
Compositional Transformers for Scene Generation
Supplementary Material

Figure 10: A visualization of the layouts and unsupervised depth maps produced by GANformer2’s planning
stage while synthesizing varied images, making the generative process more structured and interpretable.
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Figure 11: Recurrent scene generation. GANformer2 creates the layout sequentially, segment-by-segment, to
capture the scene’s compositionality, effectively allowing us to add or remove objects from the resulting images.
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Figure 12: Object removal. Since GANformer2 creates each scene as a composition of interacting segments, it
supports adding and removal of objects while respecting various dependencies with their surroundings: Amodal
completion of occluded objects is denoted by pink, updates of shadows and especially reflections by cyan, and
other object removals cases by yellow.
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Figure 13: Object controllability over structural attributes, achieved by modifying the model’s structure
latent ui of the chosen object during the planning stage (section 3.2). Shape manipulation is denoted by green,
while position changes by yellow.
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Figure 14: Object controllability over stylistic attributes, achieved by modifying the model’s style latent wi

of the chosen object during the execution stage (section 3.3). Color manipulation is denoted by pink, while
updates of material by cyan.
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Figure 15: Localized property manipulation of selected objects without negatively impacting their surround-
ings, over LSUN-Bedrooms scenes.
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Figure 16: Localized property manipulation of selected objects, without negatively impacting their surround-
ings over LSUN-Bedrooms scenes (continued).
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Figure 17: GANformer2 conditional generative diversity for CelebA. Images conform to the source layouts
while still demonstrating high variance, featuring diversity both in stylistic aspects of lighting conditions and
color scheme, but also in structural ones, as reflected through the hair type, background and age.
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Figure 18: GANformer2 conditional generative diversity for LSUN-Bedrooms. Images conform to the
source layouts on the one end while still demonstrating high variance on the other, featuring diversity both in
stylistic aspects of lighting condition and color scheme, but also in structural ones, as reflected through the
windows, paintings and bedding.
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Figure 19: GANformer2 style and structure separation. We manipulate each aspect while maintaining
consistency over the other, varying the structure between columns and style between rows.
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Figure 20: GANformer2 conditional generative diversity for CLEVR. The scenes significantly vary in
combinations of objects’ colors and materials (contrary to competing approaches, as shown in figures 23-24,
while still closely following the source layouts.
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Steps 0 1 2 3
CLEVR 11.95 7.54 4.70 5.25
FFHQ 8.21 7.77 8.84 9.92
Cityscapes 9.83 8.51 7.26 6.21
Bedrooms 11.45 9.37 6.05 7.21
COCO 31.15 28.45 24.30 21.58

Figure 21: Learning curves and performance comparison when varying the loss function for the execution
stage (left), and the number of recurrent planning steps for the layout synthesis (center, right). In each step,
a random number of segments is generated, sampled from a trainable normal distribution, to flexibly model
highly-structured scenes and capture conditional object dependencies within them while still maintaining good
computational efficiency. “0” denotes a non-compositional model that generates the layouts in a single pass
rather than as a collection of segments.

A Overview

In the following, we provide additional qualitative and quantitative experiments for the GANformer2
model. Figure 10 shows visualizations of the model’s generative process as it produces depth-
aware scene layouts which in turn guide and facilitate the synthesis of output photo-realistic images.
The model’s compositional structure does not only enhance its transparency, but also increases
its controllability (section B, figures 13-16), allowing GANformer2 to manipulate properties of
individual objects without negatively altering their surroundings, and even develop capacity for
amodal completion of occluded objects (section C, figures 11-12). The obtained decoupling between
structure and style is further illustrated through figures 17-18 and 19-20, respectively demonstrating
variability along one aspect while maintaining consistency over the other.

We believe the diversity achieved by GANformer2 results from the new structural losses we introduce
(section 3.3), which we compare to several baselines and alternatives in figures 22-24 and section
D. In section E, we proceed through additional model ablation and variation studies, to asses the
contribution of its different architectural components, and the number of recurrent planning steps
in particular. Section F focuses on the training configuration, comparing and contrasting between
paired vs. unpaired settings. We conclude the supplementary by providing implementation details
(section G), description of baselines and competing methods (section H), and information about data
preparation procedures (section I).

