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A BASELINES

We compare with these open-sourced VTA baselines:

1. IM2WAV (Sheffer & Adi, 2023) is an open-domain audio generation system which is based
on the image or the image sequence. The model uses a language model to generate low-
level audio representation. We use the pre-trained checkpoint with the default parameters
as the baseline.

2. Diff-Foley (Luo et al., 2024) uses a LDM based on the features extracted by CAVP, an
encoder that is contrastively pre-trained to learn temporally and semantically aligned audio-
visual features. We use the pre-trained Diff-Foley as our baseline.

3. FoleyCrafter (Zhang et al., 2024) imports semantic and temporal blocks for precise audio-
video synchronization, and supports the use of text descriptions to facilitate controllable
and diverse TTA generation.

4. Seeing&Hearing (Xing et al., 2024) is built on a multimodality latent aligner with the pre-
trained ImageBind model. It also uses a LDM as the generation framework.

5. T2AV (Mo et al., 2024) leverages visual-aligned text embeddings as its conditional founda-
tion in diffusion-based audio generation. Note that, compared with other baselines, T2AV
generation is more based on the textual description. The model leverages a pre-trained
video-audio CLAP(VA-CLAP) as the vision encoder.

B SUBJECTION EVALUATION

The subjective evaluation aims to gauge the performance of our models from a human perspec-
tive, providing insights into the perceived quality and alignment of the generated audio and original
video content. Participants undergo a training session where they are introduced to the evaluation
objectives, the rating scale, and example demonstrations that illustrate different quality levels. Ad-
ditionally, they practice rating sample videos to familiarize themselves with the criteria and receive
feedback to ensure consistency.

Overall Quality This metric evaluates the general appeal and coherence of the combined video,
considering both audio and visual components. It contains how well the audio and video elements
fit together without any jarring or inconsistent moments.

Audio Quality Focusing solely on the generated audio, this metric assesses factors such as clarity,
fidelity, and naturalness, like how clear and understandable the audio is, free from distortion or
muddiness, and how closely the generated audio resembles human speech or natural sounds in terms
of intonation, rhythm, and expression.

Video-Audio Semantic Alignment This metric measures how well the audio semantically
matches the visual content, ensuring that the sounds correspond appropriately to the actions and
scenes depicted in the video, like how relevant the audio is to the visual context, with sounds match-
ing the actions and scenes on screen.

Video-Audio Temporal Alignment The evaluation centers on the synchronization between the
audio and video streams, determining how accurately the timing of audio events aligns with visual
events, like the precision with which sounds occur in tandem with corresponding visual actions (e.g.,
a door slamming in sync with the sound of the slam).

C EXPERIMENTS ON VISION ENCODERS

Based on the proposed generation framework, we start by trying ablation results on different vision
encoders:
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1. Clip4Clip (Luo et al., 2021) foucuses on video-text retrieval based on the pretrained
Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) model. Experi-
ments have shown that CLIP can serve as the backbone to extract knowledge from frame-
level video input. We leverage a similar linear projection to map the frame-level video
features extracted by CLIP to get the generation condition.

2. Imagebind (Girdhar et al., 2023) is pre-trained on different modalities to learn joint em-
beddings, including images, text, and audio. All the modalities are bound with the image-
paired data. We leverage Imagebind to get the image embeddings of the extracted frames
extracted from the input video.

3. LanguageBind (Zhu et al., 2023) is trained similarly with Imagebind but takes the language
as the bind across different modalities. As the language modality is well-explored and
proved influential as conditions in the previous TTA works, we would like to see whether
vision embeddings extracted from LanguageBind can serve as a better condition.

4. V-JEPA (Bardes et al., 2024) is considered as an extension of the I-JEPA (Assran et al.,
2023) to video based on self-supervised learning. Improving from I-JEPA which learns se-
mantic image features, V-JEPA deals with self-supervised learning of video representations
appropriate for video understanding in a spatio-temporal way.

5. ViViT (Arnab et al., 2021) a pure-transformer based models. Although the model was
originally designed for video classification, we would like to check whether the spatio-
temporal tokens learned from the input video can help guide the generation of audio. We
use the pre-trained ViViT trained on the kinetics400 dataset as the encoder.

