
SGDNet

This is a PyTorch implementation of Signed Graph Diffusion Network (submitted to ICLR 2021).

This paper proposes a novel graph neural network that achieves end-to-end node representation

learning for link sign prediction in signed social graphs.

Prerequisites

python 3.6+

torch 1.5.0

numpy 1.18.1

scipy 1.4.1

scikit_learn 0.23.1

tqdm 4.46.1

fire 0.3.1

pytictoc 1.5.0

dotmap 1.3.17

loguru 0.5.0

Datasets and Pre-trained SGDNet

We provide the datasets used in the paper for reproducibility. You can find the datasets at

./data/${DATASET} folder where the file's name is data.tsv .

${DATASET} is one of BITCOIN_ALPHA , BITCOIN_OTC , SLASHDOT and EPINIONS .

The file contains the list of signed edges where each line represents a tuple of (src, dst, sign) which

is tab-separated. There are four real-world signed social networks:

BITCOIN_ALPHA : signed social network from the Bitcoin Alpha platform [link]

BITCOIN_OTC : signed social network from the Bitcoin OTC platform [link]

SLASHDOT : signed social network from the Slashdot online review site [link]

EPINIONS : signed social network from the Epinions online review site [link]

This repository also contains pre-trained SGDNet models; you can find them in

./pretrained/${DATASET} folder where the file's name is model.pt . The hyperparameters used
for training an SGDNet model are saved at param.json .

Simple Demo

https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
http://konect.uni-koblenz.de/networks/slashdot-zoo
http://konect.uni-koblenz.de/networks/epinions

You can run the demo script by bash demo.sh . It trains SGDNet on BITCOIN_ALPHA dataset with

hyperparameters stored at ./pretrained/BITCOIN_ALPHA/param.json . This demo saves the
trained model at ./output/BITCOIN_ALPHA/model.pt . Then, it evaluates the trained model in terms
of AUC and F1-macro scores.

Results of Pre-trained SGDNet

We provide pre-trained SGDNet models which are stored at ./pretrained/${DATASET}/model.pt ,
respectively. The experimental results with the pre-trained models are as follows:

Dataset AUC F1-macro

Bitcoin-Alpha 0.9177 0.7456

Bitcoin-OTC 0.9227 0.8060

Slashdot 0.8944 0.7792

Epinions 0.9397 0.8521

Note that we conducted the experiments on GTX 1080 Ti (CUDA version 10.1), and the above

results were produced with random-seed=1 .

Used Hyperparameters

We briefly summarize the hyperparameters used in the above results. The hyperparameters are

stored at ./pretrained/${DATASET}/param.json .

Hyperparameters of SGDNet

num-layers (L): number of SGD layers

c : ratio of local feature injection

num-diff-layers (K): number of diffusion steps

hid-dim (d): hidden feature dimension

Hyperparameter Bitcoin-Alpha Bitcoin-OTC Slashdot Epinions

num-layers (L) 1 2 2 2

c 0.35 0.25 0.55 0.55

num-diff-layers (K) 10 10 10 10

hid-dim (d) 32 32 32 32

Hyperparameters of optimizer

optimizer: Adam

L2 regularizer (weight-decay , λ): 1e-3

learning-rate : 0.01

epochs : 100

Input feature dimension (reduction-dimension): 128

How to Reproduce the Above Results with the Pre-trained Models

You can reproduce the results with the following command which evaluates a test dataset using a

pre-trained model.

${DATASET} is one of BITCOIN_ALPHA , BITCOIN_OTC , SLASHDOT and EPINIONS .

${GPU_ID} is -1 or your gpu id (maybe, non-negative integer) where -1 indicates it runs on

CPU.

The pre-trained models were generated by the following command:

python3 -m run_train --output-home ../output --dataset ${DATASET} --gpu-id ${GPU_ID}

Note that those scripts automatically find the file param.json for the above hyperparameters. To

tune the hyperparameters, modify the json file, or use the below commands.

Detailed Usage

You can train and evaluate your own datasets using trainer.py and evaluator.py , respectively.
To use those scripts properly, move your working directory to ./src .

Training

The following command performs the training process of SGDNet on a given dataset. This

automatically splits the dataset by heldout-ratio , e.g., if it is 0.2, training:test=0.8�0.2. Note that
the split data are guaranteed to be the same if the same random-seed is given. After the training is

completed, it generates two files called model.pt and param.json at the ${output-
home}/${dataset} folder where model.pt conatins parameters of the trained model, and

param.json has hyperparameters used for the model.

python3 -m trainer \
 --data-home ../data \
 --output-home ../output \
 --dataset BITCOIN_ALPHA \
 --heldout-ratio 0.2 \
 --radnom-seed 1 \

python3 -m run_eval --input-home ../pretrained --dataset ${DATASET} --gpu-id ${GPU_ID}

 --reduction-dimension 128 \
 --reduction-iterations 30 \
 --gpu-id 0 \
 --c 0.15 \
 --weight-decay 1e-3 \
 --learning-rate 0.01 \
 --num-layers 1 \
 --hid-dim 32 \
 --num-diff-layers 10 \
 --epochs 100

Option Description Default

data-home data directory path ../data

output-home output directory path ../output

dataset dataset name BITCOIN_ALPHA

heldout-ratio heldout ratio between training and test 0.2

radnom-seed random seed used for dataset split and torch 1

use-torch-random-
seed

whether torch uses the above random seed True

reduction-dimension input feature dimension (SVD) 128

reduction-
iterations

number of iterations required by SVD

computation
30

gpu-id gpu id 0

c ratio of local feature injection 0.15

weight-decay weight decay (L2 regularizer) for optimizer 1e-3

learning-rate learning rate for optimizer 0.01

num-layers number of SGD layers (L) 1

hid-dim hidden feature dimension (d) 32

num-diff-layers number of diffusion steps (K) 10

epochs target number of epochs 100

Evaluation

This performs the evaluation process of SGDNet, and reports AUC and F1-macro scores on the test

dataset. This uses model.pt and param.json ; thus, you need to check if they are properly

generated by trainer.py before this evaluation. Note that it uses the same random seed used by

trainer.py so that the test dataset is valid for this evaluation.

python3 -m evaluator \
 --input-home ../output \
 --dataset BITCOIN_ALPHA \
 --gpu-id 0

Option Description Default

input-home directory where a trained model is stored ../output

dataset dataset name BITCOIN_ALPHA

gpu-id gpu id 0