B Style & Structure Disentanglement

GANformer2 decomposes the synthesis into two stages of planning and execution, the former
produces the scene layout and structure while the latter controls its texture, colors and style. Figures
figures 17-18 demonstrate the high content variability achieved over different datasets, while still
complying with shared source layouts. Indeed, the styles differ substantially between one sample to
another, and variation is notably observed in local structures and elements, while still conforming to
the layout at the global scale. This is most noticeable in the CelebA case (figure 18), where some of
the images produced for given layouts depict young people while other old ones, and likewise some
feature straight hair while other curly hair, even when originating from the same layout. Likewise, in
the case of LSUN-Bedrooms (figure 17), we observe diversity that goes beyond aspects of texture
and color scheme, featuring structural variations in entities such as windows, paintings, and bedding,
among others. Meanwhile, figures 19-20 inversely show structural variability while maintaining a
consistent style, obtained by rendering different layouts using the same set of style latents {wi}.
The high diversity and consistency demonstrated here, which also quantitatively surpass the competing
approaches (section 4.2), may be attributed to the new structural loss functions we employ (section
3.3). These purely generative losses liberate us from resorting to perceptual and feature-matching
objectives common to prior work, which impose unnecessary and unjustified pixel-wise similarity
conditions on the generated images, inhibiting their diversity. By sidestepping this reliance, we can
unlock wider variation among the synthesized scenes, both in terms of structure and style. See a
comparison between synthesized samples of different approaches at figures 22-24.
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Table 4: Paired vs. unpaired training
Paired Unpaired Parallel

CLEVR 4.70 6.58 6.72
FFHQ 7.77 8.12 8.35
Cityscapes 6.21 7.32 7.81
Bedrooms 6.05 8.24 8.55
COCO 21.58 25.02 27.41

Table 5: Hyperparameters
Max Latents R1 reg

#Latents Overall Dim weight (γ)
FFHQ 20 128 10
CLEVR 16 512 40
Cityscapes 64 512 20
Bedroom 64 512 100
COCO 64 512 100

Table 6: Dataset configurations
Dataset Size Resolution Augment
FFHQ 70,000 256×256 Flip
CLEVR 100,015 256×256 None
Cityscapes 24,998 256×256 Flip
Bedrooms 3,033,042 256×256 None
COCO 287,330 256×256 Crop + Flip

Table 7: COCO subset statistics

Category Size Category Size

People 50293 Sports 37304
Children 13840 Skiing 5840
Eating 5096 Baseball 10067
Playing 5798 Tennis 11721
Rural 12084 Skating 6412
Others 13475 Surfing 3264

Animals 64066 Indoors 30946
Dogs 5245 Bathrooms 17121
Cats 5543 Kitchens 10427
Birds 8153 Bedrooms 3398
Sheep 8134
Bears 8138 Outdoors 20713
Elephants 16204 Beaches 8396
Giraffes 6352 Cities 8578
Zebras 6297 Streets 3739

Vehicles 53714 Misc 30294
Airplanes 21232 Desserts 11370
Buses 7436 Food 4176
Trains 6661 Toys 7242
Bikes 18385 Electronics 7506

C Object Controllability & Amodal Completion

In section 4.4, we explore the model’s spatial and semantic disentanglement, and study the degree of
controllability achieved over individual objects and properties. Figure 13-16 provide a qualitative
illustration, presenting examples of latent-space interpolations that lead to smooth and localized
changes of chosen objects and properties, selectively controlling either their structure or style.

Thanks to the compositional nature of the layout generation, we can even add or remove objects from
the scene, as is illustrated in figures 11-12, while respecting object interactions and dependencies
such as shadows, reflections and occlusions. In particular, since GANformer2 creates the layouts
sequentially by laying segments on top of each other (e.g. first generating a road, and then placing a
car on top of it), it provides us with practical means to then remove the front segments and reveal the
ones behind them, effectively achieving amodal completion of occluded objects. Consequently, by
varying the number of generation steps, GANformer2 is also capable of extrapolating beyond the
training data, e.g. creating empty CLEVR scenes (figure 3) even though the training data features at
least 3 objects at every image.

D Structural Losses Comparison

As discussed in section 3.3, we introduce two new losses to the model’s execution stage, where we
transform input layouts into output photo-realistic images. The new losses of Semantic Matching
and Segment Fidelity respectively encourage structural consistency between the layouts and the
images, and fidelity at the level of the individual segment. In figure 21, we compare their performance
in terms of FID score with several alternative objectives over the COCO dataset.

Specifically, we explore the following baselines: (1) Using no consistency loss at all (training with the
standard fidelity loss only L(D(·))), in hopes that the model’s layout-conditioned feature modulation
will serve as an architectural bias to promote structural alignment; (2) A simple concatenation of
the layout S and image X as they are fed into the discriminator D; (3) A Feature-Marching loss, as
widely used in prior work, LFM (f(X), f(X ′)), that compares VGG features of the generated image
with those of the source natural image X ′ that underlies the input layout S; and (4) an Edge-Matching
loss, LEM (e(S), e(S′)), that compares the binary segmentation edges between the input layout S
and a layout S′ induced by the generated image X .