6. CAVP (Luo et al., 2024) is trained with two different objects, semantic contrast loss and
temporal contrast loss, to improve audio-video features’ semantic and temporal alignment.
CAVP was first leveraged in the DIFF-FOLEY model to synthesize synchronized video-
conditioned content. We use the pre-trained CAVP (also pre-trained on the VGGSound
dataset) as our vision encoder.

D EXPERIMENTS ON AUXILIARY EMBEDDINGS

We are also interested in exploring whether auxiliary embeddings, beyond visual features, could en-
hance the generation process. Numerous studies have demonstrated that additional information can
improve generation results in various ways, whether broadly or specifically. We aim to investigate
this phenomenon through several auxiliary embeddings:

1. Text Information: Additional textual labels can provide valuable context and extra se-
mantic details that may not be immediately discernible from visual features. Moreover,
text information can assist in filtering out extraneous information in the video. For in-
stance, the presence of a gun in a video does not necessarily imply that the corresponding
audio will be generated. In our experiment, we utilize CLIP to obtain text embeddings and
concatenate these with the video embeddings to serve as the condition.

2. Position Embedding: Indeed, Position Embedding is critical as it imparts a sense of tem-
poral order or sequence, which is essential in audio generation, particularly when the vision
encoders are primarily focused on the semantics of the audio. Intuitively, Position Embed-
ding assists the model in understanding the event sequence, thereby enabling it to generate
coherent audio. We utilize sinusoidal positional embedding, akin to the method used in
the Transformer model (Vaswani et al., 2023), as it facilitates effortless attention to relative
positions.

3. Optical Flow: Optical Flow offers valuable insights into the motion and dynamics present
in a video sequence. Previous study (Fedorishin et al., 2023) has utilized this information to
assist in localizing sound sources within videos. In our approach, we employ optical flow
video embeddings as an additional condition for generation. Similar to the previous embed-
dings, these embeddings are concatenated with the original video embeddings, enriching
the input representation and potentially enhancing the audio generation process.
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E EXPERIMENTS ON DATA AUGMENTATION

The data quality of the training set is undeniably crucial for a model’s performance, particularly
when training large generative models. We explore data augmentation from three different perspec-
tives:

1. Data Clean: Data clean ensures that the input data is accurate, consistent, and free from
errors or anomalies. We use a CLAP (Wu* et al., 2023) model to help select audio-video
pairs with similar semantics based on extra textual labels (with score > 0.3). We also
use the AV-Align score to filter unmatched video-audio pairs (with score > 0.2). For the
VGGSound dataset, we filter out about 100k high-quality video-audio pairs.

2. Concat Augmnent The original VGGSound dataset primarily contains audio clips with
single audio events. While this makes the dataset a clean, simple test set for audio event
generation, it does not evaluate the model’s ability to handle temporal information in com-
plex videos. To simulate complex generation tasks with various audio events during train-
ing, we randomly concatenate two videos with different audio events. We also propose a
test set to assess our models.

3. Pretrain We also try to leverage the power of pretraining. We pretrain our model on two
different data corpus seperately: a large video-audio corpus consisting of 10k hours of
content from YouTube, and a large audio corpus mainly from WavCaps (Mei et al., 2023)
and Youtube, amounting to approximately 150k hours of audio with paired captions. The
YouTube corpus is processed in the same manner as the VGGSound video data. We filter
out talking and music content, using only audio event cases for training. For video-audio
pretraining, we leverage video-to-audio supervised training. For audio pretraining, we per-
form audio self-supervised training. Subsequently, we perform full parameter finetuning of
our model on the original training set.

F MORE DEMOS

F.1 SAILENCY MAP

Untrained

T0

T2

T1

Figure 6: More demos of the sailency map. We show that the model focuses on different compo-
nents in different frames of the given video after training, although the vision encoder parameters
are completely freezed during the training time.

F.2 AUDIO GENERATION

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 7: More demos of the VTA generation on open-domain videos. Refer to the supp materials
for more video demos and the inference code.
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