Under review as submission to TMLR

Locret: Enhancing Eviction in Long-Context LLM Inference
with Trained Retaining Heads on Consumer-Grade Devices

Anonymous authors
Paper under double-blind review

Abstract

Scaling the input context length of a large language model (LLM) incurs a significant increase
in computation cost and memory footprint to maintain the attention key-value (KV) cache.
Existing KV cache compression methods suffer from inefficient compression strategies and
limited memory reduction effects, making it difficult for LLMs to conduct long-context
inference on consumer-grade devices, especially when inferring long-context stream input.
Such obstacles prevent consumer-grade devices from supporting more complex applications,
creating challenges for the democratization of LLMs. To overcome this, we propose LOCRET,
a framework to create an eviction policy compatible with chunked prefill. By evaluating
the causal importance of KV cache units using retaining heads, LOCRET enables precise
eviction of cache units, facilitating efficient long-context inference. In our empirical studies,
LOCRET outperforms the recent popular and competitive approaches in terms of memory
efficiency and generation quality — LOCRET achieves up to 20x of KV cache compression
ratio within less than 10% performance loss. Furthermore, LOCRET achieves 128K+ long-
context inference on a single NVIDIA 4090 GPU without compromising generation quality
and only costs < 1 GPU hour of additional training.

1 Introduction

In recent years, large language models (LLMs) have revolutionized generative Al (Zhao et al., 2023; Minaee
et al., 2024), and the advancements of LLMs in handling long-context tasks have further unlocked the
potential of generative AI. As a result, the context lengths supported by state-of-the-art LLMs have been
significantly extended, such as GPT-40 (OpenAl, 2024) handling 128K tokens, Claude-3 (Anthropic, 2024)
supporting 200K tokens, and Gemini-1.5 (Reid et al., 2024) even reaching 10M tokens. These improvements
enable LLMs to tackle complex applications with extremely long or streaming inputs, such as multi-hop
reasoning (Li et al., 2024a; Schnitzler et al., 2024), LLM-driven agents (Qin et al., 2024b; Wang et al.,
2024), and Al-powered operating systems (Mei et al., 2024). Some recent efforts (Hu et al., 2024b; Abdin
et al., 2024) have successfully deployed LLMs on consumer-grade end-side devices instead of cloud servers
and conducted inference with limited context. We envision that unleashing the potential of long-context
inference on consumer-grade devices will revolutionize the development of personalized Al applications and
the democratization of LLMs. However, conducting long-context LLM inference on consumer-grade devices
remains a challenging problem that requires algorithmic innovations and systematic optimizations.

As context length scales, the challenge of long-context LLM inference arises from two major aspects: the in-
creased computational cost of the attention mechanism and the higher memory footprint due to the key-value
(KV) cache. This leads to the failure of traditional optimizations targeting model backbones to provide a suf-
ficient solution. Specifically, backbone-targeted optimizations, such as compacting model architectures (Hu
et al., 2024b; Abdin et al., 2024) and quantizing model weights (Frantar et al., 2023; Dettmers et al., 2022;
Xiao et al., 2023; Lin et al., 2024), fail to improve the efficiency of attention patterns or the KV cache,
as attention’s quadratic complexity concerning sequence length remains unaddressed. To this end, recent
efforts target optimizing attention patterns and the KV cache to achieve efficient long-context inference.



Under review as submission to TMLR

Recent attention-targeting optimizations, including sparse attention (Jiang et al., 2024a; Ge et al., 2024;
Lou et al., 2024) and KV cache quantization (Liu et al., 2024b; Hooper et al., 2024; Zandieh et al., 2024),
show promising results to accelerate attention computation and reduce memory footprint. However, they
fail to fundamentally address the core challenge: the KV cache grows linearly with context length. Layer-wise
chunked prefill combined with attention sparsity (e.g., SNAPKV (Li et al., 2024b)) can alleviate this problem
to a certain extent. This technique typically performs cache eviction after the precise attention computation
for each layer and requires access to the entire sequence. It can theoretically support longer sequences by
limiting the maximum memory usage to a single layer’s KV cache, but it cannot handle streaming input
whose length grows continually. The combination of cache eviction methods (Xiao et al., 2024c; Yang
et al., 2024) and chunked prefill offers a more promising approach by maintaining a static cache size and
supporting streaming input. Yet, existing eviction techniques like HoO (Zhang et al., 2024d) and SNAPKV
show significant discrepancies between local importance estimation and global importance estimation, i.e.,
it is hard to estimate the importance of each token only based on its previous tokens. Instead, these
methods require a large number of subsequent tokens to make an accurate estimation. Other methods
like SIRLLM (Yao et al., 2024) show great local-global estimation consistency but suffer from performance
degradation. We present a detailed analysis of the background in Section 3.

Here, we list our contributions below:

Contribution 1: We propose LOCRET, a lightweight training-based paradigm for selective KV cache eviction
in long-context LLM inference. It introduces learnable retaining heads to estimate the causal importance score
(CIS) for token selection, with an offline training cost of <1 GPU hour. Additionally, we present LOCRET-Q),
a query-aware variant of LOCRET, slightly modified to handle query-driven tasks (e.g., retrieving a value of
a given key in a long JSON string).

Contribution 2: We provide an efficient inference system implementation for LOCRET, integrating retaining
heads into a chunked prefill framework. This integration limits GPU memory usage by evicting low-CIS KV
cache units during the prefill process, thereby accelerating the prefill time. LOCRET is compatible with all
decoder-only LLMs and imposes minimal additional hardware requirements.

Contribution 3: We extensively evaluate LOCRET, demonstrating its ability to achieve comparable perfor-
mance with full KV cache while maintaining inference efficiency. LOCRET achieves over 20x and 8x KV
cache compression ratios for Phi-3-mini-128K and Llama-3.1-8B-instruct, respectively. Additionally,
LOCRET-Q accelerates prefill by over 2x on query-driven tasks without significant performance degradation.
This framework enables full comprehension of long contexts on consumer-grade devices without compromis-
ing the generation quality, and introduces minimal additional system optimizations.

2 Related Work

This paper focuses on optimizing long-context LLM inference. Existing efforts can be categorized into
algorithm and system optimization. For more details about LLMs, please refer to the surveys (Zhao et al.,
2023; Lu et al., 2024).

Algorithm Optimizations aim to reduce the size of the KV cache and can generally be classified
into three categories: quantization-based methods, sparsity-based methods, and token dropping methods.
Quantization-based methods (Liu et al., 2024b; Hooper et al., 2024; Zandieh et al., 2024; Zhang et al., 2024a)
use low-bit values to represent the KV cache, reducing cache memory overhead and improving cache comput-
ing efficiency. These quantization-based methods suffer from hardware-oriented operator customization and
additional inverse quantization overhead. Sparsity-based methods (Ge et al., 2024; Jiang et al., 2024a; Yang
et al., 2024; Lou et al., 2024; Lv et al., 2024; Xu et al., 2025) leverage the sparsity patterns of attention heads
to reduce both computational and I/O costs. Combining different patterns can yield further optimization by
identifying specific patterns for each head (Ge et al., 2024; Jiang et al., 2024a; Xiao et al., 2024b). Trainable
sparse attention methods, such as NSA (Yuan et al., 2025) and MOBA (Lu et al., 2025), adapt sparsity pat-
terns during training to improve task performance. For more details on sparsity-based methods, please refer
to the surveys (Yuan et al., 2024; Kang et al., 2024; Shi et al., 2024). Although quantization-based methods
and sparsity-based methods have achieved promising results, they cannot address the issue that the KV cache



Under review as submission to TMLR

memory overhead increases linearly with the context length. Eviction-based methods, such as HoO (Zhang
et al., 2024d), ScissoRHANDS (Liu et al., 2024a), and SIRLLM (Yao et al., 2024), rank KV cache units by
certain statistical metrics to identify the most influential units, discarding others to reduce memory usage
and speed up attention computation. INFINIPOT (Kim et al., 2024) introduces context distillation combined
with chunked prefill, enabling effective long-context processing even under memory-constrained conditions.
Pooling-based methods (Nawrot et al., 2024; Rajput et al., 2024), especially STREAMINGLLM (Xiao et al.,
2024c) and LoCoCo (Cai et al., 2024a), compress multiple adjacent KV cache units into a single unit using
pre-designed transformations. More important units will merge into compressed units with higher weights.
Eviction-based and pooling-based methods drop or merge tokens to maintain a static cache size, but struggle
with accurate victim selection and optimal pooling function design.

System Optimizations alleviate the challenge of long-context inference from a system-level perspective,
by fully considering hardware features. Offloading-based methods (Sheng et al., 2023; Xiao et al., 2024a; Wu
et al., 2024; Sun et al., 2024) use CPU memory to store the KV cache and retrieve only the most relevant
chunks to GPU memory before inferring a new chunk. These methods reduce maximum GPU memory
usage at the cost of introducing CPU-GPU communication overhead. Hardware-aware methods, such as
FLASH-ATTTENTION (Dao et al., 2022; Dao, 2024; Shah et al., 2024) and PAGE-ATTENTION (Kwon et al.,
2023), enable more efficient runtime memory management by considering GPU architectures (Ghorpade et al.,
2012). In addition, building inference infrastructures with a more efficient programming language (llama.cpp;
llama2.c; rustformers), or adopting disaggregated inference (Jiang et al., 2024b; Zhong et al., 2024; Qin et al.,
2024a; Hu et al., 2024a), can also greatly improve long-context inference efficiency. Since system optimiza-
tions primarily enhance efficiency by leveraging hardware resources rather than directly optimizing attention
patterns or the KV cache, relying solely on them cannot adequately address the challenges of long-context
LLM inference. Several efforts have integrated algorithm optimizations into system optimizations (Agrawal
et al., 2023; Lee et al., 2024), such as KTRANSFORMERS (KVCache.Al, 2024) leveraging offloading based on
INFLLM (Xiao et al., 2024a), and STARATTN (Acharya et al., 2025) and APB (Huang et al., 2025) integrate
approximate attention with sequence parallelism to achieving faster inference.