As figure 21 shows, our newly proposed losses, and the Semantic-Matching loss especially, surpass
the discussed baselines and effectively encourage GANformer2 to generate high-quality images. For
the Semantic-Matching loss, LSM (S, S′), we believe that providing semantic pixel-wise guidance to
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Layout Pix2PixHD BicycleGAN SPADE GANformer2

Figure 22: Comparison between samples of conditional generative models. GANformer2 achieves better
visual quality and demonstrates a larger variance in the spectrum of colors and textures, contrasting with other
approaches that converge to a narrow range of gray-brownish hues.

the generator in terms of the classes each region in the image should depict, while not limiting its
content to match an arbitrary natural image, as is the case in feature-matching losses, accelerates the
generator’s learning without inhibiting its output diversity, which in turn yields better FID scores.
Likewise, for the Segment-Fidelity loss, 1

n

∑
LSF (D(si, xi)), promoting fidelity of individual

segments xi, rather than just of the whole picture X , naturally enhances learning, especially for rich
and highly-structured scenes, as we observe for the COCO dataset.

E Model Ablations & Iterative Generation

To validate the efficacy of our approach and better assess the relative contribution of each design
choice, we perform ablation and variation studies over the planning and execution stages. We begin by
exploring the impact of varying the number of recurrent generation steps for planning the scene layout,
and further compare it with a single-pass approach that generates the layout in a non-compositonal
fashion – as a one image like standard GANs, rather then as a collection of interacting segments.
We note that each generation step creates a random number of segments, sampled from a trainable
normal distribution, and therefore reducing the number of steps does not limit the maximum number
of segments the model can create overall. Adding more recurrent steps can instead enhance the
model’s capability to capture conditional dependencies across segments, while keeping the planning
process shorter can naturally increase the computational efficiency.

Compositional Layout Synthesis. As figure 21 shows, compositional layout generation performs
substantially better than the standard single-pass approach (denoted by “0”) across all datasets.
Intuitively, we believe that the efficiency gains arise from the ability of the recurrent approach to
decompose the combinatorial space of possible scene layouts into several smaller tasks, such that
each step focuses on a few segments only, rather than modeling the whole scene at once. This could
be especially useful for highly-structured scenes with multiple objects and dependencies.
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Figure 23: Comparison between samples of conditional generative models, demonstrating the GAN-
former2’s wider diversity in object’s properties, its higher compliance with the source layouts, especially
in terms of shape consistency, and the more precise separation between close object segments.

Layout Synthesis Length. We can see how the optimal number of synthesis steps vary between
different datasets: while CelebA layouts seem simple enough for the model to comprehend and
synthesize in just one step, CLEVR and LSUN-Bedrooms benefit from 2 steps, and the richer
Cityscapes and COCO see performance improvement in even 3 layout generation steps. The most
effective lengths seem to indicate the compositionality degree of each dataset: In CLEVR, objects
are mostly independent of each other (holding only weak relations of not mutually occupying the
same space), and so their segments can be produced mostly in parallel, over less recurrent steps.
Meanwhile, more intricate scenes, as in COCO and Cityscapes, benefit from a longer sequential
generation that can explicitly capture conditional dependencies among objects (e.g. generating a cup
only after creating the table it is placed on), demonstrating the strength of recurrent synthesis.

Layout Refinement. In the execution stage, which transforms layouts into output images, we
explore the contribution of the layout refinement mechanism (section 3.3). It introduces a sigmoidal
gate σ(g(S,X,W )) to support local layout adjustments, meant to increase the model’s flexibility
and expressivity during the translation. We study ablations over CLEVR, either not applying the
refinement or using limited gating versions, constraining the inputs to be the latents W , layout S,
or image X only. We see that compared to the default model’s FID score of 4.70, using weaker
refinements lead to deterioration of 0.72, 0.78 and 0.85 when inputting the latents, layout or image
respectively, and a larger reduction of 1.45 points, when ablating the gating mechanism completely.
These results provide evidence for the benefit of using the gating mechanism to refine the scene’s
layout during the execution stage.

F Paired vs. Unpaired Training

We train GANformer2 over two sets: of images {Xi} and layouts {Si}, used during the planning
and execution stages respectively. The training sets can either be paired: listing the alignment
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Figure 24: Comparison between samples of conditional generative models, demonstrating the GAN-
former2’s wider diversity in object’s properties, its higher compliance with the source layouts, and the more
precise separation between different object segments (continued).

between images and layouts, namely {(Si, Xi)}, or unpaired: {Xi}, {Si}, and our training scheme
accommodates both options: For the paired case, we first train the planning stage over layouts {Si},
and the execution stage conditionally over {(Si, Xi)}, such that it learns to translate ground-truth
layouts into output images. Then, to make both stages work in tandem, we fine-tune them together,
where this time the execution stage translates generated layouts {Sgi } into output images {Xg

i }.
For the unpaired case, we can either (1) train the planning stage over the layouts {Si}, and then
fine-tune it together with the execution stage, or (2) jointly train the two stages from scratch (we
call this scheme Parallel). Since the Segment-Fidelity loss assumes access to paired layout-image
samples, both fake and real, we do not use it in the unpaired and parallel cases, and instead use the
Edge-Matching loss, described in D. We adjust the Edge-Matching and Semantic-Matching losses for
both the generator and the discriminator to be computed over generated pairs {(Sgi , X

g
i )}, which are

available even when the training data is unpaired. Table 4 compares the model performance between
the paired, unpaired and parallel settings for different datasets. The he model manages to perform
well even in the unpaired and parallel settings, but achieves strongest results in the paired case.

