheetah-v3, 64 for HardMove-v0-n10 in our setting.

A.6 ADDITIONAL VISUALIZATION RESULTS

18

Under review as a conference paper at ICLR 2023

(a) 0.1M Env Steps (b) 0.2M Env Steps (c) 0.5M Env Steps (d) Best Env Steps

TD3

ADQ

DQN +
expert
cluster

(a) Episode Trajectory Distribution

Figure 11: Landing path of the spaceship during different training stages in 3 algorithms
on the same LunarLander environment. Trajectories with color closer to red means higher
episode return, i.e. yellow > green > blue > purple, the range of whose episode return is
(−inf,−100), [−100, 0), [0, 200), [200, inf), respectively. TD3 (original continuous action space),
DQN + expert cluster (discrete action space obtained by clustering on TD3 expert data), ADQ (dis-
crete action learned by AD-VAE from scratch). Bottom: Landing path of the spaceship during
different training stages. Darker trajectories means higher episode return.

19

	Introduction
	Related work
	Background
	Neural Discrete Reinforcement Learning
	Motivation
	Unity
	Efficiency
	Stability

	NDRL Framework
	Overview
	AD-VAE
	Adapting RL to Latent Action Spaces

	Experiments
	Main Results
	Visualization Analysis of Latent Action Space
	Ablation Studies

	Conclusions and Limitations
	Appendix
	Benchmark Environments
	Implementation Details
	The Effect of Expert Data Warmup
	Different Mechanisms of Exploring the Original Action Space
	Experimental Analysis of Key Hyper-parameters
	Additional Visualization Results