3 The Global and Local Discrepancy of Scoring Functions in Existing Methods

Conducting KV cache eviction in conjunction with chunked prefill offers a potential solution for reducing
peak GPU memory usage during long-context prefill; such a combination utilizes a scoring function of KV
pair importance to identify essential KVs. Cache importance scoring functions can generally be categorized
into two types: causal and non-causal. Existing causal functions, e.g., SIRLLM (Yao et al., 2024), predict
cache importance without relying on future information, which, as shown in Section 5, leads to subopti-
mal performance. Non-causal functions require information from subsequent cache units to determine the
importance score of a given cache unit, making them dependent on prefilling the entire sequence. Since
their requirement for complete sequence information cannot be satisfied in the chunked prefill process, this
introduces a significant discrepancy in importance estimation when based on global versus local context. In
this section, we analyze two major KV cache eviction methods, HoO (Zhang et al., 2024d) and SNAPKV (Li
et al., 2024b), to illustrate this discrepancy and its impact on task performance.

To quantify the global and local discrepancy, we define the consistency as follows. Given a sequence of n KV

pairs ¢1, ¢, - - , ¢, and a scoring function S(c;lej,, - -+ , ¢, ) (representing the importance of KV pair ¢; with
respect to {c;,, -+ ,¢j,, }), we calculate the global importance scores s1, s, - - , S, and the local importance
scores s}, 85, , s, by
/
S; = S(Ci|01, Co,: 7Cn)7 S; = S(Ci|01>627 e 7ci)~ (1)

Then, the consistency of two scores are defined as
1 ! /
P = %\argtopk(sl, -+, 8p) Nargtopy(sy, -+, s5,)| € [0, 1]. (2)

We show the the consistency of the top 10% essential KV pairs, i.e. pg.1n, and the task performance evaluated
on four representing tasks of coBench (Zhang et al., 2024b) in Figure 1 and Table 1.



Under review as submission to TMLR

[

o

o
s

Table 1: coBench scores of HoO, SNAPKV and LOCRET. H>O and
SNAPKYV are executed in a chunked prefill manner.

g

3

§ 80 H,0

g SnapKV

C N

S 601 SirLLM Phi-3-mini-128K on coBench

L Locret

S 40 Method | R.Number E.Sum EMC C.Debug | Avg.t

Q

© | T T | | | FULLATTN | 97.12 17.92  55.46 23.10 | 48.40

0.5K1K1.5K2K2.5K3K3.5K4K4.5K5K5.5K6K
Prefix Length H,0 3.39 15.35  45.41 20.57 21.18

SNAPKV 2.54 15.44  41.92 21.43 20.33
Locret 97.46 16.82 46.29  29.71 | 47.57

Figure 1: The pg.1, consistency.

The results highlight that scoring functions requiring future information (HoO and SNAPKYV) suffer from
significant discrepancies when subsequent cache units are not considered. The top 10% essential KV identifi-
cation of the first 0.5K tokens can only achieve less than 80% and 40% accuracy compared with considerating
the complete sequence for HoO and SNAPKYV correspondingly. Such discrepancy leads to the failure of HoO
and SNAPKYV in accurately retrieving information from the context, particularly in R.Number. Specifically,
the model is unable to identify the importance of certain cache units at the time they are first encountered.
Our proposed LOCRET, however, avoids such inconsistencies and achieves superior performance.

4 Locret : KV Cache Eviction with Causal Importance Score

4.1 Preliminaries

Transformer Architecture. Given a token sequence {t1,--- ,t,} as the input prompt of the transformer-
based LLM, we denote the output hidden states of the i-th layer as H(i), and denote the input embeddings of
the first layer as H). For each transformer layer, it consists of an attention block and a feedforward neural
network (FFN) block. Attention blocks often follow the grouped-query attention (GQA) architecture (Ainslie
et al., 2023), with h query heads and h/g KV heads, where g is the group size, i.e., g heads share the same KV
heads. The multi-head attention (MHA) architecture adopted in the original transformer can be regarded
as a special GQA (g = 1). In the i-th layer, the attention score of the j-th query head is formalized as

@ 1@ w® 1 eqie1) @8 @K @V
[Qj ’KU/QPVUM}_H [Wj 7Wu/gwww/gw}’

G _ () g ()T (@)
Aj = softmax (M © Qj K"J/g]/\/@) ’ Vr]/g“

where d,,, represents the hidden size for each head. After obtaining the attention score, the output of the
i-th attention block is A() = [Aﬁ”, . ,AEJ)} -W®0 and the output hidden states is H®) = FFN(A ().

(3)

KV Cache and Chunked Prefill. Given the input prompt sequence {¢1,--- ,t,}, during the prefill stage,
all prompt tokens are processed in a single forward pass. After the prefill, K" = [Kgi), e 7K§f/)g and

Q) = [ (1i), e ,QS/)J are stored as the KV cache, whose sequence length is n. During the decoding

stage, each time a token is decoded, a forward pass is conducted only for this token and decode the next
token. In this process, the KV cache is used to avoid redundant attention computation. Chunked prefill
is a method for reducing peak memory usage by segmenting input sequence and prefilling tokens chunk by
chunk. Considering both the KV cache and chunked prefill, the attention block can be modified as:

(T

Qn+1:n+BYK[1:n+ B ‘
| K Uit Vitin+ B, (4)
d7n J/g

where A[n+ 1: n+ B] denotes the attention output for the tokens {n+1,--- ,n+ B}, and B is the number
of tokens processed in a single forward pass. For decoding, B = 1, while for chunked prefill, B corresponds

to the chunk size. For the k-th token in the context, its attention output is A[k], its key and value vectors
are K[k] and V[k].

An+1:n+ B];i) = softmax (M ®



Under review as submission to TMLR

Training Inference

AAIAN | oldcae New Cane
i
5/4.1(-79(-6.3| 4.8

1148 |6.4(3.7|56 |13 ypgate| 64 |56 |67|7.2| 08

Q KT - x| x| X
AP II P] PZ PE PX PlD PZ PB P]Z P13 PlS

i Current Chunk

i
i
! 4
1
1
i
i : t 32|67(7.2|46|08
i i
v W bt | Frainineloss A ——TY—— T T T TEEsmasaninnn DD F 1T H
i r’QKI—l 'Tra'"mgmss &2 |2A5‘G.5‘73‘3,8‘4.8| E [N
' [Qp Kp, Vol—q K~ v :Smooth Ly +al, s
A5 1
i i
i
i
1
1
1

=
sTele =)
o
5
S
E
2
S
5
5
&

I 25|6.5|73|3.8|4.38 d ‘ 6.5 ‘ 7.3 ‘ 3.8 ‘ 4.8| B

I

W R e —— I
q i

<> I

b=5ns=1
X : Cache Eviction
=: Stabilizers

Figure 2: The framework of LOCRET. “R” represents the retaining head. P; and A; correspond to the
i-th prompt token and answer token. “b” represents the budget size, and “n,” represents the length of the
stabilizers. For simplicity, our notation here does not reflect the concept of layers.

Cache Eviction. In the cache eviction process, we treat the KV vector pair of a single token within one
attention head as the smallest cache unit. We denote the cache unit of the k-th token as ¢, = (K[k], V[k]).
Assuming a memory budget b, representing the maximum number of cache units that can be stored, the
abstract form of the attention block can be written as ¢ = f(c1,¢2, -+ ,ck—1). With limited cache capacity,
this process can only be approximated by ¢ = f(Gp,,Cpy, - ,Cp,, ), Where b’ < b, and p1,p2--- ,py €
{1,2,--- ,k — 1}. When the cache is full, one unit must be evicted. We select the victim using some policy
py = Policy(ép,, -+ ,p,; k), and the key challenge is to develop a policy that minimizes the error ||é; — ¢l

4.2 Framework of Locret

LOCRET is a training-based KV cache eviction framework that works in conjunction with chunked prefill.
As illustrated in Figure 2, LOCRET operates in two stages: training and inference. In the training stage,
we modify the original LLM by appending a retaining head R to each attention module. We then train
the retaining heads R while keeping the LLM backbone frozen. During the chunked prefill inference stage,
the retaining heads R can obtain the importance of each cache unit. We retain the cache units with higher
scores, along with stabilizers (i.e., the last tokens), in the cache pool located in GPU memory. Through this
process, the retaining heads R learn and predict the patterns discovered by existing methods, e.g. attention
sink in Xiao et al. (2024c) and vertical lines in MINFERENCE (Jiang et al., 2024a), as detailed in Appendix I.

The eviction policy assigns each cache unit an importance score reflecting its influence on comprehending
subsequent context. This estimation is causal, termed the causal importance score (CIS). The CIS of the k-th
unit depends only on the preceding units and the k-th unit itself. Due to memory constraints, calculating
the exact CIS on-chip is impractical. Intuitively, discarding certain KV cache during the attention calcu-
lation introduces errors, manifesting as biases in the CIS. However, as long as the importance estimation
is sufficiently accurate, the core information can be preserved, and the loss of information in the attention
process can be minimized. Therefore, the error introduced in the CIS can be neglected.

4.3 Training Retaining Heads

In this section, we introduce LOCRET’s model architecture modifications and the corresponding training
recipe. We add additional parameters to compute the CIS S[k] for the k-th cache unit. Specifically, we
inject a retaining head, consisting of a small MLP, into each layer. From our observation, such small MLPs
do not slow down model inference, with details elaborated in Appendix H. The retaining head predicts the
CIS for each head of the corresponding layer based on the concatenation of [Q, K, V]. Formally, with a slight
abuse of notation, let the retaining head for layer i be denoted as R. The CIS at head j is then calculated

as: S = R([Q,K,V]) = ¢([Q, K, VIW{)W,. In this equation, W; € R{@m+2dk)xdr and W, € RU“XG are



Under review as submission to TMLR

]
=35 X X 0 X X L 0.50
4 i} n . Layer 8 Layer 16
100 2 x— Layer 8 *— Layer16 |g 75 Co.al X oy X el
c3.01 X X ° r0.45
80 - ] XX 950 £o3 * 5
o 50. %
> T 2.5 X 5 » \ F0.40
> T « 925  ®o2
© 601 2204 Xy & X L0.35
= Ei X—x X u x X o
©
8 Z 251 X 2 X Layer 24 = Layer 32 1030
] s ayer ayer
o 40 5 x— Layer 24 »— Layer 32 5 s Layer 24 s Layer32
< s 3 0.5 X to.28
20 A £ 50 L .
y \ £ ) "
0 8 X r2 c 0.4+ X w 0.26
T T T T T T T < 15 TN ™ Xy x 8 4 | * "
0 500 10001500200025003000 g A 2000 5 2000 s 0 2000 o 2000
ns Ns Ns
(a) (b) (c)

Figure 3: R.Number with different stabilizer lengths ns. (a) Task accuracy under different ns. (b) Maximum
absolute error of the last hidden state. (c) Mean absolute error of the predicted CIS. We conduct this
experiment on entries 101-120 of R.Number using the Phi-3-mini-128K.

the tunable parameters of R, and o is the activation function, S[k] = [S [kl1,-- -, g[k]h/g} € R%, where S[k];
is the predicted CIS of the k-th token. This architecture implies that the importance estimation for a single
head is not performed in isolation but considers all heads.