G Implementation & Training Details

We implement all the unconditional methods within the shared GANformer codebase [33], to ensures
they are tested under comparable conditions in terms of training details, model sizes, and optimiza-
tion scheme. For the conditional models, we use the authors’ official implementations, likewise
implemented as extensions to the Pix2PixHD repository for conditional generative modeling. All
approaches have been trained with images of 256× 256 resolution and data augmentation as detailed
in section I. See table 5 for the particular settings and hyperparameters of each model. The overall la-
tent dimension is chosen based on performance among {128, 256, 512}. The R1 regularization factor
γ is likewise chosen based on performance and training stability among {1, 10, 20, 40, 80, 100}.

31



In terms of the loss function, optimization and training configuration, we adopt the settings and
techniques used in StyleGAN2 and GANformer [33, 42], including in particular style mixing, Xavier
Initialization, stochastic variation, exponential moving average for weights, and a non-saturating
logistic loss with lazy R1 regularization. We use Adam optimizer with batch size of 32 (4 times 8
using gradient accumulation), equalized learning rate of 0.001, β1 = 0.9 and β1 = 0.999 as well as
leaky ReLU activations with α = 0.2, bilinear filtering in all up/downsampling layers and minibatch
standard deviation layer at the end of the discriminator. The mapping layer of the generator consists of
8 layers, and ResNet connections are used throughout the model, for the mapping network, synthesis
network and discriminator. All models have been trained for the same number of training steps,
roughly spanning 10 days on 1 NVIDIA V100 GPU per model.

H Baselines & Prior Approaches

We compare GANformer2 to both unconditional and conditional generative models. First, we inspect
unconditional methods which synthesize images from scratch, including in particular: (1) a baseline
GAN [23], (2) the StyleGAN2 [42] model, (3) SAGAN [81] which utilizes self-attention across
spatial regions, (4) k-GAN [69] that blends together k generated images through alpha-composition,
(5) VQGAN [21], a visual autoregessive autoencoder, (6) SBGAN [5], a non-compositional two-stage
approach, and (7) the original GANformer [33].

We then proceed to compare our execution stage to popular conditional semantic generation models,
including the aforementioned SBGAN and also: (8) Pix2PixHD [72] which uses a U-Net [62] to trans-
late source to target images, (9) BicycleGAN [86] that promotes cycle consistency among domains,
and (10) SPADE [60], which performs spatial modualtion using a fixed set of trainable semantic
category vectors. For disentanglement and controllability experiments, we compare the GANformer2
to a baseline GAN, StyleGAN2 and GANformer, as well as: (11) MONet and (12) Iodine, two
sequential variational autoencoders.

I Data Preparations

We train all models on images of 256× 256 resolution, padded as necessary. See dataset statistics
in table 6. The images in the Cityscapes and FFHQ datasets are mirror-augmented, while the
images in the COCO dataset are both mirror-augmented and also randomly cropped, to increase the
effective training set size. We assume access to a training data of image and panoptic segmentations
[43], indicating the segment unique identity and its semantic class. Contrary to prior conditional
works which rely on costly hand-annotated ground-truth segmentations, and to demonstrate the model
robustness, we instead intentionally explore training on auto-predicted segmentations (either produced
in an unsupervised manner [39] for CLEVR [37] or by pre-trained segmentor [74] otherwise).

For the COCO dataset [48], we note that it introduces challenges from two perspectives, being
both highly-structured, with each scene populated by many objects that hold intricate relations and
dependencies, but also visually and semantically diverse, consisting of varied images from a wide
range of domains. In order to isolate the former challenge of modeling compositional scenes from
the latter important but different challenge of covering a diverse image distribution, we study training
on a topical partition of COCO, named COCOp, that groups images into 7 semantically-related splits,
listed in table 7. To partition the dataset, we cluster t-SNE processed ResNet activations of the COCO
images into 31 subsets, which are then semantically grouped into the 7 splits. We train the models
on each split separately, and report the mean scores. As expected, and also empirically suggested
by table 1, the partition leads to improved visual quality across all models – both baselines and new
ones, likely due to the more uniform resulting training distributions.
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