We train the retaining head Rs on a small Question-Answer (QA) supervised fine-tuning (SFT) dataset,
where each entry consists of a single prompt and one answer. We define the CIS S[k]; for the k-th token at
head j as the maximum attention score, before softmax, from all the answer tokens toward the k-th token.
Formally, given a training instance d, for the k-th token at head j of layer ¢, we approximate the predicted

value S[k];z) to the ground truth S[k:];-i) = max, (Q;i)Kg-i)T) g where ng(d) < p < ng(d) + nq(d), and
P,

nq(d) and n,(d) represent the lengths of the prompt and answer in data d, respectively. For an MHA model
with L layers and h heads, the training objective is described in Equation 5. For GQA models, we take the
maximum attention score before softmax across different query heads within the same group as the ground
truth for the corresponding KV head.

h nq(d)
argmin Egep Z Z C (g[k]gl)7s[k]§l)) (5)
k=1

W(li),Wéi),i=1,2m ,L i=1 j=1

The training loss consists of a regression loss and a smoothing loss. We apply the Smooth-£; norm between
the predicted values and the ground truth. Since important segments in natural language typically consist
of adjacent tokens, we also apply the L5 norm between each pair of adjacent predicted values to enforce
smoothness. The complete training loss for LOCRET is given by Equation 6.

£ (8", Sk ) = Smooth-£y (S[k)S”, S[KS) + ats (S[K)S, S[k +1]{") ©)

Jj J Jj

From our observations, the training of LOCRET exhibits strong robustness. Despite changes in dr and the
dataset, the performance variations shown in Figure 6 and Table 7 are minimal.

4.4 Inference Implementation of Locret

During the inference stage, we use the chunked prefill pattern and perform cache eviction based on the
predicted CIS. Since the predicted CIS does not rely on subsequent tokens, it remains consistent once
calculated. Thus, we store the KV cache units along with their corresponding causal importance values.
When the cache is full, we evict the units with lower causal importance values, as they are deemed less
useful for future computations. Such eviction is performed during chunked prefill. When processing a new
chunk, we first compute its KV cache, concatenate it with the previously retained cache, and evict redundant
units to adhere to the budget size. Note that we cache the pre-RoPE KV cache and reassign continuous
position embeddings from the beginning to enhance context continuity.



Under review as submission to TMLR

Algorithm 1: LOCRET Inference

Input: Model M, Prompt tokens x, Local length n;.., Stablizer length ns, Budget b, Chunk size B
Output: Generated tokens xgen

// Leave the last nj,. out to make sure they are not evicted.

chunk_ positions «+ split_ chunk(0, z.length() —nioc, B)

K _cache, V_ cache, score_cache < [, |, []

for chunk € chunk_ positions do

begin_ pos, end_ pos <+ chunk.begin_ pos, chunk.end_ pos

K__chunk, V__chunk, score_ chunk < M(z[begin_ pos:end_ pos], K_ cache, V__cache)
K__cache < Concat(K__cache, K_ chunk)

V__cache < Concat(V__cache, V__chunk)

score__cache +— Concat(score_ cache, score_ chunk)

if chunk is not the last chunk then

L // Keep the last m, caches to maintain higher context continuity.

score__cache[score__cache.length()-ns:score_cache.length()] + +oo

indices « top-b(score_ cache).indices
K_cache, V__cache, score_cache = K_ cachelindices], V__cachelindices], score_ cache[indices]

K _cache, V__cache, score_cache <— M(z[z.length()—n.c:z.length()], K _cache, V_ cache)
Zgen < M.generate(K_ cache, V__cache)
return Tgen

Cache eviction introduces context discontinuity, meaning some cache units at certain positions may be absent,
which can degrade generation quality. To mitigate this, we retain the last ns tokens of the current chunk,
named as the stabilizers, at each step of chunked prefill, ensuring a local and continuous context to minimize
errors. As shown in Figure 3, smaller ng results in severe performance degradation, and the model fails
entirely when stabilizers are absent, as context discontinuity leads to instability in CIS prediction, causing
errors in cache eviction and amplifying errors in hidden states. More details are discussed in Appendix G.
We provide a pseudocode of LOCRET inference in Algorithm 1.

5 Experiments

We conduct experiments to evaluate whether LOCRET can address the following questions:

(Q1) Can LOCRET obtain better end-to-end task performance compared to popular and competitive long-
context inference methods using similar or less peak memory?

(Q2) Is LOCRET able to achieve a faster inference speed on consumer-grade devices?
(Q3) How can LOCRET process query-driven tasks?

(Q4) Can LOCRET achieve stable performance across various hyperparameter settings and training recipes?

5.1 Experimental Setup

Models and Datasets. We conduct experiments on two long-context LLMs: Phi-3-mini-128K (Abdin
et al., 2024) and Llama-3.1-8B-instruct (Dubey et al., 2024). Both models can process up to 128K context
tokens and follow MHA and GQA architectures, respectively. The parameter sizes of these two models are
also suitable for deployment on consumer-grade devices. We inject retaining heads R into each layer of
these two models, and the intermediate size dg is 1,024. The retaining heads are trained on the LongAlpaca
dataset (Chen et al., 2024) for 3,000 steps , with a 5e-4 learning rate, 10,240 sequence length, and « set to
2.5e-3. Training LOCRET is lightweight, with the tunable parameters comprising 8% and 2.5% of the total
for the two models, respectively. The complete training process takes 0.47 and 0.80 GPU hours on an A800
GPU for each corresponding model. More important hyperparameters are listed in Table 8. More details on
hyperparameters and system environments can be found in Appendix A.



Under review as submission to TMLR

Table 2: Benchmark results on coBench. “Avg.” represents the average score across all tasks. The highest
score in each column is marked in bold, and the second highest is underlined.

Method | R.PassKey R.Number E.Sum E.QA EMC ZQA EDia C.Debug M.Find | Avg.t
Phi-3-mini-128K on ocoBench
FULLATTN |  98.64 97.12 17.92  11.16 55.46 14.83  8.00 23.10 17.43 | 38.18
INFLLM 100.00 97.12 14.35 497 38.86 11.04 3.50 25.38 15.14 | 34.48
HF-2BITS 0.00 0.00 13.80 144 175 020 050 0.00 0.57 2.03
SIRLLM 3.39 3.39 21.06 6.32 44.98 11.99 5.00 22.34 21.71 | 15.58
MINFERENCE 99.32 95.93 14.44 811 40.61 10.60  9.00 15.48 15.43 | 32.25
Locret 100.00 97.46 16.82 7.61 46.29 11.31 10.00 27.92 29.71 | 34.73
Llama-3.1-8B-instruct on coBench
FULLATTN | 100.00 99.32 26.79 15.06 68.12 13.40 17.00 20.56 34.00 | 43.81
INFLLM 100.00 100.00 2424 1421 5197 10.76 11.00 26.25 35.71 | 4157
HF-2BITS 36.78 6.95 8.77 4.05 2795 3.09 550 13.20 22.00 | 14.25
SIRLLM 1.69 1.69 2560 895 55.46 10.38  9.50 23.10 3.71 15.56
MINFERENCE | 100.00 98.47 20.64 14.35 59.83 12.20 20.50  25.89 35.43 | 43.03
Locret 100.00 99.49 27.28 20.90 5882 11.85 13.00 27.16 32.86 | 43.48

Table 3: Benchmark results on L-Eval. “Avg” represents the average score across all tasks. The highest
score in each column is marked in bold, and the second highest is underlined.

Method | CodeU NQ CUAD NarrativeQA QMSum SPACE | Avgt
Phi-3-mini-128K on L-Eval

FULLATTN |  8.89 59.14 30.34 17.59 16.05 1451 | 24.42
INFLLM 5.56 34.32 14.53 14.80 13.31 14.81 16.22
HF-2BITS 0.00 1.69 6.40 2.04 2.73 3.34 2.70

SIRLLM 8.89 37.92 20.89 14.51 13.70 14.46 18.40
MINFERENCE 7.78 25.21 26.64 15.14 15.78 14.87 17.57
Locret 8.89 51.49 22.23 16.42 14.86 14.06 21.33

Llama-3.1-8B-instruct on L-Eval

FULLATTN 10.0 66.84 38.91 23.11 18.76 16.86 29.08
INFLLM 6.67 54.77 33.76 20.35 17.62 16.73 24.98
HF-2BITS 1.11 29.79 18.98 9.46 14.02 13.73 14.52
SIRLLM 5.56 58.00 35.41 21.21 17.32 16.44 25.66
MINFERENCE 7.78 31.80 36.93 19.44 18.14 16.76 21.81
Locret 8.89 63.03 37.21 23.59 18.17 16.87 27.96

Benchmarks. We evaluate LOCRET on selected subsets of coBench (Zhang et al., 2024b) and L-Eval (An
et al., 2024). For query-driven tasks, we evaluate LOCRET on RULER (Hsieh et al., 2024). For ooBench,
we select R.PassKey, R.Number, E.Sum, E.QA, E.MC, Z.QA, E.Dia, C.Debug, and M.Find. All selected
subsets, except Z.QA, have an average length of approximately 100K tokens, while Z.QA has a longer average
length of around 2000K tokens. We exclude R.KV because it can be easily handled by calling a Python
interpreter. We also exclude C.Run and M.Calc due to their complexity for all methods, including full
attention inference. For L-Eval, we filter out all tasks with an average length shorter than 16K tokens and
evaluate models on CodeU, NQ, CUAD, NarrativeQA, QMSum, and SPACE. Metrics are reported according
to the recommendations of the two datasets, with further details provided in Appendix A. We also report
the peak memory usage, i.e. the average peak memory measured for the first entry of each task in coBench
and L-Eval, for reference.

Baselines. As discussed in Section 2, existing algorithms for memory-efficient long-context inference can be
categorized into offloading-based, sparsity-based, quantization-based, and token-dropping methods. For each
category, we select one representative method as the baseline. We compare LOCRET against full attention
inference (denoted as FULLATTN), INFLLM (Xiao et al., 2024a), MINFERENCE (Jiang et al., 2024a), KV



Under review as submission to TMLR

. o ~Bench ) ) . L-Eval )

Phi-3-mini-128K Llama-3.1-8B-instruct Phi-3-mini-128K Llama-3.1-8B-instruct

3 40 fomogm—————q-—=--=1 N S Py P p— [ o e T ——— L 304

D T o TN LafitTT8 O S &30 ogmbommmggommmm oo

- 1 1 - 1 1 =207 1 1 § o - [ (0] A

Q 1 1 [€) 1 1 [€) 1 1 A [} 1 1

© 201 I © 1 ] © 1 ] © | o

5 I Q 1 5 I 1 5109 1 1 5 20 [

3 | ! S 209! ! o ! ! ¥ H ¢|

o im | g L@ i © ol 18 SR
20 40 60 80 20 30 40 10 20 30 15 20 25 30
Total Memory (GB) Total Memory (GB) Total Memory (GB) Total Memory (GB)

S A0 o= =—1 [ sy sy— S ————— < T T 3 20

ST 0] LawfTTTTETATTE SR O T B

- 1 1 - 1 1 =201 1 1 o) - [ o A

o) 1 1 o) 1 1 o) 1 1 A %) 1 1

® 20 1 1 © i i & i i &) 11 O

5 1 O 1 5 1 1 5109 1 ] 5 20 1 1

2 ! ! 3209 ! ! o ! ! o 1 Ei]

ol i @l ¢ L@ i © ol 1@ 1 g L3
20 30 40 50 20 30 10 20 30 15 20 25 30
GPU Memory (GB) GPU Memory (GB) GPU Memory (GB) GPU Memory (GB)

A InfLLM [ HF-2bits Q Sirllm @ Minference $8 Locret /A InfLLM [0 HF-2bits Q© SirlLM © Minference $8 Locret

——- Model Weights ——- Model Weights + Full KV Cache ——- FullAttn Accuracy ——- Model Weights ——- Model Weights + Full KV Cache ——- FullAttn Accuracy

Figure 4: Memory Statistics vs. Task Performance. The red lines correspond to the theoretical size of the
model weights, while the blue lines represent the total size of the model weights and the full KV cache without
any compression. The purple lines indicate the accuracies of FULLATTN. “Total Memory” represents the
total memory usage of both GPU and CPU.

cache quantization (Turganbay, 2024), and SIRLLM (Yao et al., 2024). For quantization, we use HuggingFace
Quanto (Hugging-Face) implementation, referring to the 2-bit quantization method as HF-2B1TS. We omit
HF-4BITS and benchmark the combination with LOCRET in Appendix D. We do not include attention
pooling-based methods in this benchmark, as they are orthogonal to our approach, and further discussion
about this is provided in Appendix D. When conducting query-driven tasks, we compare LOCRET and
LOCRET-Q with HoO (Zhang et al., 2024d), SNAPKV (Li et al., 2024b), SIRLLM, and INFINIPOT (Kim
et al., 2024). Environmental setup and details of the selected baselines can be found in Appendix A.

5.2 End-to-end Benchmark

We compare all the methods on coBench and L-Eval to address Q1. In Table 2 and Table 3, LOCRET outper-
forms baselines in terms of end-to-end performance, showing: (1) On coBench, while all methods experience
performance degradation compared to FULLATTN, LOCRET, INFLLM, and MINFERENCE exhibit better per-
formance than other methods, with only a modest drop in performance given the reduced memory usage.
Quantization shows significant degradation and fails on all tasks. SIRLLM performs well on comprehensive
tasks such as E.Sum and E.MC, but struggles with tasks that require precise memory, such as R.PassKey
and R.Number. LOCRET not only excels in context retrieval tasks but also achieves strong results in com-
prehensive tasks, earning the highest overall score among all competitors. (2) On L-Eval, all methods show
performance degradation. Nevertheless, LOCRET achieves the best overall performance, obtaining the highest
scores on most tasks. L-Eval is a shorter but more complex dataset, where SIRLLM performs particularly
well. Quantization fails on most tasks. Both INFLLM and MINFERENCE suffer significant performance
drops compared to FULLATTN inference. LOCRET consistently surpasses all competitors.

We report memory consumption in Figure 4, showing: (1) In the extreme long-context scenario (coBench),
LOCRET uses relatively less memory while achieving the best overall performance. INFLLM performs well
with limited GPU memory usage, but it requires a significant amount of CPU memory to store the full KV
cache. HF-2BITs and SIRLLM can achieve low memory consumption in some settings, but quantization
introduces severe performance degradation. MINFERENCE employs sparse attention patterns but does not
compress the KV cache. As a result, its minimum memory requirement equals the sum of the model weights
and the full KV cache. In the shorter context scenario (L-Eval), a similar phenomenon is observed. (2)
For Phi-3-mini-128K, which has a larger KV cache, INFLLM and MINFERENCE consume more memory
since they store the full KV cache. Although other methods have similar memory footprints, LOCRET uses
the least memory and achieves the best performance. (3) For Llama-3.1-8B-instruct, whose KV cache
is smaller, the bottleneck shifts to the runtime memory for attention and other calculations. All methods
exhibit similar memory footprints, with LOCRET delivering the best performance.



Under review as submission to TMLR

Table 4: Executing R.PassKey on an NVIDIA 4090. “tok/s” represents the inference speed, “C.Len” stands
for the context length after truncation, and “Acc.” represents task accuracy. “Success” shows whether a
setting has >95% accuracy. The highest score among 128K context is marked in bold.

Method \ FuLLATrTNy  INFLLM  HF-2BITs SIRLLM MINFERENCE Locret \ HF-2BITS* MINFERENCE™
tok/sT - 2276.38 - 2352.20 - 5080.85 1098.51 4099.92
Phi-3- C.Len.T 128K 128K 128K 128K 128K 128K 30K 14K
mini-128K  Acc.t OOM 99.83 OOM 1.69 OOM 100.00 0.00 13.56
Success X v X X X v X X
tok/sT - 2287.66 1365.51 1589.75 - 3209.10 3680.06 5135.74
Llama-3.1- C.Len.t 128K 128K 128K 128K 128K 128K 30K 25K
8B-instruct  Acc.t OOM 100.00 35.59 1.69 OOM 100.00 26.78 20.34
Success X v X X X v X X

In summary, our experiments demonstrate that LOCRET is both effective and efficient, outperforming all
baselines on multiple datasets and models while using less GPU memory.

5.3 Processing Speed on Real Consumer-Grade Devices

We examine the processing speed to demonstrate that LOCRET achieves its strong performance without
compromising inference speed, addressing question Q2. We evaluate the inference speed on the R.PassKey
task from coBench and compare LOCRET against all the baselines, using a single NVIDIA 4090 GPU with
24GB of memory, which is typical for consumer-grade AI devices. We report the inference speed (the total
number of tokens within the input and output sequences divided by the processing time) and the task
accuracy. Since the original settings of some baselines might lead to out-of-memory (OOM) errors, we
remove some tokens from the middle of the input sequence in those cases, marking these settings with *,
and report the valid context length in such scenario. For settings without *, we maximize the chunk size for
higher speed when the method utilizes such technique.

R.PassKey is a task where the model retrieves a 5-digit number from a large amount of irrelevant text, a task
we believe to be relatively simple for humans. Thus, we consider the task to have failed if the accuracy falls
below 95%. As shown in Table 4, aside from the settings that fail on this task, LOCRET achieves the highest
inference speed among all methods that can correctly process R.PassKey: (1) Due to its MHA architecture,
Phi-3-mini-128K has a larger KV cache, which leads to failures for both HF-2BITS and MINFERENCE.
Storing the full KV cache on a single 4090 GPU is infeasible, as it requires 48GB of memory. Although
the quantized KV cache is reduced to 6GB, converting representations requires significant GPU memory for
its intermediate states, resulting in the failure of HF-2B1TS. While INFLLM can run in memory-limited
scenarios, its offloading process slows down inference. SIRLLM fails due to its inaccurate eviction, which
cannot correctly identify the 5-digit number. (2) In the GQA model (Llama-3.1-8B-instruct), which
has a smaller KV cache, the quantized cache can fit within the GPU memory. However, the quantization
and dequantization processes become the bottleneck, leading to significantly slower speed performance.
The performance of INFLLM, SIRLLM, and MINFERENCE is similar to that seen with Phi-3-mini-128K.
Although MINFERENCE benefits from faster encoding speed, it fails this task because it cannot process the
entire input sequence at once. LOCRET strikes a balance between inference speed and performance, making
it a far more suitable solution for long-context scenarios on consumer-grade devices.

5.4 Locret-Q: Supporting Query-Driven Tasks

We mainly address question Q3 in this section. Query-driven tasks are characterized by highly sparse yet
query-correlated critical regions within the context. A representative example is the Multikey-NIAH task
from RULER (Hsieh et al., 2024). Such contexts are inherently challenging to compress effectively without
query information. As introduced by Sun et al. (2024), existing eviction-based techniques exhibit significant
performance degradation when applied to query-driven tasks. Due to this, we evaluate LOCRET against
selected eviction-based baselines using the RULER benchmark (Hsieh et al., 2024). We introduce LOCRET-

10



Under review as submission to TMLR

Table 5: Performance, prefill speed, and decode speed on RULER-128K. The best and second-highest scores
among eviction-based methods in each column are highlighted in bold and underlined, respectively. “i”
indicates testing limited to the first 20 entries per subtask due to poor performance. Prefill and decode
speed are reported in tok/s. FULLATTN is implemented using FLASHATTN.

Method | SG1 SG2 SG3 MKlI MK2 MK3 MV MQ VT CWE FWE QA1 QA2|Avg. Prefill Decode

FULLATTN 99.40 99.80 99.60 98.20 87.60 67.00 94.65 98.00 60.98 71.40 72.20 78.20 41.60 |82.20 4319.95 12.32
MINFERENCE| 100.00 98.60 99.00 95.40 58.20 23.80 84.35 95.70 66.40 45.94 74.67 67.80 38.80|72.97 7205.06 2.61

SNAPKV 100.00 82.80 11.60 70.40 6.20 1.40 68.50 78.40 49.04 31.90 50.07 51.20 32.40|48.76 4203.34 36.49
H,Of 20.00 0.00 0.00 0.00 0.00 0.00 3.75 250 1.00 0.00 53.33 100.00 15.00|15.04 464.73 44.70
SIRLLM' 0.00 5.00 5.00 0.00 5.00 5.00 6.25 8.75 12.00 0.00 80.00 30.00 15.00|13.23 9717.41 40.86
InFiNIPOTT  |100.00 40.00 0.00 15.00 0.00 0.00 15.00 31.25 93.00 26.50 51.67 20.00 15.00 [31.34 9099.02 34.36
Locrer! 100.00 45.00 35.00 10.00 5.00 0.00 20.00 17.50 69.00 46.50 73.33 20.00 5.00 |34.33 9587.09 37.38
LoOCRET-QQ |100.00 99.80 99.60 75.00 98.80 98.60 66.95 85.50 52.64 30.90 80.27 53.20 40.80|75.54 9587.84 40.11

Table 6: Ablation on putting the query in the front of the input. ' indicates testing limited to the first 20
entries for simplicity. The average accuracy of RULER-~128K is reported.

Query-Front \ FULLATTN  MINFERENCE \ SNaPKV  H,O  SIRLLM  INFINIPOT  LOCRET

X 82.307 63.19° 48.76 15.047  13.23f 31.341 34.331
v/ 75.661 54.197 52.22 8.89" 13.09° 32.47% 75.54
AV -X) | -6.64 -9.00 | 346 -6.15  -0.14 1.13 41.21

Q, a query-aware variant of LOCRET. When training the retaining heads, we prepend the last I, query tokens
to the sequence and gather CIS labels. At inference, the query is inserted at the sequence start, ensuring its
visibility across all eviction actions. This adaptation enables LOCRET-Q to perform query-aware eviction.

Table 5 shows LOCRET-Q against SNAPKV (Li et al., 2024b), HoO (Zhang et al., 2024d), SIRLLM (Yao
et al., 2024), and INFINTPOT (Kim et al., 2024) on RULER with a 128K context length. For reference, we
also include results for FULLATTN and MINFERENCE. Metrics include prefill speed, decode speed, and task
performances are reported. As shown in Table 5, all efficient inference methods exhibit performance degra-
dation to some extent. However, LOCRET-Q outperforms other eviction-based methods and even surpasses
MINFERENCE, demonstrating its effectiveness on query-driven tasks. SNAPKV shows performance degra-
dation, while H,O and SIRLLM fail completely on RULER. For speedup, methods combining eviction and
chunked prefill (LOCRET-Q, LOCRET, SIRLLM, and INFINIPOT) significantly reduce prefill time, achieving
> 2x speedup over FULLATTN. SNAPKYV cannot accelerate prefill due to no computation reduction. HoO
suffers from extremely slow prefill as it relies on full-sequence attention scores, incompatible with efficient
implementations like FLASH-ATTN. Decoding speeds are similar across eviction-based methods, and all of
them are faster than FULLATTN. Notably, LOCRET fails on RULER, showing a gap compared to LOCRET-Q),
highlighting the necessity of query-awareness for query-centric tasks. A simple modification to LOCRET un-
locks its potential for such tasks. To ablate the effect of placing the query at the beginning of the input
sequence, we conduct an ablation study presented in Table 6. The results show that not all methods benefit
from this modification; in contrast, LOCRET benefits the most, significantly outperforming the others. This
indicates that the superior performance of LOCRET-Q is not due to early access to the query, but rather
stems from its query-aware KV cache eviction mechanism.

5.5 Hyperparameter and Training Robustness Analysis

To adderss Q4, we first examine the inference hyperparameters: budget, stabilizer length, and chunk size.

Budget. To evaluate the robustness of LOCRET under different budget constraints, we compare the proposed
method with SNAPKV (Li et al., 2024b) using chunked prefill on LongBench (Bai et al., 2024b). As shown
in Figure 5a, when the budget size increases, LOCRET demonstrates a faster performance improvement
compared to SNAPKV and consistently outperforms SNAPKV.

11



Under review as submission to TMLR

Stabilizers Length. As discussed in Figure 3, stabilizers play a crucial role in context retrieval tasks.
However, in NLU tasks, the stability of ns; remains relatively high. We evaluate QMSum with different
stabilizer lengths ng, with the budget set at 6000. As illustrated in Figure 5b, performance remains consistent
when ng is small. The observed performance degradation at larger ns values is due to the reduced space
available for other cache units.

Chunk Size. Executing long-context inference on hardware with varying GPU memory limitations choices
of chunk size. When the chunk size changes, LOCRET shows stable performance. We test on the NQ dataset
from L-Eval using multiple chunk sizes ranging from 256 to 4096. The results, shown in Figure 5c¢, highlight
the stability under various chunk sizes.

[ 60
S
0 £ 20 50
S 35 2 g
3 Snapkv | 5 =
) nap 15 30
s Locret
30 : - - - - - - - - - - - - 20 - - - -
1000 1500 2000 2500 3000 3500 4000 0 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000
Budget ns Chunk Size
(a) (b) ()

Figure 5: Scores of LOCRET under (a) various budgets; (b) various ng; (¢) various chunk size.

We further investigate LOCRET’s training stability by experimenting with various intermediate sizes dg of
the retaining head and conducting training under different datasets. LOCRET demonstrates high robustness
to these variations in both intermediate size and training recipes, indicating that it does not require careful
hyperparameter tuning or meticulous dataset selection.

25.01 24.42
(9]
o 21.81 .
§22512145 5109 2133 2152 Table 7: L-Eval scores of LOCRET trained on
E 20.0 - Locret various datasets.
- 1754 FullAttn
" Tose 512 1024 2048 4096 Dataset ‘ LongAlpaca LongAlign Anti-Haystack
d
: L-Eval | 21.33 22.00 20.72

Figure 6: L-Eval scores with different intermedi-
ate size of retaining head dg.

5.6 Additional Experiments

Additional experiments are included in the appendices. We evaluate LOCRET on LongBench in Appendix B,
explore the combination of LOCRET with other methods in Appendix D, challenge LOCRET with extremely
long inputs in Appendix E, and benchmark LOCRET in multi-turn conversation scenario in Appendix F.

6 Conclusion

We propose LOCRET, a lightweight training-based method that enables memory-efficient long-context LLM
inference on consumer-grade devices. LOCRET introduces retaining heads to predict the CIS of each cache
unit during chunked prefill and performs accurate cache eviction. We conduct extensive experiments across
different models and multiple datasets to compare LOCRET with major efficient inference techniques, and
results show that LOCRET outperforms all baselines, using less GPU memory and without requiring offloading
to CPU memory. LOCRET-Q, a query-aware variant of LOCRET, can further process query-centric tasks
without significant performance degradation. Future work will involve testing LOCRET on other model
architectures, e.g. encoder-decoders, and evaluating LOCRET on more personal devices, e.g. NVIDIA Jetson.

12



Under review as submission to TMLR

References

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv:2404.14219, 2024.

Shantanu Acharya, Fei Jia, and Boris Ginsburg. Star attention: Efficient llm inference over long sequences.
Proceedings of ICML, 2025.

Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S Gulavani, and Ramachandran
Ramjee. Sarathi: Efficient llm inference by piggybacking decodes with chunked prefills. arXiv:2308.16369,
2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit Sanghai.
Gqa: Training generalized multi-query transformer models from multi-head checkpoints. Proceedings of
EMNLP, 2023.

Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, and Xipeng
Qiu. L-eval: Instituting standardized evaluation for long context language models. Proceedings of ACL,
2024.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.anthropic.
com/de8badb01c9ab7cbabf5c33b80b7bbc618857627/Model _Card_Claude_3.pdf.

Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei Hou, Jie Tang, Yuxiao Dong, and Juanzi Li. Longalign:
A recipe for long context alignment of large language models. Proceedings of EMNLP, 2024a.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu,
Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context understanding.
Proceedings of ACL, 2024b.

Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi Chen. Lococo: Dropping in convolutions for long
context compression. Proceedings of ICML, 2024a.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv:2406.02069, 2024b.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. Proceedings of ICLR, 2024.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. Proceedings of
ICLR, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. Proceedings of NeurIPS, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multiplication
for transformers at scale. Proceedings of NeurIPS, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv:2407.21783,
2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. Proceedings of ICLR, 2023.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you what to
discard: Adaptive kv cache compression for llms. Proceedings of ICLR, 2024.

13


https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

Under review as submission to TMLR

Jayshree Ghorpade, Jitendra Parande, Madhura Kulkarni, and Amit Bawaskar. Gpgpu processing in cuda
architecture. Proceedings of ACIJ, 2012.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv cache
quantization. arXiv:2401.18079, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. Ruler: What’s the real context size of your long-context language models?
arXiv:2404.06654, 2024.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng, Chenxi
Wang, Sa Wang, Yungang Bao, et al. Inference without interference: Disaggregate llm inference for mixed
downstream workloads. arXiv:2401.11181, 2024a.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang
Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models with scalable
training strategies. Proceedings of COLM, 2024b.

Yuxiang Huang, Mingye Li, Xu Han, Chaojun Xiao, Weilin Zhao, Sun Ao, Hao Zhou, Jie Zhou, Zhiyuan Liu,
and Maosong Sun. Apb: Accelerating distributed long-context inference by passing compressed context
blocks across gpus. Proceedings of ACL, 2025.

Hugging-Face. URL https://github.com/huggingface/optimum-quanto.

Huigiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling for long-context
llms via dynamic sparse attention. Proceedings of ICML, 2024a.

Youhe Jiang, Ran Yan, Xiaozhe Yao, Yang Zhou, Beidi Chen, and Binhang Yuan. Hexgen: Generative
inference of large language model over heterogeneous environment. Proceedings of ICML, 2024b.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of llm.
arXiv:2403.05527, 2024.

Minsoo Kim, Kyuhong Shim, Jungwook Choi, and Simyung Chang. Infinipot: Infinite context processing
on memory-constrained llms. Proceedings to EMNLP, 2024.

KVCache.Al. Ktransformers: A flexible framework for experiencing cutting-edge llm inference optimizations,
2024. URL https://github.com/kvcache-ai/ktransformers.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. Proceedings of SOSP, 2023.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. Infinigen: Efficient generative inference of
large language models with dynamic kv cache management. Proceedings of OSDI, 2024.

Yanyang Li, Shuo Liang, Michael R Lyu, and Liwei Wang. Making long-context language models better
multi-hop reasoners. Proceedings of ACL, 2024a.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
arXiv:2404.14469, 2024b.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for on-device llm
compression and acceleration. Proceedings of MLSys, 2024.

14


https://github.com/huggingface/optimum-quanto
https://github.com/kvcache-ai/ktransformers

Under review as submission to TMLR

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis,
and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance hypothesis for llm kv
cache compression at test time. Proceedings of NeurIPS, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. Proceedings of ICML, 2024b.

llama2.c. URL https://github.com/karpathy/llama2.c.
llama.cpp. URL https://github.com/ggerganov/1lama.cpp.
I Loshchilov. Decoupled weight decay regularization. Proceedings of ICLR, 2019.

Chao Lou, Zixia Jia, Zilong Zheng, and Kewei Tu. Sparser is faster and less is more: Efficient sparse attention
for long-range transformers. arXiv:2406.16747, 2024.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He, En-
ming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. arXiv preprint
arXiv:2502.13189, 2025.

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang, Nicholas D Lane, and Mengwei
Xu. Small language models: Survey, measurements, and insights. arXiv:2409.15790, 2024.

Junlin Lv, Yuan Feng, Xike Xie, Xin Jia, Qirong Peng, and Guiming Xie. Critiprefill: A segment-wise
criticality-based approach for prefilling acceleration in llms. arXiv:2409.12490, 2024.

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yinggiang Ge, and Yongfeng Zhang. Aios: Llm agent
operating system. arXiv:2403.16971, 2024.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Amatriain,
and Jianfeng Gao. Large language models: A survey. arXivw:2402.06196, 2024.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Proceedings of
NeurIPS, 2024.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient infinite
context transformers with infini-attention. arXiv:2404.07143, 2024.

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dynamic memory
compression: Retrofitting llms for accelerated inference. arXiv:2403.09636, 2024.

OpenAl. Openai gpt-4o, 2024. URL https://platform.openai.com/docs/models/gpt-4o.
Wenbo Pan. Anti-haystack, 2024. URL https://huggingface.co/datasets/wenbopan/anti-haystack.

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and Xinran Xu. Moon-
cake: Kimi’s kvcache-centric architecture for llm serving. arXiv:2407.00079, 2024a.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. Tool learning with foundation models. ACM Computing Surveys, 2024b.

Shashank Rajput, Ying Sheng, Sean Owen, and Vitaliy Chiley. Inference-friendly models with mixattention.
arXiv:2409.15012, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste Alayrac,
Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of context. arXiv:2403.05530, 2024.

15


https://github.com/karpathy/llama2.c
https://github.com/ggerganov/llama.cpp
https://platform.openai.com/docs/models/gpt-4o
https://huggingface.co/datasets/wenbopan/anti-haystack

Under review as submission to TMLR

rustformers. URL https://github.com/rustformers/11m.

Julian Schnitzler, Xanh Ho, Jiahao Huang, Florian Boudin, Saku Sugawara, and Akiko Aizawa. Morehopqa:
More than multi-hop reasoning. arXiv:2406.13397, 2024.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao. Flashattention-3:
Fast and accurate attention with asynchrony and low-precision. arXiv:2407.08608, 2024.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of large language
models with a single gpu. Proceedings of ICML, 2023.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on methods
to optimize llm’s kv-cache consumption. Proceedings of COLM, 2024.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie Chi,
and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm inference.
arXiv:2410.21465, 2024.

Raushan Turganbay. Unlocking longer generation with key-value cache quantization, 2024. URL https:
//huggingface.co/blog/kv-cache-quantization.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents. Frontiers of
Computer Science, 18(6):186345, 2024.

Jianbo Wu, Jie Ren, Shuangyan Yang, Konstantinos Parasyris, Giorgis Georgakoudis, Ignacio Laguna, and
Dong Li. Lm-offload: Performance model-guided generative inference of large language models with
parallelism control. Blog of PASA Lab, 2024.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, Song
Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for understanding extremely long
sequences with training-free memory. Proceedings of NeurIPS, 2024a.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. Proceedings of ICML, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads.
arXiv:2410.10819, 2024b.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language
models with attention sinks. Proceedings of ICLR, 2024c.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse attention
with antidiagonal scoring. arXiv preprint arXiv:2503.16428, 2025.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyramid kv
cache compression for high-throughput llm inference. Proceedings of ACL, 2024.

Yao Yao, Zuchao Li, and Hai Zhao. Sirllm: Streaming infinite retentive llm. Proceedings of ACL, 2024.

Jiayi Yuan, Hongyi Liu, Yu-Neng Chuang, Songchen Li, Guanchu Wang, Duy Le, Hongye Jin, Vipin Chaud-
hary, Zhaozhuo Xu, Zirui Liu, et al. Kv cache compression, but what must we give in return? a compre-
hensive benchmark of long context capable approaches. Proceedings of EMNLP, 2024.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie, YX Wei,
Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively trainable sparse
attention. Proceedings to ACL, 2025.

16


https://github.com/rustformers/llm
https://huggingface.co/blog/kv-cache-quantization
https://huggingface.co/blog/kv-cache-quantization

Under review as submission to TMLR

Amir Zandieh, Majid Daliri, and Insu Han. Qjl: 1-bit quantized jl transform for kv cache quantization with
zero overhead. arXiv:2406.03482, 2024.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per channel: Efficient
large language model inference with coupled quantization. arXiv:2405.03917, 2024a.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han, Zhen Leng
Thai, Shuo Wang, Zhiyuan Liu, et al. co bench: Extending long context evaluation beyond 100k tokens.
Proceedings of ACL, 2024b.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and Atlas Wang. Q-hitter: A
better token oracle for efficient llm inference via sparse-quantized kv cache. Proceedings MLSys, 2024c.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for efficient generative inference of
large language models. Proceedings of NeurIPS, 2024d.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv:2303.18223, 2023.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.
Distserve: Disaggregating prefill and decoding for goodput-optimized large language model serving. Pro-
ceedings of OSDI, 2024.

A Hyperparameters, Environment and Baselines

A.1 Training

During the training stage, we first insert retaining head Rs to each layar. A retaining head is a small FFN
consist of two linear transformations, and the non-linear function is aligned with other non-linears of the
conresponding model, with an intermediate size of 1024. We train the appended retaining head Rs on the
LongAlpaca for 3000 steps with batch size set to 1 and maximum sequence length set to 10240. We use the
AdamW scheduler (Loshchilov, 2019) and the learning rate is set to 5e-4. We conduct the training with a
linear learning rate scheduler, whose warmup step number is set to 2000. The balance factor between two
training loss « is set to 0.0025.

A.2 Inference

Table 8: Hyperparameters in LOCRET’s inference stage. “b” is cache budget, “B” refers to chunk size of
chunked prefill, “ng” refers to stabilizers length and “ny,.” is local length.

Model ‘ b B s Nioc

Phi-3-mini-128K 6000 3072 2500 100
Llama-3.1-8B-instruct | 16384 1024 2500 100

The inference hyperparameters of LOCRET is listed in Table 8. Here, we follow the notations in Algorithm 1.
b stands for the cache budget, B is the chunk size of chunked prefill, n, is the length of stabilizers, and 7,
represents the length of locally retained tokens at the end of the input sequence.

Hyperparameters of other baselines are as follows. For INFLLM, we use the recommended settings for
Llama-3 to evaluate Llama-3.1. Since there is no recommendations of Phi-3-mini-128K, we use the settings
for MiniCPM, whose architechture and size is similar to Phi-3-mini-128K, to conduct all the experiments.
For Quantization, we use the official implementation (Quanto backend) of Hugging Face. For SIRLLM, we
set the start size to 4, recent size to 1000 for both models. We set the token entropy size to 6000 and 16384

17



Under review as submission to TMLR

for Phi-3-mini-128K and Llama-3.1-8B-instruct respectively. The chunk size of chunked prefill is also
3072 and 1024 for the corresponding model. For MINFERENCE, we utilize the recommended settings for both
models.

A.3 System Environment

For all the experiments except the 4090 experiments in Section 5.3, we use a workstation with 8x NVIDIA
A800/H800 GPUs and 104 Intel(R) Xeon(R) Platinum 8470 CPUs. We only use 1 GPU from the cluster for
training, as the GPU requirements are less than 80GB for all training procedures. The device has 1.0 TB
CPU memory. The operating system is Red Hat 4.8.5. We conduct all experiments except the full attention
full KV cache inference on a single GPU, and 2 GPUs for full attention settings.

For Section 5.3, we conduct the experiments on a single NVIDIA 4090 GPU. The device has 512 AMD
EPYC 9754 128-Core Processors and 1.0 TB CPU memory. GPUs and CPUs are connected through PCle
Gen 4, which has 16GT/s transmission speed. The operating system is Ubuntu 9.4.0.

A.4 Baselines

We compare LOCRET with full attention inference, INFLLM, Quantization, SIRLLM and MINFERENCE.
FULLATTN inference is performed using vllm (Kwon et al., 2023), which includes automatic tensor paral-
lelism. INFLLM is a representative of the offloading-based methods, where the full KV cache is offloaded to
CPU, and the most relavant blocks are retrieved to GPU during inference. For quantization method, we use
the Hugging Face implementation of 2-bits KV cache quantization, which is inspired by Liu et al. (2024b),
where quantization is conducted along channels instead of tokens. We denote this method as HF-2BITS.
SIRLLM is an eviction-based token dropping algorithm, where tokens with low token-entropy is evicted once
the cache is fullfilled. We use the official implementation of SirLLM, which includes some CPU operations
including importance sorting. MINFERENCE is a typical method of reducing peak GPU memory consump-
tion through rule-based sparse attention, but it does not reduce the size of KV cache. Note that INFLLM,
HF-2BITS and SIRLLM does not have official implementation on Phi-3-mini-128K, thus we implement
these three methods according to the original algorithm. We only use the short factor of RoPE for INFLLM,
and no further model modification is conducted for HF-2BITS and SIRLLM.

A.5 RULER Benchmark

To evaluate LOCRET-Q’s performance on query-centric tasks, we compare it with selected eviction-based
baselines: SNAPKV, HyO, SIRLLM, INFINIPOT, and vanilla LOCRET. We also include FULLATTN (im-
plemented with FLASH-ATTN) and MINFERENCE for reference. The RULER benchmark consists of 500
synthetic queries per task, each with a context length of 128K tokens. All methods are tested on
Llama-3.1-8B-instruct.

For LOCRET-Q and LOCRET, we set the budget size b to 6000, chunk size B to 4096, stabilizers length ng
to 2500, and local length n;,. to 100. For SNAPKYV, the voting window size is set to 100, with the last 100
tokens retained. For HoO, due to its reliance on full-sequence attention scores, we use a layer-wise chunked
prefill pattern with a chunk size of 1024. Larger chunk size would result in an out-of-memory error. For
SIRLLM, we configure the start size to 4, recent size to 1000, and budget size to 6000. For INFINIPOT,
we set the budget size to 6000 with 50% NuC ratio. All evaluations are conducted on a single NVIDIA
A800-80GB GPU.

For prefill and decode speed testing, all methods except HoO are implemented with FLASH-ATTN; HoO uses
PyTorch’s vanilla attention due to its incompatibility with efficient attention implementations. The speeds
are averaged on the first 5 entries of NIAH-Simple-1.

B Evaluation on LongBench

We conduct additional experiments to evaluate Locret on LongBench (Bai et al., 2024b), comparing it
with baselines such as Full Attention, MInference, InfLLM, and SirLLM. For this evaluation, we used

18



Under review as submission to TMLR

Table 9: LongBench scores of LOCRET compared with baselines.

Method 8OV triviaqa narrative gmsum musique 2wikimqga multifield - repobench
report qa qa_en -p
FULLATTN 33.35 86.38 18.21 19.51 19.82 33.37 49.82 58.02
MINFERENCE | 32.94 86.87 19.46 19.57 18.85 33.30 49.14 58.98
SIRLLM 32.92 85.61 21.08 21.59 24.32 34.97 48.52 59.15
INFLLM 25.96 84.87 20.83 19.61 13.63 27.43 41.29 55.73
Locret 33.46 82.39 24.56 23.35 25.12 35.93 52.77 57.16
multi__ ) passage__ passage
Method qasper  hotpotqa news trec retrieval en  count samsum lec Avg.t
FULLATTN 41.07 43.06 26.57  67.00 93.50 2.97 23.15 51.86 ‘ 41.73
MINFERENCE | 40.31 43.56 26.35  68.00 89.00 2.10 25.58 53.68 | 41.73
SIRLLM 40.17 47.00 26.44 65.50 63.00 3.00 23.11 51.83 | 40.51
INFLLM 30.51 38.05 25.36 64.50 10.00 7.50 0.28 61.59 | 32.95
Locret 40.17 48.70 26.41 62.00 83.00 3.00 26.37 52.61 | 42.31
Table 10: Comparison of methods on LongBench and memory usage.
Method ‘ LongBench ‘ Max GPU Memory ‘ Max CPU Memory ‘ Total Max Memory
FULLATTN |  41.73 | - | - | -
MINFERENCE 41.73 27.63 0.17 27.80
SIRLLM 40.51 18.29 0.05 18.34
INFLLM 32.95 20.03 8.95 28.98
Locret 42.31 17.71 0.15 17.86

Phi-3-mini-128K with a retained head trained on LongAlign. To ensure a fair comparison, we excluded
all Chinese subtasks from LongBench and focused solely on the English subtasks, as Phi-3-mini-128K was
not specifically trained on Chinese corpora. The results are presented below. For LOCRET , we follow the
hyperparameters presented in Table 8.

We also report the maximum memory usage, including the GPU memory, the CPU memory, and the total
maximum memory, alongside the average score on LongBench. For FULLATTN, we exclude the maximum
memory usage, aligning with Figure 4.

From the experiments above, LOCRET demonstrates the best overall performance and excels in the majority of
subtasks. It outperforms all the baselines without any noticeable performance degradation while consuming
less memory. Although MInference also avoids performance drops, it requires more GPU memory compared
to LOCRET. SirLLM achieves comparable memory usage but shows some performance decline compared
to FULLATTN and LOCRET. InfLLM exhibits the most significant performance drop, and its offloading
mechanism results in the highest CPU memory usage, making it the method with the largest total memory
consumption. These results highlight LOCRET as an outstanding approach for evaluation on LongBench.

C Training Robustness

C.1 Intermediate Size of the retaining head

We align all the training settings as described in Section 5.1 and only change the intermediate size of retaining
heads dr € {256,512,1024,2048,4096} with the backbone model Phi-3-mini-128K. The trained model is
evaluated on L-Eval and we report the average L-Eval score corresponding to each intermediate size. Results
are listed in Figure 6. The performance variations among all the settings are minimal compared to the
changes in the intermediate size, surpassing all baselines in Table 2 and Table 3. This indicates that out
method exhibits good performance stability regardless of the intermediate size of the retaining head Rs.

19



Under review as submission to TMLR

Table 11: L-Eval scores with different intermediate size of the retaining head dg. (Detailed)

Phi-3-mini-128K on L-Eval
dr, ‘ CodeU  NQ CUAD NarrativeQA QMSum SPACE ‘ Avg.t

256 8.89 51.52  23.05 16.21 15.26 13.77 21.45
512 6.67 50.61  23.33 16.67 15.02 14.23 21.09
1024 8.89 51.49  22.23 16.42 14.86 14.06 21.33
2048 7.78 54.09 2191 16.46 15.00 13.89 21.52
4096 10.00  52.33  23.52 16.15 14.81 14.02 21.81

We train different retaining head Rs with dg € {256,512,1024,2048,4096}. We keep all the other hyperpa-
rameters same, and train on the same dataset. From Table 11, LOCRET shows stability to the intermediate
size, in both overall performance and the performance of each single task. While increasing the intermediate
size, we observe very slight overall performance enhancement. However, the performance variance is negligi-
ble compared to the increase of parameter size, thus we choose to maintain the intermediate size in a small
scope to take balance of performance and efficiency.

C.2 Training Data Insensitivity

We also consider the sensitivity of the training data, which leads us to ablate the training dataset by training
on LongAlign (Bai et al., 2024a) and Anti-Haystack (Pan, 2024), comparing these results with those from
LongAlpaca (Chen et al., 2024) in the original training setting. We also align other settings to the original
setting and choose the backbone model to be Phi-3-mini-128K. We report the average L-Eval score for
each training dataset. The results in Table 7 shows that LOCRET has high insensitivity towards different
training data. The performance impact of different data recipes is minimal, indicating that our method can
be trained on any long-context tuning dataset.

Table 12: L-Eval scores of LOCRET trained on various dataset. (Detailed)

Phi-3-mini-128K on L-Eval

Dataset | CodeU NQ CUAD Narrative QA QMSum SPACE | Avg.t
LongAlpaca 8.89 51.49  22.23 16.42 14.86 14.06 21.33
LongAlign 10.00 5513  21.34 16.40 15.01 14.09 | 22.00
Anti-Haystack | 8.89  52.91  20.87 13.73 13.84 14.10 | 20.72

We conduct training on various datasets and benchmark the trained weights on L-Eval with
Phi-3-mini-128K backbone, to show the stability towards training datasets. For each datasets, we set
the training hyperparameters same and truncate the context to 10240 tokens. We train the first 3000 steps
of LongAlpaca and LongAlign. Since Anti-Haystack is a relatively smaller dataset, we utilize the whole
dataset, which consist of 2424 entries. The results in Table 12 shows that different training dataset recipe
exhibits minor effect towards the overall performance. LOCRET can obtain competitive performance without
delicately selecting the training data.

D Orthogonality to Other Methods

Table 13: Quantization with FULLATTN and  Table 14: The average L-Eval scores of Lo-
LOCRET. “M” represents Method and “—A” rep- CoCo0, LOCRET, and the combination of Lo-

resents the gap of average L-Eval score. CoCo and LOCRET.
Setting ‘ M M-4bits ‘ -A Method ‘ LoCoCo Locrer Combination
M=FULLATTN | 29.08 28.52 0.56 L-Eval ‘ 26.01 27.96 28.70

M=LOCRET 27.96  27.11 0.85

20



Under review as submission to TMLR

KV cache quantization. According to Zhang et al. (2024c), eviction-based methods like HoO struggle with
compatibility when combined with KV cache quantization. Quantization introduces significant disturbance in
the estimation of heavy-hitters, leading to severe performance degradation. However, LOCRET is not affected
by such issues and can be combined with quantization while maintaining most of its performance. Here,
we compare the performance degradation caused by quantization on LOCRET with that of the full attention
method using the same metrics. We use Quanto as the quantization backend and report the average L-Eval
score with Llama-3.1-8B-instruct as the model backbone. Table 13 shows that the performance drop
caused by quantization on LOCRET is only slightly higher than that observed with the full attention method,
indicating that LOCRET is a quantization-friendly approach. More details of the experiment are provided in
Appendix D.1.

Token merging. As described in Section 2, token dropping can also be implemented through an attention
pool. Attention pool-based methods (Xiao et al., 2024c; Cai et al., 2024a; Mu et al., 2024; Munkhdalai
et al., 2024) merge adjacent tokens or cache units into an attention pool, maintaining a static cache size.
These methods are orthogonal to LOCRET , as the evicted tokens can be merged into a small cache pool
and retained in GPU memory. We conduct the following experiment to demonstrate that LOCRET can serve
as an effective plug-in scoring function within such frameworks, enhancing performance without increasing
memory budget. We select LoCoCo (Cai et al., 2024a) as a representative of the latest attention pool-based
methods. LOCOCO maintains a cache set consisting of two parts: the heavy hitters and the convolved non-
heavy hitters. During each chunked prefill step, LOCOCO first identifies a set of heavy hitters according to
H50 (Zhang et al., 2024d), then applies 1-D convolution to the non-heavy hitters to compress them into a
static size. By replacing HoO’s heavy-hitter scoring function with LOCRET, we retain the cache units with
high CIS and convolve the others. We compare this combination with standalone LoOCoCo0O and LOCRET on
L-Eval using the Llama-3.1-8B-instruct backbone and report the average score across all selected tasks. As
shown in Table 14, LOCRET achieves a higher score than LOC0Co0, and the combined algorithm outperforms
both standalone methods. This suggests that LOCRET provides a more accurate scoring function compared
to HyO, and the two methods complement each other, demonstrating their orthogonality. Further details of
the experiment are provided in Appendix D.2.

Head-wise Budget Allocation. Since LOCRET evict cache units across the attention heads independently,
it is compatible with head-wise budget allocation. Here, we combine LOCRET with PYRAMIDKV (Cai
et al., 2024b). PYRAMIDKYV assumes that identifing the important cache in deeper layers are simpler than
shallow layers, thus it allocates more budget to the shallow layers. We evaluate LOCRET+PYRAMIDKV
on the following subtasks of coBench using Phi-3-mini-128K. Results presented in Figure 15 shows the
compatibility of the two methods.

Table 15: coBench scores of the combination of LOCRET and PYRAMIDKV.

Phi-3-mini-128K on coBench

Method ‘ R.Number E.Sum E.MC C.Debug ‘ Avg.t
LOCRET 97.46 16.82  46.29 29.71 47.57
LOCRET+PYRAMIDKV 99.66 15.82  48.03 30.00 48.38

D.1 Combination with Quantization

Table 16: L-Eval scores of FULLATTN, FULLATTN-4bits, LOCRET and LOCRET-4bits. (Detailed)

Llama-3.1-8B-instruct on L-Eval

Method ‘ CodeU NQ CUAD NarrativeQA QMSum SPACE ‘ Avg.t
FULLATTN 10.0 66.84  38.91 23.11 18.76 16.86 29.08
FULLATTN-4bits 7.78 66.64  38.25 22.76 18.85 16.84 28.52
LOCRET 8.89 63.03 37.21 23.59 18.17 16.87 27.96
LOCRET-4bits 4.44 63.22 36.95 22.80 18.43 16.81 27.11

21



Under review as submission to TMLR

We compare the combination of LOCRET and HF-4BITS quantization with the full attention method and
the standalong HF-4BITS quantization. We utilize the official implementation of Hugging Face, with Quanto
as the backend of quantization. Other hyperparameters are kept same as described in Section 5.1. We
conduct the experiment on L-Eval and report the average score, with Llama-3.1-8B-instruct backend.
The results in Table 16 shows that the degradation caused by quantization is not significantly high, showing
that LOCRET exhibits good robustness on data representation and it is friendly to quantization.

D.2 Combination with LoCoCo

(a) L-Eval scores of LoCoCo0, LOCRET and the combination LOCOC0O+4LOCRET. (Detailed)

Llama-3.1-8B-instruct on L-Eval

Method | CodeU NQ CUAD NarrativeQA QMSum SPACE | Avg.t
FULLATTN | 100 66.84 3891 23.11 18.76 16.86 | 29.08
LoCoCo 444  61.10 35.84 19.83 18.15 16.71 | 26.01
LOCRET 8.89  63.03 37.21 23.59 18.17 16.87 | 27.96
LoCOCO+LOCRET 7.78  66.33  38.01 24.85 18.31 16.92 | 28.70

We compare the combination of LOCOCO0O and LOCRET with the standalone methods. For LoCoCo, we
train the convolution head with the size of convolved cache set to 2048. We extend the context length through
chunked prefill training to 64K, which is longer than all tasks’ average input length. The convolution kernel
is set to 21, and we train the newly-added convolution and layer norms for 200 steps, following the original
setting. Since the original Llama-3.1-8B-instruct supports 128K context length, we do not modify its
positional embedding. During Inference, we keep a cache budget size of 16384. In the standalone LoCoCo
setting, there are 2048 cache units are convolved, while the others are the heavy-hitters selected by H5O.
In the combined algorithm, we replace HoO to LOCRET. We select 14336 cache units with the highest CIS,
and convolve the other evicted tokens into 2048 cache units. In all methods, we set the local length to 0,
following the original setting.

E Extremely Long Context Evaluation

We create a dataset similar to coBench’s R.Number, with an average length of 10 million tokens. Each
data point contains a 10-digit number string inserted into an irrelevant context, and the task is to retrieve
the inserted number. The dataset consists of 50 examples, with the number strings uniformly distributed
throughout the context. We used the hyperparameters from Table 8, with the exception of setting the chunk
size to 10240 to speed up inference. The results, presented below in Table 18, show that Locret can efficiently
process extremely long contexts. In this experiment, the cache budget is set to 6000, and the compression
ratio is 1747.6x.

Table 18: Inference speed with Retaining Heads.

Phi-3-mini-128K on 10M context
Dataset ‘ R.PassKey_ 10M
LOCRET | 100.00

F Compressing Multi-turn Conversations

Compared to query-aware eviction methods, such as SNAPKV (Li et al., 2024b), LOCRET is a more suit-
able solution for multi-turn conversation scenarios. This is because the evaluation of cache importance in
LOCRET is based on the cache itself, rather than being dependent on the subsequent query. To demonstrate
this, we evaluate LOCRET on the Rock-Paper-Scissors benchmark introduced in SIRLLM (Yao et al., 2024).

22



Under review as submission to TMLR

Since SIRLLM is specifically designed for such scenarios, we use it as our baseline in this benchmark. Results
in Table 19 show that Locret is also effective in multi-turn conversation contexts.

The hyperparameters are aligned with those used in SIRLLM, with the cache budget set to 1024, and no
stabilizers are retained, as SIRLLM does not retain local tokens in this benchmark. We perform 2000 turns
as same as the original SIRLLM settings. The results are presented below.

Table 19: Rock-Paper-Scissors scores of LOCRET and SIRLLM.

Phi-3-mini-128K on Rock-Paper-Scissors

Rock Paper Scissors Avg.
win tie lose win tie lose win tie lose wint losel

SIRLLM ‘40400 31.75 2825 275 36.55 35.96 29.35 25.15 45.50‘ 32.28  36.57

Preference

Locret 18.95 50.00 31.05 30.35 19.45 50.20 52.05 27.25 20.70 | 33.78 33.98

G Discontinuous Context and Stablizers

Evicting cache units results in context discontinuity, which causes unstable CIS prediction and inaccurate
calculation of later tokens. Thus, we always retain the stabilizers, which are consist of the last ns cache
units in each chunked prefill step. We ablate ns, on R.Number of co-Bench in the proposed algorithm to
demonstrate the necessity of incorporating stabilizers in the design. The results in Figure 3a show that
lower stabilizer length n, causes severe performance degredation and the model fails completely when the
stabilizers are absent. We report the maximum absolute error of the last hidden state of the input prompt
across different layers in Figure 3b. Large errors can be observed when the stabilizers are short or absent.
We also report the mean absolute error of the predicted causal importance values with different stabilizer
lengths, compared to the case without evicting any cache units, in Figure 3c. We also observe high errors
when the stabilizer length is limited. This explains the reason for failure when the stabilizers are short or
absent: context discontinuity leads to instability in the prediction of CIS, resulting in errors during cache
eviction and amplifying errors in the hidden states.

H Retaining Heads Do not Slow Down Inference

We evaluate the model’s forward throughput under varying context lengths, both with and without retain-
ing heads. The results are summarized below in Table 20. “R” represents the retaining heads, and the
throughput is reported in tokens per second (tok/s) in the format “Avg. / Std.

Table 20: Inference speed with Retaining Heads.

Context Length | 1024 2048 3072 4096
w/o R Speed 18674 / 443 19743 / 464 19982 / 402 20304 / 187
w/ R Speed 17118 / 1117 18503 / 546 19054 / 283 19153 / 174

From the results, no significant latency increase is observed when using retaining heads. The numerical
differences are attributed to systematic variations rather than additional overhead introduced by retaining
heads during inference.

I Retained Patterns of Locret

We investigate the retained patterns of LOCRET. We trace the cache units at each attention head through
the chunked prefill on R.Number, M.find and E.MC of coBench with backbone Phi-3-mini-128K, and
investigate the pattern variation among different layers on R.Number. We display the results in Figure 7
and Figure 8. The yellow parts are the retained cache, where the y-axis represents cache position and x-axis
is the time axis.

23



Under review as submission to TMLR

Figure 7 shows that the pattern is mostly decided by the tasks, where both heads shows similar pattern in
the same task. In R.Number, we are able to observe a strong signal between token 10000 and 15000, which
is the position of the inserted number string, indicating that LOCRET can identify the potentially answer-
related parts by giving high predicted values of CIS. In M.Find, we can observe the StreaminglL.LLM (Xiao
et al., 2024c) pattern, where the tokens at the beginning of the sequence are always important. This is also
mentioned as the A-pattern in MINFERENCE. We can also discover the vertical lines in the middle of the
sequence. This pattern is also approached by MINFERENCE (Jiang et al., 2024a) by the pattern “vertical-and-
slash”. In E.MC, HyO (Zhang et al., 2024d) and ScissorHands (Liu et al., 2024a) pattern can be observed,
following the assumption that if a token is activated at some point, it will continue to be activated in the
consequencing process. Noticing that the vertical lines always come in groups, which is the fundament of
INFLLM (Xiao et al., 2024a) retrieving blocks to calculate. The comparison between two heads also shows
that different heads exhibits different features. Head 22 of layer 11 shows stronger vertical lines at some
point, where retained pattern of head 14 layer 11 is more even. Head 14 of layer 11 also gives stronger signal
to the initial tokens, where this effect is less strong in head 22 layer 11. We also conduct experiments to
investigate the patterns across layers. In Figure 8, we show that the pattern variance of the same head in
different layers can be large. In shallow layers, e.g. layer 1 and 5, the retained cache units appears to be
periodical and semantic independent. However, in middle layers, e.g. layer 13 and 17, the position of the
inserted number string is strongly highlighted, indicating that semantic takes over to be the dominant factor.
In the deepest layers, e.g. 21, 25 and 29, the highlighted vertical line at the position of the inserted string
becomes more accurate.

The retained pattern at different layers shows various features, which might be a good handle to investigate
how LLMs understand and process natural language queries.

24



Under review as submission to TMLR

R.Number M.Find

s000
Layer 11
Head 14 oo

25000

30000

5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000

o
Layer 11
Head 22 oo oo

5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000

Figure 7: Head patterns across multiple tasks.

Layer 1 Layer 5 Layer 9

o
5000

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000

o
5000

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000

Layer 17 Layer 21 Layer 25

Figure 8: Layer patterns of R.Number

5000

5000

o

o

E.

10000

10000

5000

5000

MC

15000 20000 25000 30000

15000 20000 25000 30000

Layer 13

10000 15000 20000 25000 30000

10000 15000 20000 25000 30000

Layer 29



	Introduction
	Related Work
	The Global and Local Discrepancy of Scoring Functions in Existing Methods
	Locret : KV Cache Eviction with Causal Importance Score
	Preliminaries
	Framework of Locret
	Training Retaining Heads
	Inference Implementation of Locret

	Experiments
	Experimental Setup
	End-to-end Benchmark
	Processing Speed on Real Consumer-Grade Devices
	Locret-Q: Supporting Query-Driven Tasks
	Hyperparameter and Training Robustness Analysis
	Additional Experiments

	Conclusion
	Hyperparameters, Environment and Baselines
	Training
	Inference
	System Environment
	Baselines
	RULER Benchmark

	Evaluation on LongBench
	Training Robustness
	Intermediate Size of the retaining head
	Training Data Insensitivity

	Orthogonality to Other Methods
	Combination with Quantization
	Combination with LoCoCo

	Extremely Long Context Evaluation
	Compressing Multi-turn Conversations
	Discontinuous Context and Stablizers
	Retaining Heads Do not Slow Down Inference
	Retained Patterns of Locret 

